• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
Document
Auteur
Nom complet
Juliana Scudilio Rodrigues
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2016
Directeur
Jury
Pereira, Gustavo Henrique de Araujo (Président)
Botter, Denise Aparecida
Venezuela, Maria Kelly
Titre en portugais
Análise de diagnóstico em modelos de regressão ZAGA e ZAIG
Mots-clés en portugais
Análise de diagnóstico
Fundo de investimento
Modelo ZAGA
Modelo ZAIG
Modelos de regressão inacionado no zero
Resíduo quantílico
Resumé en portugais
Resíduos desempenham um papel importante na verificação do ajuste do modelo e na idenfiticação de observações discrepantes e/ou influentes. Neste trabalho, estudamos duas classes de resíduos para os modelos de regressão gama inflacionados no zero (ZAGA) e gaussiana inversa inflacionados no zero (ZAIG). Essas classes de resíduos são uma função de um resíduo para o componente contínuo do modelo e da estimativa de máxima verossimilhança da probabilidade da observação assumir o valor zero. Estudos de simulação de Monte Carlo foram realizados para examinar as propriedades dessas classes de resíduos em ambos os modelos de regressão (ZAGA e ZAIG). Os resultados mostraram que um resíduo de uma dessas classes tem algumas propriedades semelhantes à da distribuição normal padrão nos modelos estudados. Além desse objetivo principal, descrevemos os modelos de regressão ZAGA e ZAIG, estudamos propriedades de alguns resíduos em modelos lineares generalizados com resposta gama e gaussiana inversa e discutimos outros aspectos de análise de diagnóstico nos modelos ZAGA e ZAIG. Para finalizar, foi feita uma aplicação com dados reais de fundos de investimentos, em que ajustamos o modelo ZAIG, para exemplificar os tópicos discutidos e mostrar a importância desses modelos e as vantagens de um dos resíduos estudados na análise de dados reais.
Titre en anglais
Diagnostic analysis in ZAGA and ZAIG regression models
Mots-clés en anglais
Diagnostic analysis
Inflated regression models
Investiment funds
Quantile residual
ZAGA models
ZAIG models
Resumé en anglais
Residuals play an important role in checking model adequacy and in the identification of outliers and influential observations. In this paper, we studied two class of residuals for the zero adjusted gamma regression model (ZAGA) and the zero adjusted inverse Gaussian regression model (ZAIG). These classes of residuals are function of a residual for the continuous component of the model and the maximum likelihood estimate of the probability of the observation assuming the zero value. Monte Carlo simulation studies are performed to examine the properties of this class of residuals in both models (ZAGA and ZAIG). Results showed that a residual of one of these class has some similar properties to the standard normal distribution in the studied models. We also described ZAGA and ZAIG regression models, studied properties of some residuals in generalized linear models with response gamma and inverse Gaussian and discussed other aspects of diagnostic analysis in ZAGA and ZAIG models. To finsih,we presented a real data set application from invesment funds of Brazil. We fitted the ZAIG model to illustrate the topics discussed and showed the importance of these models and the advantages of one of the studied residuals in the analysis of real dataset.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-08-12
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.