• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.104.2017.tde-11092017-093254
Document
Auteur
Nom complet
Raul Caram de Assis
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2017
Directeur
Jury
Milan, Luis Aparecido (Président)
Hotta, Luiz Koodi
Tsunemi, Miriam Harumi
Titre en portugais
Inferência em modelos de mistura via algoritmo EM estocástico modificado
Mots-clés en portugais
Algoritmo EM
Cadeia de Markov
Gibbs Sampling
Mistura de Distribuições
Modelos de Mistura
Segmentação de imagens
Resumé en portugais
Apresentamos o tópico e a teoria de Modelos de Mistura de Distribuições, revendo aspectos teóricos e interpretações de tais misturas. Desenvolvemos a teoria dos modelos nos contextos de máxima verossimilhança e de inferência bayesiana. Abordamos métodos de agrupamento já existentes em ambos os contextos, com ênfase em dois métodos, o algoritmo EM estocástico no contexto de máxima verossimilhança e o Modelo de Mistura com Processos de Dirichlet no contexto bayesiano. Propomos um novo método, uma modificação do algoritmo EM Estocástico, que pode ser utilizado para estimar os parâmetros de uma mistura de componentes enquanto permite soluções com número distinto de grupos.
Titre en anglais
Inference on Mixture Models via Modified Stochastic EM
Mots-clés en anglais
EM algorithm
Gibbs sampling
Image segmentation
Markov chain
Mixture models
Mixture of distributions
Resumé en anglais
We present the topics and theory of Mixture Models in a context of maximum likelihood and Bayesian inferece. We approach clustering methods in both contexts, with emphasis on the stochastic EM algorithm and the Dirichlet Process Mixture Model. We propose a new method, a modified stochastic EM algorithm, which can be used to estimate the parameters of a mixture model and the number of components.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-09-11
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.