• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
Document
Author
Full name
Amanda Morales Eudes D'Andrea
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2015
Supervisor
Committee
Tomazella, Vera Lucia Damasceno (President)
Davila, Victor Hugo Lachos
Lima, Antonio Carlos Pedroso de
Title in Portuguese
Família Kumaraswamy-G para analisar dados de sobrevivência de longa duração
Keywords in Portuguese
Abordagem Bayesiana
Análise de sobrevivência
Covariáveis
Kumaraswamy generalizada
Modelo de fração de cura
Abstract in Portuguese
Em análise de sobrevivência estuda-se o tempo até a ocorrência de um determinado evento de interesse e na literatura, a abordagem mais usual é a paramétrica, em que os dados seguem uma distribuição de probabilidade. Diversas distribuições conhecidas são utilizadas para acomodar dados de tempos de falha, porém, grande parte destas distribuições não é capaz de acomodar funções de risco não monótonas. Kumaraswamy (1980) propôs uma nova distribuição de probabilidade e, baseada nela, mais recentemente Cordeiro e de Castro (2011) propuseram uma nova família de distribuições generalizadas, a Kumaraswamy generalizada (Kum-G). Esta distribuição além de ser flexível, contém distribuições com funções de risco unimodal e em forma de banheira. O objetivo deste trabalho é apresentar a família de distribuições Kum-Ge seus casos particulares para analisar dados de tempo de vida dos indivíduos em risco, considerando que uma parcela da população nunca apresentará o evento de interesse, além de considerarmos que covariáveis influenciem na função de sobrevivência e na proporção de curados da população. Algumas propriedades destes modelos serão abordadas, bem como métodos adequa- dos de estimação, tanto na abordagem clássica quanto na bayesiana. Por fim, são apresentadas aplicações de tais modelos a conjuntos de dados existentes na literatura.
Title in English
Kumaraswamy-G family to analyze long-term survival data
Keywords in English
Bayesian approach
Covariates
Generalized Kumaraswamy
Healing fraction model
Survival analysis
Abstract in English
In survival analysis is studied the time until the occurrence of a particular event of interest and in the literature, the most common approach is parametric, that the data follow a probability distribution. Various known distributions are used to accommodate failure times data, however, most of these distributions is not able to accommodate non monotonous hazard functions. Kumaraswamy (1980) proposed a new probability distribution and, based on it, most recently Cordeiro e de Castro (2011) proposed a new family of generalized distributions, Kumaraswamy generalized (Kum-G). This distribution besides being flexible, has distributions with unimodal and tub form of hazard functions. The objective of this paper is to present the family of Kum-G distributions and their particular cases to analyze lifetime data of individuals at risk, considering that part of the population never present the event of interest, and considering that covariates influencing in the survival function and the cured proportion of the population. Some properties of these models will be discussed as well as appropriate estimation methods, in the classical and Bayesian approaches. Finally, applications of such models are presented to data sets existingin the literature.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-08-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.