• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.104.2017.tde-18012017-104314
Documento
Autor
Nombre completo
Marcelo Hartmann
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2015
Director
Tribunal
Ehlers, Ricardo Sandes (Presidente)
Lopes, Hedibert Freitas
Milan, Luis Aparecido
Título en portugués
Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos
Palabras clave en portugués
distribuição generalizada de valor extremo
Inferência Bayesiana não-paramétrica
método de Monte Carlo Hamiltoniano em variedade Riemanniana.
processo Gaussiano latente
Resumen en portugués
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação μ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados.
Título en inglés
Monte Carlo Hamiltonian methods in non-parametric Bayesian inference of extreme values
Palabras clave en inglés
generalized distribution of extreme value
Hamiltonian Monte Carlo method in Riemannian variety.
latent Gaussian process
Non-parametric Bayesian inference
Resumen en inglés
In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter μ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-01-18
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.