• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.100.2017.tde-26062017-101202
Documento
Autor
Nombre completo
João Carlos Silva de Souza
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2017
Director
Tribunal
Oliveira, Patrícia Rufino (Presidente)
Batista, Gustavo Enrique de Almeida Prado Alves
Lima, Clodoaldo Aparecido de Moraes
Mena Chalco, Jesús Pascual
Título en portugués
Aprendizado semi-supervisionado para o tratamento de incerteza na rotulação de dados de química medicinal
Palabras clave en portugués
Aprendizado semi-supervisionado
Máquinas de Aprendizado Extremo
Maximização da Esperança
Química farmacêutica
Tratamento de incerteza
Resumen en portugués
Nos últimos 30 anos, a área de aprendizagem de máquina desenvolveu-se de forma comparável com a Física no início do século XX. Esse avanço tornou possível a resolução de problemas do mundo real que anteriormente não poderiam ser solucionados por máquinas, devido à dificuldade de modelos puramente estatísticos ajustarem-se de forma satisfatória aos dados de treinamento. Dentre tais avanços, pode-se citar a utilização de técnicas de aprendizagem de máquina na área de Química Medicinal, envolvendo métodos de análise, representação e predição de informação molecular por meio de recursos computacionais. Os dados utilizados no contexto biológico possuem algumas características particulares que podem influenciar no resultado de sua análise. Dentre estas, pode-se citar a complexidade das informações moleculares, o desbalanceamento das classes envolvidas e a existência de dados incompletos ou rotulados de forma incerta. Tais adversidades podem prejudicar o processo de identificação de compostos candidatos a novos fármacos, se não forem tratadas de forma adequada. Neste trabalho, foi abordada uma técnica de aprendizagem de máquina semi-supervisionada capaz de reduzir o impacto causado pelo problema da incerteza na rotulação dos dados, aplicando um método para estimar rótulos mais confiáveis para os compostos químicos existentes no conjunto de treinamento. Na tentativa de evitar os efeitos causados pelo desbalanceamento dos dados, foi incorporada ao processo de estimação de rótulos uma abordagem sensível ao custo, com o objetivo de evitar o viés em benefício da classe majoritária. Após o tratamento do problema da incerteza na rotulação, classificadores baseados em Máquinas de Aprendizado Extremo foram construídos, almejando boa capacidade de aproximação em um tempo de processamento reduzido em relação a outras abordagens de classificação comumente aplicadas. Por fim, o desempenho dos classificadores construídos foi avaliado por meio de análises dos resultados obtidos, confrontando o cenário com os dados originais e outros com as novas rotulações obtidas durante o processo de estimação semi-supervisionado
Título en inglés
Semi supervised learning for uncertainty on medicinal chemistry labelling
Palabras clave en inglés
Expectation and Maximization
Extreme Learning Machines
Medicinal Chemistry
Semi-supervised learning
Uncertainty handling
Resumen en inglés
In the last 30 years, the area of machine learning has developed in a way comparable to Physics in the early twentieth century. This breakthrough has made it possible to solve real-world problems that previously could not be solved by machines because of the difficulty of purely statistical models to fit satisfactorily with training data. Among these advances, one can cite the use of machine learning techniques in the area of Medicinal Chemistry, involving methods for analysing, representing and predicting molecular information through computational resources. The data used in the biological context have some particular characteristics that can influence the result of its analysis. These include the complexity of molecular information, the imbalance of the classes involved, and the existence of incomplete or uncertainly labeled data. If they are not properly treated, such adversities may affect the process of identifying candidate compounds for new drugs. In this work, a semi-supervised machine learning technique was considered to reduce the impact caused by the problem of uncertainty in the data labeling, by applying a method to estimate more reliable labels for the chemical compounds in the training set. In an attempt to reduce the effects caused by data imbalance, a cost-sensitive approach was incorporated to the label estimation process, in order to avoid bias in favor of the majority class. After addressing the uncertainty problem in labeling, classifiers based on Extreme Learning Machines were constructed, aiming for good approximation ability in a reduced processing time in relation to other commonly applied classification approaches. Finally, the performance of the classifiers constructed was evaluated by analyzing the results obtained, comparing the scenario with the original data and others with the new labeling obtained by the semi-supervised estimation process
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-10-24
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.