• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
Documento
Autor
Nombre completo
Victor Azevedo Coscrato
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2019
Director
Tribunal
Izbicki, Rafael (Presidente)
Naldi, Murilo Coelho
Prates, Marcos Oliveira
Título en inglés
Neural networks as an optimization method for regression
Palabras clave en inglés
Ensembles
Local regression
Neural networks
Optimization
Regression
Resumen en inglés
Neural networks are a tool to solve prediction problems that have gained much prominence recently. In general, neural networks are used as a predictive method, that is, their are used to estimate a regression function. Instead, this work presents the use of neural networks as an optimization tool to combine existing regression estimators in order to obtain more accurate predictions and to fit local linear models more efficiently. Several tests were conducted to show the greater efficiency of these methods when compared to the usual ones.
Título en portugués
Redes neurais como método de otimização para regressão
Palabras clave en portugués
Combinação de regressões
Otimização
Redes neurais
Regressão
Regressão local
Resumen en portugués
Redes neurais são uma ferramenta para resolver problemas de predição que ganharam muito destaque recentemente. Em geral, redes neurais são utilizados como um método preditivo, ou seja, estimando uma função de regressão. Este trabalho, no entanto, apresenta o uso de redes neurais como uma ferramenta de otimização para combinar estimadores de regressão já existentes de modo a obter predições mais precisas e ajustar modelos lineares locais de forma mais eficiente. Vários testes foram conduzidos para mostrar a maior eficiência desses métodos quando comparados aos usuais.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-11-01
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.