• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
Documento
Autor
Nombre completo
Ricardo Felipe Ferreira
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2019
Director
Tribunal
Gallo, Alexsandro Giacomo Grimbert (Presidente)
Gallesco, Christophe Frederic
Garcia, Nancy Lopes
Rodrigues, Ludmila Brochini
Takahashi, Daniel Yasumasa
Título en portugués
Cadeias estocásticas de memória ilimitada com aplicação na neurociência
Palabras clave en portugués
Cadeias estocásticas de memória ilimitada
Inferência em processos estocásticos
Limites da concentração
Medida invariante
Neurociência
Resumen en portugués
As cadeias estocásticas de memória ilimitada são uma generalização natural das cadeias de Markov, no caso em que as probabilidades de transição podem depender de todo o passado da cadeia. Estas cadeias, introduzidas, independentemente, por Onicescu e Mihoc em 1935 e Doeblin e Fortet em 1937, vêm recebendo uma atenção crescente na literatura probabilística, não só por serem uma classe mais rica que a classe das cadeias de Markov, como por suas capacidades práticas de modelagem de dados científicos em diversas áreas, indo da biologia à linguística. Neste trabalho, as utilizamos para modelar a interação entre sequências de disparos neuronais. Nosso objetivo principal é desenvolver novos resultados matemáticos acerca das cadeias de memória ilimitada. Inicialmente, estudamos as condições que garantem a existência e a unicidade de cadeias estacionárias compatíveis com uma família de probabilidades de transição descontínua. Em seguida, tratamos do entendimento da fenomenologia dos trens de disparos neuronais e usamos da informação dirigida para modelar a informação que flui de uma sequência de disparos a outra. Nesta ocasião, fixamos limites da concentração para estimação da informação dirigida.
Título en inglés
Stochastic chains with unbounded memory applied in neuroscience
Palabras clave en inglés
Concentration bounds
Inference in stochastic processes
Invariant measure
Neuroscience
Stochastic chains with unbounded memory
Resumen en inglés
Stochastic chains with unbounded memory are a natural generalization of Markov chains, in the sense that the transition probabilities may depend on the whole past. These process, introduced independently by Onicescu and Mihoc in 1935 and Doeblin and Fortet in 1937, have been receiving increasing attention in the probabilistic literature, because they form a class richer than the Markov chains and have practical capabilities modelling of scientific data in several areas, from biology to linguistics. In this work, we use them to model interactions between spike trains. Our main goal is to develop new mathematical results about stochastic chains with unbounded memory. First, we study conditions that guarantee the existence and uniqueness of stationary chains compatible with a discontinuous family of transition probabilities. Then, we address the understanding of the phenomenology of spike trains and we propose to use directed information to quantify the information flow from one neuron to another. In this occasion, we fix concentration bounds for directed information estimation.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-08-30
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.