• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
Document
Auteur
Nom complet
Mariele Parteli Florencio
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2016
Directeur
Jury
Gava, Renato Jacob (Président)
Navarrete, Manuel Alejandro Gonzalez
Vargas Junior, Valdivino
Titre en portugais
Tempo de espera para a ocorrência de palavras em ensaios de Markov
Mots-clés en portugais
Cadeias de Markov
Palavras
Tempo de espera
Resumé en portugais
Consideremos uma sequência de lançamentos de moedas em que denotamos o resultado de cada lançamento por H, se der cara, ou por T, se der coroa. Formemos uma palavra apenas com H's e T's, por exemplo, HHHHH ou HTHTH. Quantas vezes arremessaremos uma mesma moeda ate que uma das duas palavras acima ocorrera? Por exemplo, dadas as sequências THTHHHHH e TTHTTHTHTH. O numero de vezes que arremessamos a moeda ate que HHHHH e HTHTH ocorreram pela primeira vez e oito e dez, respectivamente. Podemos generalizar a ideia acima para um numero finito de palavras em um alfabeto finito qualquer. Assim, o nosso principal objetivo dessa dissertação e encontrarmos a distribuição do tempo de espera ate que um membro de uma coleção finita de palavras seja observado em uma sequência de ensaios de Markov de letras de um alfabeto finito. Mais especificamente, as letras de um alfabeto finito são geradas por uma cadeia de Markov ate que uma das palavras de uma coleção finita ocorra. Além disso encontraremos a probabilidade de que determinada palavra ocorra antes das demais palavras pertencentes a um mesmo conjunto finito. Por ultimo encontraremos a função geradora de probabilidade do tempo de espera.
Titre en anglais
Waiting time for the occurrence of patterns in Markov chains
Mots-clés en anglais
Markov chains
Patterns
Waiting time
Resumé en anglais
Consider a sequence of independent coin flips where we denote the result of any landing for H, if coming up head, or T, otherwise. Create patterns with H's and T's, for example, HHHHH or HTHTH. How many times do we have to land the same coin until one such two patterns happens? For example, let the sequences being THTHHHHH and TTHTTHTHTH. The number of times that we landed the coin until HHHHH and HTHTH happens it was eight and ten times respectively. We can generalize this idea for a finite number of patterns in any finite set. Then, the first of all interest of this dissertation is to find the distribution of the waiting time until a member of a finite colection of patterns is observed in a sequence of Markov chains of letters in from finite set. More specically the letters in a finite set are generated by Markov chain until one of the patterns in any finite set happens. Besides that, we will find the probability of a pattern happen before of all patterns in the same finite set. Finally we will find the generator function of probability of waiting time.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-08-13
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.