• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.43.2017.tde-18092017-095345
Document
Author
Full name
Marcos Vinicius Moro
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2017
Supervisor
Committee
Tabacniks, Manfredo Harri (President)
Grande, Pedro Luis
Medina, Nilberto Heder
Montanari, Claudia Carmen
Suaide, Alexandre Alarcon do Passo
 
Title in English
Energy loss of light ions (H+ and He+) in matter: high accuracy measurements and comparison with the FEG model
Keywords in English
Energy loss; High accuracy; Free electron gas model
Nuclear physics; Stopping power
Abstract in English
The phenomenon of energy loss that occurs when an ion interacts with matter, also called stopping power, has been investigated for more than a century, and has provided findings of interest. However, reliable procedures for obtaining accurate experimental measurements and a fully theoretical comprehension of the process are tasks still in high demand by the scientific community. Moreover, stopping power data are prerequisites in several applications in modern science, such as engineering, ion implantation and modification of materials, damage to electronics devices (e.g. space radiation), medical physics (e.g. proton therapy), among others. In this thesis we i) develop a rigorous experimental protocol to measure stopping power with high precision, and ii) investigate the collapse of the free electron gas (FEG) model in energy loss of light ions (protons) at a low energy range in transition and rare-earth metals. In the first part, we present an approach to obtain, with high accuracy, the stopping cross sections in the pure materials Al and Mo for protons in the energy range of [0.9 - 3.6] MeV by means of the transmission method. The traceability of the sources of uncertainties are fully evaluated and the final accuracy of the results is 0.63% (0.32% rand. and 0.54% syst.) for Al, and 1.5 % (0.44 % rand. and 1.4% syst.) for Mo, with both results primarily limited by the quality and homogeneity of the stopping foils. For Al, this high accuracy represents an improvement compared to the results obtained in previous studies and serves as a benchmark for our procedure. The most important sources of uncertainties were random - the uncertainty in the peak positions and in the Gaussian fits; and systematic - the non-uniformity thickness of the foils (a special procedure was developed to correct this). Even though the final uncertainty for Mo is higher than for Al, our results improve on the amount of data currently available for the energy range considered. Both data sets are compared with the most commonly employed theoretical models and Monte Carlo codes in the literature. In the second part, electronic stopping cross sections of nontrivial solids, that is, transition and rare earth metals (Ta and Gd) for slow protons are experimentally investigated, and the data were compared with the results for Pt and Au, to understand how energy losses in these metals are correlated with electronic band structures, and to understand the failure of the FEG model predictions. The higher stopping powers found for Ta and Gd cannot be explained by means of the FEG model; however, these effects are successfully correlated with the high density of states (DOS) of both the occupied and unoccupied electronic levels in these metals. For the case of Gd, the experimental data are extended in the energy range until the Bragg's peak is reached. The two parts of this thesis were published in Physical Review A 93 022704 (2016), and in Physical Review Letters 18 103401 (2017), respectively.
 
Title in Portuguese
Perda de energia de íons leves (H+ e He+) na matéria: medidas de alta acurácia e comparação com o modelo de FEG
Keywords in Portuguese
Alta acurácia; Modelo de gás de elétrons livres
Física Nuclear; Poder de freamento; Perda de energia
Abstract in Portuguese
O fenômeno de perda de energia quando um íon interage com a matéria, também conhecido como poder de freamento, vem sendo investigado por mais de um século, gerando grandes descobertas. Entretanto, conseguir obter medidas experimentais com alta precisão, ou elaborar um completo entendimento teórico dos processos de perda de energia são tarefas extremamente difíceis e ainda muito requeridas pela comunidade científica. Além disso, dados de perda de energia são pré-requisitos em várias aplicações e ramos da ciência moderna, tais como: engenharia, implantação e modificação de materiais, danos em dispositivos eletrônicos (radiação espacial), física médica (próton terapia), etc. Esta tese tem dois focos: i) desenvolver um rigoroso protocolo experimental para medir stopping power com alta precisão e ii) investigar a quebra de validade do modelo de Gás de Elétrons Livres (FEG) para a perda de energia de prótons lentos em metais de transição e terra raras. Na primeira parte apresentamos uma abordagem experimental para obter com alta precisão o poder de freamento em materiais puros (Al e Mo) para prótons no intervalo de energia de [0,9 - 3,6] MeV pelo método de transmissão. A rastreabilidade das fontes de incerteza foi determinada e as incertezas finais encontradas foram: 0,63 % (0,32 % aleat. e 0,54 % sist.) para Al e 1,5 % (0,44 % aleat. e 1,4 % sist.) para Mo, ambas devido a qualidade e homogeneidade das folhas freadoras. Para Al, esta acurácia representa um avanço comparado com publicações anteriores e, assim, serviu como uma referência de nosso procedimento. As mais importantes fontes de incerteza foram: aleatória incerteza das posições dos picos e dos ajustes Gaussianos e sistemática não-uniformidade das folhas-alvo (um procedimento foi desenvolvido para corrigir isso). Embora a incerteza final do Mo é um pouco maior do que do Al, nossos resultados ajudaram a complementar a baixa quantidade de dados disponíveis para o intervalo de energia considerado. Ambos conjuntos de dados foram comparados com os mais comuns modelos teóricos e códigos de Monte Carlo na literatura. Para a segunda parte, poder de freamento em metais não tão comuns tais como transição (Ta) e terras-raras (Gd) para prótons com baixas velocidades foram experimentalmente investigados, e os dados comparados com resultados de Pt e Au, a fim de entender como o stopping power destes metais está correlacionado com as estruturas de bandas eletrônicas, e assim tentar explicar a falha do modelo de FEG. Os altos valores das perdas de energias encontradas para Ta e Gd não puderam ser explicadas pelo modelo de FEG, e portanto foram correlacionados com a densidade de estados (DOS) em ambos os níveis ocupados e não ocupados destes metais. Para o caso do Gd, os dados experimentais foram estendidos em um intervalo de energia até alcançarem o pico de Bragg. A primeira parte desta tese foi publicada na Physical Review A 93 022704 (2016), e a segunda parte na Physical Review Letters 18 103401 (2017).
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
MVMoro_tese_final.pdf (4.33 Mbytes)
Publishing Date
2017-09-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.