• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.100.2018.tde-12112018-182428
Documento
Autor
Nome completo
Alexandra Katiuska Ramos Diaz
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2018
Orientador
Banca examinadora
Sun, Violeta (Presidente)
Coelho, Guilherme Palermo
Constantino, Ademir Aparecido
Freire, Alexandre da Silva
Título em português
Biagrupamento heurístico e coagrupamento baseado em fatoração de matrizes: um estudo em dados textuais 
Palavras-chave em português
Algoritmos heurísticos
Biagrupamento
Coagrupamento
Fatoração de matrizes não-negativas
Matrizes de dados esparsos
Mineração de textos
Resumo em português
Biagrupamento e coagrupamento são tarefas de mineração de dados que permitem a extração de informação relevante sobre dados e têm sido aplicadas com sucesso em uma ampla variedade de domínios, incluindo aqueles que envolvem dados textuais -- foco de interesse desta pesquisa. Nas tarefas de biagrupamento e coagrupamento, os critérios de similaridade são aplicados simultaneamente às linhas e às colunas das matrizes de dados, agrupando simultaneamente os objetos e os atributos e possibilitando a criação de bigrupos/cogrupos. Contudo suas definições variam segundo suas naturezas e objetivos, sendo que a tarefa de coagrupamento pode ser vista como uma generalização da tarefa de biagrupamento. Estas tarefas, quando aplicadas nos dados textuais, demandam uma representação em um modelo de espaço vetorial que, comumente, leva à geração de espaços caracterizados pela alta dimensionalidade e esparsidade, afetando o desempenho de muitos dos algoritmos. Este trabalho apresenta uma análise do comportamento do algoritmo para biagrupamento Cheng e Church e do algoritmo para coagrupamento de decomposição de valores em blocos não negativos (\textit{Non-Negative Block Value Decomposition} - NBVD), aplicado ao contexto de dados textuais. Resultados experimentais quantitativos e qualitativos são apresentados a partir das experimentações destes algoritmos em conjuntos de dados sintéticos criados com diferentes níveis de esparsidade e em um conjunto de dados real. Os resultados são avaliados em termos de medidas próprias de biagrupamento, medidas internas de agrupamento a partir das projeções nas linhas dos bigrupos/cogrupos e em termos de geração de informação. As análises dos resultados esclarecem questões referentes às dificuldades encontradas por estes algoritmos nos ambiente de experimentação, assim como se são capazes de fornecer informações diferenciadas e úteis na área de mineração de texto. De forma geral, as análises realizadas mostraram que o algoritmo NBVD é mais adequado para trabalhar com conjuntos de dados em altas dimensões e com alta esparsidade. O algoritmo de Cheng e Church, embora tenha obtidos resultados bons de acordo com os objetivos do algoritmo, no contexto de dados textuais, propiciou resultados com baixa relevância
Título em inglês
Heuristic biclustering and coclustering based on matrix factorization: a study on textual data
Palavras-chave em inglês
Biclustering
Coclustering
Heuristic algorithms
Matrix of sparse data
Non-negative matrix factorization
Text Mining
Resumo em inglês
Biclustering e coclustering are data mining tasks that allow the extraction of relevant information about data and have been applied successfully in a wide variety of domains, including those involving textual data - the focus of interest of this research. In biclustering and coclustering tasks, similarity criteria are applied simultaneously to the rows and columns of the data matrices, simultaneously grouping the objects and attributes and enabling the discovery of biclusters/coclusters. However their definitions vary according to their natures and objectives, being that the task of coclustering can be seen as a generalization of the task of biclustering. These tasks applied in the textual data demand a representation in a model of vector space, which commonly leads to the generation of spaces characterized by high dimensionality and sparsity and influences the performance of many algorithms. This work provides an analysis of the behavior of the algorithm for biclustering Cheng and Church and the algorithm for coclustering non-negative block decomposition (NBVD) applied to the context of textual data. Quantitative and qualitative experimental results are shown, from experiments on synthetic datasets created with different sparsity levels and on a real data set. The results are evaluated in terms of their biclustering oriented measures, internal clustering measures applied to the projections in the lines of the biclusters/coclusters and in terms of generation of information. The analysis of the results clarifies questions related to the difficulties faced by these algorithms in the experimental environment, as well as if they are able to provide differentiated information useful to the field of text mining. In general, the analyses carried out showed that the NBVD algorithm is better suited to work with datasets in high dimensions and with high sparsity. The algorithm of Cheng and Church, although it obtained good results according to its own objectives, provided results with low relevance in the context of textual data
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Texto_versao_final.pdf (10.18 Mbytes)
Data de Publicação
2018-12-04
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.