• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.3.2008.tde-22052009-123951
Document
Author
Full name
Paulo Henrique da Rocha
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2008
Supervisor
Committee
Sales, Roberto Moura (President)
Burt, Phillip Mark Seymour
Galvão, Roberto Kawakami Harrop
Marques, Ricardo Paulino
Stephan, Richard Magdalena
Title in Portuguese
Controle H-infinito não-linear aplicado em sistema de levitação magnética: projeto e implementação em DSP de ponto-fixo.
Keywords in Portuguese
Controle (teoria de sistemas e controle) - (Projeto; Implementação)
Controle digital
Eletrônica embarcada
Processamento digital de sinais
Abstract in Portuguese
Sistemas de levitação magnética são inerentemente não-lineares e, quando con- trolados digitalmente, normalmente, esbarram em limitações do hardware empregado. O objetivo desta tese é apresentar aspectos teóricos e práticos durante a aplicação da teoria de controle H1 não-linear em sistemas de levitação magnética. A primeira con- tribuição desta tese é apresentar um procedimento de projeto de um controlador H1 não-linear que utiliza funções de ponderação com dinâmica, obtidas a partir do projeto de um controlador H1 linear. Assim como no caso linear, essas funções de ponderação possibilitam a rejeição de perturbações, ruídos de sensor, aumento da robustez, den- tre outras especificações. A segunda contribuição é apresentar um procedimento de conversão de uma rotina implementada em ponto-flutuante para ponto-fixo, utilizando minimização de norma l1, que foi implementada em um DSP de 32 bits em ponto- fixo. Resultados experimentais também são apresentados, nos quais a performance do controlador não-linear é especificamente avaliada na fase inicial de levitação.
Title in English
Nonlinear H-infinity controller applied on electromagnetic suspension system: project and implementation on fixed-point DSP.
Keywords in English
Digital control
DSP
Embedded control
Fixed-point
Linear H control
Magnetic bearing
Magnetic levitation
Non-linear H control
Wordlength
Abstract in English
Electromagnetic suspension systems are inherently nonlinear and often face hard- ware limitation when digitally controlled. The goal of this thesis is to present theoretical and practical aspects during the nonlinear H1 control applied on an electromagnetic suspension system. The first contribution is the design of a nonlinear H1 controller, including dynamic weighting functions, obtained from a linear H1 controller. Just as in the linear case, this dynamic weighting functions provide the disturbance and noise sensor rejection, robustness improvement, among other specifications. The second con- tribution is to present a procedure able to translate a floating-point algorithm into a fixed-point algorithm by using l1 norm minimization due to conversion error, which was then implemented into a 32-bit fixed-point DSP. Experimental results are also pre-sented, in which the performance of the nonlinear controller is evaluated specifically in the initial suspension phase.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2009-07-06
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.