• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.100.2016.tde-20122015-212746
Document
Author
Full name
Beatriz Tomazela Teodoro
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2015
Supervisor
Committee
Digiampietri, Luciano Antonio (President)
Marques, Fátima de Lourdes dos Santos Nunes
Ponti, Moacir Antonelli
Title in Portuguese
Sistema de reconhecimento automático de Língua Brasileira de Sinais
Keywords in Portuguese
LIBRAS
língua brasileira de sinais
processamento de imagens
Reconhecimento de língua de sinais
segmentação de pele humana
Abstract in Portuguese
O reconhecimento de língua de sinais é uma importante área de pesquisa que tem como objetivo atenuar os obstáculos impostos no dia a dia das pessoas surdas e/ou com deficiência auditiva e aumentar a integração destas pessoas na sociedade majoritariamente ouvinte em que vivemos. Baseado nisso, esta dissertação de mestrado propõe o desenvolvimento de um sistema de informação para o reconhecimento automático de Língua Brasileira de Sinais (LIBRAS), que tem como objetivo simplificar a comunicação entre surdos conversando em LIBRAS e ouvintes que não conheçam esta língua de sinais. O reconhecimento é realizado por meio do processamento de sequências de imagens digitais (vídeos) de pessoas se comunicando em LIBRAS, sem o uso de luvas coloridas e/ou luvas de dados e sensores ou a exigência de gravações de alta qualidade em laboratórios com ambientes controlados, focando em sinais que utilizam apenas as mãos. Dada a grande dificuldade de criação de um sistema com este propósito, foi utilizada uma abordagem para o seu desenvolvimento por meio da divisão em etapas. Considera-se que todas as etapas do sistema proposto são contribuições para trabalhos futuros da área de reconhecimento de sinais, além de poderem contribuir para outros tipos de trabalhos que envolvam processamento de imagens, segmentação de pele humana, rastreamento de objetos, entre outros. Para atingir o objetivo proposto foram desenvolvidas uma ferramenta para segmentar sequências de imagens relacionadas à LIBRAS e uma ferramenta para identificar sinais dinâmicos nas sequências de imagens relacionadas à LIBRAS e traduzi-los para o português. Além disso, também foi construído um banco de imagens de 30 palavras básicas escolhidas por uma especialista em LIBRAS, sem a utilização de luvas coloridas, laboratórios com ambientes controlados e/ou imposição de exigências na vestimenta dos indivíduos que executaram os sinais. O segmentador implementado e utilizado neste trabalho atingiu uma taxa média de acurácia de 99,02% e um índice overlap de 0,61, a partir de um conjunto de 180 frames pré-processados extraídos de 18 vídeos gravados para a construção do banco de imagens. O algoritmo foi capaz de segmentar pouco mais de 70% das amostras. Quanto à acurácia para o reconhecimento das palavras, o sistema proposto atingiu 100% de acerto para reconhecer as 422 amostras de palavras do banco de imagens construído, as quais foram segmentadas a partir da combinação da técnica de distância de edição e um esquema de votação com um classificador binário para realizar o reconhecimento, atingindo assim, o objetivo proposto neste trabalho com êxito.
Title in English
Automatic Recognition System of Brazilian Sign Language
Keywords in English
brazilian sign language
BSL
human skin segmentation
image processing
Sign language recognition
Abstract in English
The recognition of sign language is an important research area that aims to mitigate the obstacles in the daily lives of people who are deaf and/or hard of hearing and increase their integration in the majority hearing society in which we live. Based on this, this dissertation proposes the development of an information system for automatic recognition of Brazilian Sign Language (BSL), which aims to simplify the communication between deaf talking in BSL and listeners who do not know this sign language. The recognition is accomplished through the processing of digital image sequences (videos) of people communicating in BSL without the use of colored gloves and/or data gloves and sensors or the requirement of high quality recordings in laboratories with controlled environments focusing on signals using only the hands. Given the great difficulty of setting up a system for this purpose, an approach divided in several stages was used. It considers that all stages of the proposed system are contributions for future works of sign recognition area, and can contribute to other types of works involving image processing, human skin segmentation, object tracking, among others. To achieve this purpose we developed a tool to segment sequences of images related to BSL and a tool for identifying dynamic signals in the sequences of images related to the BSL and translate them into portuguese. Moreover, it was also built an image bank of 30 basic words chosen by a BSL expert without the use of colored gloves, laboratory-controlled environments and/or making of the dress of individuals who performed the signs. The segmentation algorithm implemented and used in this study had a average accuracy rate of 99.02% and an overlap of 0.61, from a set of 180 preprocessed frames extracted from 18 videos recorded for the construction of database. The segmentation algorithm was able to target more than 70% of the samples. Regarding the accuracy for recognizing words, the proposed system reached 100% accuracy to recognize the 422 samples from the database constructed (the ones that were segmented), using a combination of the edit distance technique and a voting scheme with a binary classifier to carry out the recognition, thus reaching the purpose proposed in this work successfully.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-02-22
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.