• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
Documento
Autor
Nombre completo
Yury Rojas Benites
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2019
Director
Tribunal
Cancho, Vicente Garibay (Presidente)
Meyer, Andréia da Silva
Ortega, Edwin Moises Marcos
Título en portugués
A distribuição normal-valor extremo generalizado para a modelagem de dados limitados no intervalo unitá¡rio (0,1)
Palabras clave en portugués
Bayesian inference
Generalized extreme value distribution
Maximum likelihood estimator
MCMC Method
Resumen en portugués
Neste trabalho é introduzido um novo modelo estatístico para modelar dados limitados no intervalo continuo (0;1). O modelo proposto é construído sob uma transformação de variáveis, onde a variável transformada é resultado da combinação de uma variável com distribuição normal padrão e a função de distribuição acumulada da distribuição valor extremo generalizado. Para o novo modelo são estudadas suas propriedades estruturais. A nova família é estendida para modelos de regressão, onde o modelo é reparametrizado na mediana da variável resposta e este conjuntamente com o parâmetro de dispersão são relacionados com covariáveis através de uma função de ligação. Procedimentos inferênciais são desenvolvidos desde uma perspectiva clássica e bayesiana. A inferência clássica baseia-se na teoria de máxima verossimilhança e a inferência bayesiana no método de Monte Carlo via cadeias de Markov. Além disso estudos de simulação foram realizados para avaliar o desempenho das estimativas clássicas e bayesianas dos parâmetros do modelo. Finalmente um conjunto de dados de câncer colorretal é considerado para mostrar a aplicabilidade do modelo.
Título en inglés
The normal-generalized extreme value distribution for the modeling of data restricted in the unit interval (0,1)
Palabras clave en inglés
Bayesian inference
Generalized extreme value distribution
Maximum likelihood estimator
MCMC Method
Resumen en inglés
In this research a new statistical model is introduced to model data restricted in the continuous interval (0;1). The proposed model is constructed under a transformation of variables, in which the transformed variable is the result of the combination of a variable with standard normal distribution and the cumulative distribution function of the generalized extreme value distribution. For the new model its structural properties are studied. The new family is extended to regression models, in which the model is reparametrized in the median of the response variable and together with the dispersion parameter are related to covariables through a link function. Inferential procedures are developed from a classical and Bayesian perspective. The classical inference is based on the theory of maximum likelihood, and the Bayesian inference is based on the Markov chain Monte Carlo method. In addition, simulation studies were performed to evaluate the performance of the classical and Bayesian estimates of the model parameters. Finally a set of colorectal cancer data is considered to show the applicability of the model
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
YuryRojasBenites.pdf (983.43 Kbytes)
Fecha de Publicación
2019-08-26
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.