• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.104.2017.tde-05122017-145244
Documento
Autor
Nombre completo
Fabiano Rodrigues Coelho
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2017
Director
Tribunal
Noveli, Cibele Maria Russo (Presidente)
Azevedo, Caio Lucidius Naberezny
Pinto Junior, Jony Arrais
Título en portugués
Seleção de modelos multiníveis para dados de avaliação educacional
Palabras clave en portugués
Critério de informação e Prova Brasil
Modelos Multiníveis
Seleção de modelos
Resumen en portugués
Quando um conjunto de dados possui uma estrutura hierárquica, uma possível abordagem são os modelos de regressão multiníveis, que se justifica pelo fato de haver uma porção significativa da variabilidade dos dados que pode ser explicada por níveis macro. Neste trabalho, desenvolvemos a seleção de modelos de regressão multinível aplicados a dados educacionais. Esta análise divide-se em duas partes: seleção de variáveis e seleção de modelos. Esta última subdivide-se em dois casos: modelagem clássica e modelagem bayesiana. Buscamos através de critérios como o Lasso, AIC, BIC, WAIC entre outros, encontrar quais são os fatores que influenciam no desempenho em matemática dos alunos do nono ano do ensino fundamental do estado de São Paulo. Também investigamos o funcionamento de cada um dos critérios de seleção de variáveis e de modelos. Foi possível concluir que, sob a abordagem frequentista, o critério de seleção de modelos BIC é o mais eficiente, já na abordagem bayesiana, o critérioWAIC apresentou melhores resultados. Utilizando o critério de seleção de variáveis Lasso para abordagem clássica, houve uma diminuição de 34% dos preditores do modelo. Por fim, identificamos que o desempenho em matemática dos estudantes do nono ano do ensino fundamental do estado de São Paulo é influenciado pelas seguintes covariáveis: grau de instrução da mãe, frequência de leitura de livros, tempo gasto com recreação em dia de aula, o fato de gostar de matemática, o desempenho em matemática global da escola, desempenho em língua portuguesa do aluno, dependência administrativa da escola, sexo, grau de instrução do pai, reprovações e distorção idade-série.
Título en inglés
Selection of multilevel models for educational evaluation data
Palabras clave en inglés
Information criterion and Brazil Exam Basic Education Assessment
Model selection
Multilevel models
Resumen en inglés
When a dataset contains a hierarchical data structure, a possible approach is the multilevel regression modelling, which is justified by the significative amout of the data variability that can be explained by macro level processes. In this work, a selection of multilevel regression models for educational data is developed. This analysis is divided into two parts: variable selection and model selection. The latter is subdivided into two categories: classical and Bayesian modeling. Traditional criteria for model selection such as Lasso, AIC, BIC, and WAIC, among others are used in this study as an attempt to identify the factors influencing ninth grade students performance in Mathematics of elementary education in the State of São Paulo. Likewise, an investigation was conducted to evaluate the performance of each variable selection criteria and model selection methods applied to fitted models that will be mentioned throughout this work. It was possible to conclude that, under the frequentist approach, BIC is the most efficient, whereas under the bayesian approach, WAIC presented better results. Using Lasso under the frequentist approach, a decrease of 34% on the number of predictors was observed. Finally, we identified that the performance in Mathematics of students in the ninth year of elementary school in the state of São Paulo is most influenced by the following covariates: mothers educational level, frequency of book reading, time spent with recreation in classroom, the fact of liking Math, school global performance in Mathematics, performance in Portuguese, school administrative dependence, gender, fathers educational degree, failures and age-grade distortion.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-12-05
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.