• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
Documento
Autor
Nome completo
Amanda Morales Eudes D'Andrea
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2015
Orientador
Banca examinadora
Tomazella, Vera Lucia Damasceno (Presidente)
Davila, Victor Hugo Lachos
Lima, Antonio Carlos Pedroso de
Título em português
Família Kumaraswamy-G para analisar dados de sobrevivência de longa duração
Palavras-chave em português
Abordagem Bayesiana
Análise de sobrevivência
Covariáveis
Kumaraswamy generalizada
Modelo de fração de cura
Resumo em português
Em análise de sobrevivência estuda-se o tempo até a ocorrência de um determinado evento de interesse e na literatura, a abordagem mais usual é a paramétrica, em que os dados seguem uma distribuição de probabilidade. Diversas distribuições conhecidas são utilizadas para acomodar dados de tempos de falha, porém, grande parte destas distribuições não é capaz de acomodar funções de risco não monótonas. Kumaraswamy (1980) propôs uma nova distribuição de probabilidade e, baseada nela, mais recentemente Cordeiro e de Castro (2011) propuseram uma nova família de distribuições generalizadas, a Kumaraswamy generalizada (Kum-G). Esta distribuição além de ser flexível, contém distribuições com funções de risco unimodal e em forma de banheira. O objetivo deste trabalho é apresentar a família de distribuições Kum-Ge seus casos particulares para analisar dados de tempo de vida dos indivíduos em risco, considerando que uma parcela da população nunca apresentará o evento de interesse, além de considerarmos que covariáveis influenciem na função de sobrevivência e na proporção de curados da população. Algumas propriedades destes modelos serão abordadas, bem como métodos adequa- dos de estimação, tanto na abordagem clássica quanto na bayesiana. Por fim, são apresentadas aplicações de tais modelos a conjuntos de dados existentes na literatura.
Título em inglês
Kumaraswamy-G family to analyze long-term survival data
Palavras-chave em inglês
Bayesian approach
Covariates
Generalized Kumaraswamy
Healing fraction model
Survival analysis
Resumo em inglês
In survival analysis is studied the time until the occurrence of a particular event of interest and in the literature, the most common approach is parametric, that the data follow a probability distribution. Various known distributions are used to accommodate failure times data, however, most of these distributions is not able to accommodate non monotonous hazard functions. Kumaraswamy (1980) proposed a new probability distribution and, based on it, most recently Cordeiro e de Castro (2011) proposed a new family of generalized distributions, Kumaraswamy generalized (Kum-G). This distribution besides being flexible, has distributions with unimodal and tub form of hazard functions. The objective of this paper is to present the family of Kum-G distributions and their particular cases to analyze lifetime data of individuals at risk, considering that part of the population never present the event of interest, and considering that covariates influencing in the survival function and the cured proportion of the population. Some properties of these models will be discussed as well as appropriate estimation methods, in the classical and Bayesian approaches. Finally, applications of such models are presented to data sets existingin the literature.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-08-19
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.