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ABSTRACT

NASCIMENTO, D.C. Modeling high-dimensional time series from large scale brain networks.
2020. 198 p. Tese (Doutorado em Estatística – Programa Interinstitucional de Pós-Graduação em
Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2020.

Neuroscientists have an urge to understand the effective brain connectivity, through the direc-

tion/correlation of the brain areas, using biosignals, although this task demands to consider the

spatiotemporal dependence and some computational constraints. Naturally, the use of large

Vector Autoregression (VARs) would be appropriated if did not present a high-dimensionality

curse, where the number of parameters is vastly representative. Additionally, shrinkage either in

the data or parameter spaces is not trivial towards maintaining its interpretation. Therefore, some

modifications were discussed, towards the graph-based model and entropy analysis, adopting

the Bayesian approach, addressed by the estimate of the human brain connectivity using elec-

troencephalogram (EEG) signals. As a motivation, we used a study case of neurorehabilitation,

regarding the manipulation of human verticality, we are using high-definition transcranial direct

current stimulation (HD-tDCS) as a non-invasive modulation.

Keywords: Multivariate Time Series, Dynamic Models, High-dimensional data analysis, Graph-

ical models.





RESUMO

NASCIMENTO, D.C. Modelagem de séries temporais de alta dimensão a partir de redes

cerebrais de larga escala. 2020. 198 p. Tese (Doutorado em Estatística – Programa Interinstitu-
cional de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2020.

Neste projeto focamos na necessidade de compreender sobre a conectividade cerebral, através da

direção/correlação entre as áreas cerebrais, por meio de biossinais, embora essa tarefa apresente

dificuldades como dependência espaço-temporal e algumas restrições computacionais. Natu-

ralmente, o uso de large vector autoregression (VAR) seria apropriado se não apresentassem

problema de alta dimensionalidade, onde o espaço paramétrico é largamente representativo.

Além disso, o encolhimento nos espaços de dados/parâmetros não é uma tarefa trivial, essencial-

mente demandando mantendo interpretabilidade nos resultados. Portanto, algumas modificações

foram discutidas, em relação ao modelo via gráfos e análise de entropia, adotando uma aborda-

gem Bayesiana, motivada por estimatar a conectividade do cérebro humano usando sinais de

eletroencefalograma (EEG). Assim, a motivação que este utilizou foi proveniente de um estudo

de caso de neuro-reabilitação, no que se refere à manipulação da verticalidade humana, nele

utilizamos a estimulação transcraniana de corrente direta de alta definição (HD-tDCS) como

modulação não invasiva visando a recuperação de pacientes pós-AVC.

Palavras-chave: Séries Temporais Multivariadas, modelos dinâmicos, Dados de alta-dimensionalidade,

Modelos de grafos.
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CHAPTER

1

INTRODUCTION

Human brain connectivity is a complex phenomenon of substantial relevance, e.g. in

neuropsychology and clinical studies of postural and vertical perception (NASCIMENTO et al.,

in press). For instance, brain activation can be monitor under different stimulation conditions

targeting some neurorehabilitation (EDWARDS, 2009), which responses may varies within

participants (LIAO et al., 2017; MATTAR et al., 2018). Some elements may influence the brain

connectivity changes, and physiological structure, such as stroke and epilepsy seizure.

Stroke is the third global leading cause of disability, and evidence-based rehabilitation

intervention to improve the burden from stroke remains limited (FEIGIN et al., 2014). The

numbers about the problematic on the world population with stroke is 70%, whereas 87% are

related with some physical disability or deaths both in low- and middle-income countries and,

over the last four decades, the stroke incidence has more than doubled (JOHNSON et al., 2016).

The consequences are immeasurable mainly affecting individuals at the peak of their productive

life, in people living in low-and middle-income countries when compared to those in high-income

countries (HIC). Despite its enormous impact on the socioeconomic conjuncture of developing

countries, this rising crisis has received very little attention to date.

One silent but critical symptom after stroke for which there is no present treatment

and is observed in more than half of stroke survivors, is the visual vertical disorder that can

occur with lesions in either hemisphere. Since vertical alignment in relation to gravitational

forces is required for most of daily activities, the impact on functionality of vertical disorders is

devastating (JOHNSTON; MENDIS; MATHERS, 2009). Generally, the error in the perception

of visual vertical is tilted to the contralesional side (coronal plane) leading to postural imbalance

and higher risk of falls after supratentorial lesions. Reduced visual vertical disorder is associated

with better clinical function. Yet to date, there are no methods to therapeutically improve this

highly prevalent disorder.

In this manner, this work is part of the Transcranial Electrical Stimulation (TES) research
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Figure 1 – Visual vertical disorder neurorehabilitation project. Five ongoing studies; (Clockwise) 1.Error
in perception visual vertical (EPVV), 2.Diffusion tensor imaging (DTI), 3.Doppler (MCA-
CBFv), 4.Weight-bearing asymmetry (WBA), and 5.Electroencephalography (EEG).

trials project which aims to develop a non-invasive post-stroke treatment. Figure 1 describes

the five ongoing clinical studies, related to the TES project, (Error in perception visual vertical

(EPVV), Diffusion tensor imaging (DTI), Doppler (MCA-CBFv), Weight-bearing asymmetry

(WBA), and Electroencephalography (EEG)). TES activation may impacts on the connectivity

of the region implying on activities of daily living, physical and cognitive functioning, in

people. Wherein each experiment deals with great, and different, data complexity (e.g. high-

dimensional multivariate time series and longitudinal data), bringing relevant contributions to

the neuroscience/medical field and statistics as well.

Thereby, this dissertation aimed to test and develop new statistical approaches, facing

a Big Data problematic (given the equipment’s high resolution), moreover, addressed by the

estimate the human brain connectivity using only the electroencephalogram (EEG) signals. As a

motivation, we used a study case of neurorehabilitation, regarding the manipulation of human

verticality, we are using high-definition transcranial direct current stimulation (HD-tDCS) as a

non-invasive modulation.

This work intends to analyze some class of statistical models, related with multivariate

time series analysis, using entropy and graph-based models. Such methods are capable of estimate
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complexity and network topology (from their structure up to dynamic), in order make feasible

the estimation process considering the space-time dependencies; that is, i) To compare different

approach, for EEG signal data, pre-existed in the time series theory, and ii) To present the

Bayesian Dynamic Graphical and Dynamic Chain Graph models, as an extension of the vector

autoregressive models, incorporating mixed/random effects with dynamic graphical structure,

aiming to compare the conditions and structural relations (effective and functional connectivity).

Therefore, the study experimentation was motivated stems from the dynamic brain

communication behavior, whereas we were targeting the vertical perception manipulation for

later to be applied on the recovery of patients with stroke records (SANTOS et al., 2018), using

a non-invasive promising method in the neuroscience field (ZHOU et al., 2014; BABYAR et al.,

2016). In this manner, it is important to analyze a large number of time series, and its dependence,

estimating not only the effects on an individual, but the common impact and connectivity of the

applied condition.

Entropy analysis is a measurement of the complexity and may identify intervention-

related change as a useful “summary” statistic in non-linear dynamical systems (NASCIMENTO

et al., 2019). In addition, dynamical graph helps understanding human brain’ dynamic, which

could provide hints about disorder, related with brain activity, therefore suggesting some types

of localized stimulation as treatment (RUBIN et al., 1991; PAAKKI et al., 2010; COSTA et al.,

2017).

Modeling high-dimensional graphical time series present a limitation, like the Bayesian

Network, by suppressing its temporal links evolution, in the process of estimating networks or

graphs (important for understanding brain connectivity) (COSTA et al., 2017). Nonetheless, there

are some existent methods regarding the networks structure, but usually they are based on strong

assumptions towards the observed series, for instance vector autoregressive or multiregression

dynamic models (FIECAS; OMBAO, 2011; GORROSTIETA et al., 2012; PRADO; WEST;

KRYSTAL, 2001; GRUBER; WEST, 2017). In this case, the need arises to develop methods

capable of estimating connectivity while allowing the inclusion of the dynamics of brain activity,

affected by the different conditions of the experiment.

1.1 Research goals and main results

Therefore, this project was motivated by the data analysis given the ever-increasing need

for developing statistical novel for analyzing high-dimensional brain activity data, motivated by

a large-scale experiment related with post-stroke recovery.

∙ Analyze the complexity of the brain network, by discussing entropy measure and maximum

likelihood estimation, aiming to summarize Time Series as complexity values.

∙ Analyze the brain connectivity dynamic, using a Dynamic Graphical Model, under the
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Bayesian paradigm which combines with the Hamiltonian Monte Carlo. Moreover, it was

extend the Multiregression Dynamic Model (MDM) with its hierarchical version.

∙ Compare some alternatives towards graph-based structure estimation.

∙ Developed a new distribution called Inverse Nakagami-m (INK) distribution.

∙ Propose an alternative towards the threshold tolerance for accepting similar patterns

between two subsequences of the Approximate Entropy parameter (r).

∙ Propose an extension for the Symbolic Data Analysis, regarding interval data, as a dynamic

regression approach.

∙ Analyze susceptible of sparse dynamic models and filtering decomposition, combined

with multiplex network, towards EEG signal.

∙ Analyze the acquired EEG data from the protocol (SANTOS et al., 2018), used in health

participant, towards vertical manipulation perception. Then, this therapeutic method may

be proposed as a post-stroke treatment.

In this manner, this project targets to analyze the stimulation protocol results aiming, as

a next step, to propose a non-invasive method towards the post-Stroke verticality recovery. That

is, this study Phase #1 analyzed different dose-responses reactions on young health participants,

using a neuromodulation, seeking to understand better its electrical dynamic given a brain

stimulation.

1.2 Thesis Organization

This dissertation is a result of seven separate works, as describes Figure 2, that is, five as

chapters and one as appendix.

Chapter 2 presents the article published at Brain Science Journal which discuss the

high-dimensionality of the data, through its complexity, work entitle as "Entropy analysis of

High-definition transcranial electric stimulation effects on EEG dynamics".

Chapter 3 relates with a new methodological contribution, computational efficiency

(using the Hamiltonian Monte Carlo (HMC)) and improvement of the existent MDM such as its

hierarchical version, as "Bayesian Dynamic Graphical Models: Analyzing brainwave data from

fixed parameters to hierarchical design". Then, later an other chapter 4 extend the understanding

of Bayesian Network structural estimation and numerical approximation for Bayesian inference

towards MDM, as "Brain Graph Complexity: Revealing common cerebral waves pattern".

Chapter 5 is a published article, at Information Sciences, called "Dynamic Time Series

Smoothing for Symbolic Interval Data applied to Neuroscience", focus in the reduction of the
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Figure 2 – Thesis scope. The preface/organization of the thesis, as a chart-flow, where each star represents
a developed article.

data dimension using Symbolic Data Analysis (SDA) methodology – Lower-upper intervals e

Center & range – which enhance a new methodological version using dynamic models.

Chapter 6 is an article, named "BrainWave Nets: Are sparse dynamic models susceptible

to brain manipulation experimentation?", that presents the need of filtering process in EEG data,

combined with multiplex network and its structure estimation, imposing sparsity in the dynamic

model, and comparing different existent models in order to reduce the amount of false-positive

link estimation.

Lastly, Chapter 7 presents this work discussion and conclusion, as well the future steps

of this research. The appendix A presented the developed Inverse Nakagami-m distribution,

published at IEEE Transaction in Reliability.
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CHAPTER

2

ENTROPY ANALYSIS OF HIGH-DEFINITION

TRANSCRANIAL ELECTRIC STIMULATION

EFFECTS ON EEG DYNAMICS

This chapter corresponds to a manuscript published at Brain Sciences journal, in which

presents the discussion towards complexity analysis, using entropy as a measure, upon EEG

signal data. This work had as co-authors: Gabriela Depetri (Google Enterprise, Ireland), Luiz H

Stefano (FMRP-USP, Brazil), Osvaldo Anacleto (ICMC-USP, Brazil), Joao P Leite (FMRP-USP,

Brazil), Dylan Edwards (MOSS, USA and Edith Cowan University, Australia), Taiza E G Santos

(FMRP-USP, Brazil), Francisco Louzada (ICMC-USP, Brazil).

Within the medical field it is standard practice to use the statistical mean as a summary

statistic for observed time series (a common sight in the field) and then perform standard

statistical tests. However, this procedure relies on the assumption that the analyzed time series

are stationary, which often is not the case. This chapter follows an improved approach to

the summary statistic in the context of Neuroscience, and discusses the use of entropy as a

measurement of complexity of time series due to the non-stationary characteristic of the data. To

elucidate our discussion, we use entropy to analyze recorded data from EEG signals, analyzing

by statistics for difference aiming to establish a safe and effective protocol to address human

verticality through the application of non-invasive brain stimulation.

2.1 Introduction

Following Prigogine (PRIGOGINE, 1987), entropy is a measurement of complexity,

among time series or signal data, which associates the amount of information to a probability

distribution. Prior to the 1990s, given computational technological constraints, early entropy

measure calculations were neglected because they required a great amount of data (PINCUS,
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1991; RICHMAN; MOORMAN, 2000).

Time series data could be defined as oriented data in time. An illustrative example of

entropy can be expressed by two simple time series. The first one is perfectly regular, alternating

between 0 and 1, such as 0,1,0,1,0,1,0,1,0,1,..., whereas the second one is constructed by ran-

domly drawing 0 and 1 with probability 1/2 each, for example 0,1,0,0,1,1,0,1,1,1,0,1,0,1,1,0,....

In this example, moments of this example such as mean and standard deviation will not distin-

guish them: both series have mean and deviation equal to 1/2. However, the first one is a periodic

time series, while the second one is not, this exemplification was inspired in Pincus (PINCUS;

GLADSTONE; EHRENKRANZ, 1991).

In the medical field, most of the data that is acquired as time series is modeled through

its mean (may also be complemented with its variance) that enables the application of the usual

statistical methods. According to the definition of a stationary process relies on the unconditional

joint probability distribution time-invariant. Therefore, stationarity is required in order to get a

good summarization of a process via its mean, and this often is not the case in real data with

temporal dependence.

Statistical analyses of time series require methods to incorporate the description of all

moments associated with the process, with the purpose of differing regularity from chaos in

data. Entropy has been used to describe the changes in gene expression (HEINTZMAN et al.,

2009), cardiac signals (PINCUS; GLADSTONE; EHRENKRANZ, 1991), postural control sway

(YENTES et al., 2018), blood oximetry (BHOGAL; MANI, 2017), and to characterize epileptic

seizure using electroencephalographic (EEG) data (CUESTA-FRAU et al., 2017), however,

much more could be explored using complex outcome measures.

The objective of the present study was to apply a robust methodology into a biological

data set considering its complex structure in the statistical estimation processes. Given the nature

of the EEG (or any brain waveform) data, where its known that electrical connections are present,

it would be natural to describe it in entropy form.

However, this work innovates in the sense of combine the right entropy with the appro-

priate statistical analysis, mixed effects models, due a presence of unobserved variables. This

work is divided into two parts, the statistical robustness discussion, and the clinical gain by its

adoption.

The data set analyzed in the current study was originated from a randomized double

blinded sham controlled clinical trial that aimed to investigate a polarity and intensity-dependent

shift in high-density EEG signal following an intervention using high-definition transcranial

direct current stimulation applied over the temporo-parietal junction in healthy subjects (for

protocol details read (SANTOS et al., 2018)).

We will adopt two different statistical methods related to entropy for summarizing time

series as a single number: the Kullback-Leibler (KL) divergence and the Approximate Entropy
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(ApEn). Both incorporate all the generated moments of the process, and enable the use of

traditional models such as regression, while the independence assumption on the observations

is not violated. In this way, it is possible to compare regularity contained in data, taking into

account computational feasibility, without losing valuable information. The Approximate Entropy

emerged in the medical field by Pincus (PINCUS; GLADSTONE; EHRENKRANZ, 1991) as a

method to discriminate biosignals events. Its first application aimed to analyze the difference

between healthy and sick heartbeats in infants, through its electrocardiograms (ECGs), since it is

known that sick individuals have more regular heartbeats. We now investigate its applicability in

the context of Neuroscience.

2.2 Methods

The paper is organized as follows. In Section 2 we present an overview of both the

experimental protocol and the concepts behind the definition of entropy. In Section 3 we use

numerical simulations to establish a comparison between representing a TS process using its

mean versus its entropy, in a controlled scheme. In Section 4 we apply the use of entropy to our

data analysis. We aim at an efficient summarization of our TS, using a hierarchical model to

distinguish between stimulation types versus intensity, as well as quantifying the differences in

regularity among them. Finally, some concluding comments are given in Section 5.

2.3 Background Theory

The Kullback-Leibler (KL) divergence is the most commonly presented in statistics,

and the Approximate Entropy (ApEn), useful in the case of non-stationary Time Series. This

application is experimental neurology makes use of an established technique of transcranial

stimulation (NASSERI; NITSCHE; EKHTIARI, 2015), which has been a powerful experimental

tool over the last two decades, although there are there are few reproduced studies reported in

the literature. Therefore our research findings are perhaps the first in vertical perception, using

electrical stimulation to generate a ‘virtual lesion’, corroborating with proving the protocol

presented in (SANTOS et al., 2018) as a safe procedure.

2.3.1 Experimental rationale

The data acquisition belongs from a novel approach to systematically analyze the dose-

response effects of a focal electrical stimulation, concerning around the dynamic of the brain

connectivity outcome. The study protocol centered the stimulations over the right TemporoPari-

etal Junction, as shown Figure 41, in healthy subjects, based on prior results that postural

perception could be manipulated (SANTOS-PONTELLI et al., 2016), which is of primary
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clinical importance in adult falls and post-stroke recovery (PÉRENNOU, 2006; BONAN et al.,

2007), and thus has potential clinical utility.

Figure 3 – Left image represents the tDCS (dark blue dots) and EEG channels (light blue dots). Right
image presents the stimulated area highlighted in red.

The systems’ imbalance and degeneration related to postural control, lead new research

towards their origin and pathophysiology (WINTER, 1995). The different sensory information is

used as pathways in the brain to posture maintain upright position (DAY; COLE, 2002). Thus,

the postural imbalance is one of the most common findings found after stroke (BAGGIO et al.,

2016; CHERN et al., 2010). However, increasing knowledge about the effects of this strategy is

essential for the development of more effective rehabilitation protocols.

Transcranial direct current electrical stimulation protocols were suggested to influence

changes in postural control also in post-stroke patients (BABYAR et al., 2016; ZHOU et al.,

2014). However, even with current evidence and decades of experimentation on transcranial

direct current stimulation, few protocols have achieved robust scientific acceptance. Therefore, it

is essential to investigate the dose-response effects of brain stimulation in order to devise more

effective protocols for rehabilitation.

In this manner, the experimentation submitted each patient to three trials, which included

a distinctive sample population naive and blind. In this first phase, the studied candidates were

healthy subjects with no evidence of brain, nor balance dysfunction. The trial included seven

healthy right-handed subjects, mean age 34.7±7.6 years, four men. The experimentation was

conducted in a seated position, participants received three electrical stimulation conditions (anode

center, cathode center, and sham) on three different days, with an interval of at least 24 hours.

Noninvasive techniques of brain stimulation are current therapeutic resources related to

the pathophysiology and behavior of the mechanisms that guide the human mind. In the field

of neuroscience, the clinical application of these tools has gained greater repercussion in the

last two decades, resulting in an eventual increase in the number of studies and clinical trials

in this area (ROSSINI; ROSSI, 2007; ROSSI et al., 2009). Several studies have indicated the

therapeutic efficacy of the use of non-invasive stimulus in psychiatric, neurological, and motor



2.3. Background Theory 39

disorders (BRUNONI et al., 2012; BASHIR et al., 2010; SIEBNER et al., 2009).

Dense array EEG was assessed with electrical stimulation conditions and was acquired

using a 256-channel sensor net, from Electrical Geodesics Inc, with a sampling frequency of

500Hz (observation points per second). All channels were referenced to the vertex with electrical

impedance reduced. The EEG was recorded continuously before and after the stimulation,

including ramp-up and ramp-down periods, lasting in total between 120 minutes.

To-date, only two studies are reporting the dose-response effects of electrical stimulation

in human adults (SHEKHAWAT et al., 2016; CASTILLO-SAAVEDRA et al., 2016). The

crossover trial of (SHEKHAWAT et al., 2016) investigated 1mA and 2mA applied for 10 and

20 minutes, applied over the left temporoparietal area or the dorsolateral prefrontal region in

patients with tinnitus; describing positive effects of both intensities and most effective tinnitus

relief after 2mA for 20 minutes.

2.3.1.1 Transcranial direct current electrical stimulation

Transcranial direct current electrical stimulation(TDCS) is a non-invasive neuromod-

ulation technique that allows modeling the cerebral function with a safe profile. Consists of

electrodes unleashing weak electrical current in the scalp, inducing cortical changes: It rises or

lowers the neuronal membrane potential activation depending on the electrical current polarity.

The idea of applying electrical current for modulate brain function dates from the

classical era when the Roman physician Scribonius Largus recommended the application of a

living electric torpedo fish in his patients head for treat ”melancholia” (KELLAWAY, 1946).

Back to at least 200 years, Giovani Aldini used rudimentary batteries with a constant

voltage applied in the head of people with personality disorders, with good reported results

(PARENT, 2004).

Over the 20th century, direct voltage studies remain with less new researches until the

remarkable studies of (NITSCHE; PAULUS, 2000) and (PRIORI et al., 1998) who demonstrated

changes in cortical response to transcranial magnetic stimulation using weak direct current

stimulation, thereby indicating that TDCS could change neuronal membrane excitability: cathodal

stimulation induces a decrease in cortical excitability, whereas anodal stimulation induces an

increase in cortical excitability. This lead to new protocols in high definition transcranial direct

current stimulation(HD-tDCS), allowing a more specific activation area with less adverse effects.

2.3.1.2 Neurophysiology background

At the neuronal level, HD-tDCS promotes a polarization of the rest membrane potential as

mentioned above, and this effect is responsible for the acute effects of tDCS in cortical excitability

(PRIORI et al., 1998). Other mechanisms also contribute to modifying the electrical neuronal
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membrane potential and maintenance of membrane changes at least one hour (NITSCHE et al.,

2003).

They consist of a modification of the synaptic microenvironment, changing GABAergic

activity or altering synaptic strength NMDA receptor-dependently. It seems that the excitatory

effects of anodal TDCS are mediated at least in part by the reduction of GABAergic inhibition in

addition to an NMDA receptor-dependency, while the inhibitory effects of cathodal are mediated

by a reduction in excitatory glutamatergic neurotransmission (LIEBETANZ et al., 2002; STAGG

et al., 2009). Studies with peripheral nerve and spinal cord stimulation showed that direct current

effects are also non-synaptic, with transient changes in the density of protein channels below the

stimulation area (ARDOLINO et al., 2005; COGIAMANIAN et al., 2008).

In addition to this tDCS direct effects, “indirect” effects come from connective-driven

alterations of distant cortical and sub-cortical areas (BRUNONI et al., 2012). Lang and others

(LANG et al., 2005) revealed that stimulating the right frontopolar cortex (M1) with tDCS also

activate several connected areas. They assessed the changes in brain activity after the TDCS

session measuring regional cerebral blood flow, with sequential H152O PET scan. Besides, under

the area of the stimulus, that is, several motor areas such as the caudal portion of the anterior

cingulate cortex, cerebellum and superior temporal sulcus, were activated. Maybe in part, due to

a modulation of the functional interaction between M1 and these areas via cortico-cortical and

cortico-subcortical connections.

Other studies using transcranial magnetic stimulation (TMS) describes the increased

activity of the homologous area, contralateral to the stimuli (SIEBNER et al., 2000; LEE et al.,

2003). The last reduction in left can explain it to the right transcallosal inhibition between the

two cortices (GILIO et al., 2003; PLEWNIA; LOTZE; GERLOFF, 2003).

These “indirect” changes on cerebral function are fundamental issues regarding the objec-

tive of the present study, that evaluated the effects of TDCS in the temporoparietal junction, the

area related to postural control in humans“[29]”. Inter-hemispheric interactions may contribute

to defining the temporal and spatial features of voluntary movements and consequently, postural

control (MEYER; RÖRICHT; WOICIECHOWSKY, 1998). There is a balance between these

inter-hemispheric interactions, where each human cortex exerts inhibitory influences on the

opposite motor cortex in normal conditions (FERBERT et al., 1992).

Lesions of the corpus callosum, a structure that links homonymous areas of both cere-

bral hemispheres, results in impaired coordination and deficits of inter-hemispheric inhibition

(MEYER; RÖRICHT; WOICIECHOWSKY, 1998). The inter-hemispheric inhibition is also

affected by unilateral hemispheric lesions, like a stroke, leading to increased excitability of the

opposite intact cortex (LIEPERT; HAMZEI; WEILLER, 2000). Thus, develop non-invasive

techniques that modulate this balance will be a significant advance in the rehabilitation setting

of stroke patients and other postural control disorders, after more profound knowledge of these

techniques effects on the human brain.
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2.3.1.3 Stimulation Protocol

In the present study was applied the HD-tDCS with the modulation montage in the right

temporoparietal junction area, as reported above. A Soterix R○ NY-USA HD-tDCS was used,

with a constant current from the anode to cathode. There were 3 stimulation conditions: 1- anode

center, 2- cathode center, and 3- Sham, where each subject was stimulated with one condition at

a time, on an interval at least 24 hours between the sessions.

Four electrodes were fixed with a Soterix R○ cap, and the central electrode was placed

over the circumcenter of the EEG coordinates. The three peripheries electrodes were placed

at a distance of 3 centimeters from the central electrode. After the electrodes positioning, an

accommodation was made, with the intensity of stimulation varying from 1 to 3mA and then

initiated the stimulation with 1, 2 and 3mA. At the same time, an EEG recording was made,

allowing detect ongoing changes on the raw EEG in response to tDCS. The total duration of

each session was about 120 minutes.

2.3.2 Entropy Background

As an alternative to analyzing and modeling the entire TS, one can use summary statistics,

which could be the average of the processor, for example, some measure of its regularity. The

last one is commonly used as an index to quantify the complexity of the TS, considering all

of its generated moments. Let us start by discussing the relation between maximum likelihood

estimation and information entropy.

Consider a random sample X = {X1, · · · ,Xn} of random variables, all with a common

(but unknown) density f (x|θ0). From the data, it is possible to estimate its associated unknown

parameter θ , and then associate to it a density function (pdf) family (e.g., normal, gamma, beta

etc.). Our goal is to estimate θ through a robust statistic T , using the data X1, · · · ,Xn, that is,

θ̂ = T (X1, · · · ,Xn). As an illustration of a statistic we could have, for example, the sample mean,

in the case the times series under analysis are stationary,

T (X) = X̄ =
1
n

n

∑
i=1

Xi.

Then, using the maximum likelihood estimation (MLE), one could obtain θ̂ as a joint

density of the random sample, and using a traditional result known by the (Strong or Weak) Law

of Large Numbers, we know that the sample negative log-likelihood converges to its expected

value (almost surely or in quadratic mean). Moreover, by the asymptotic equipartition theorem

(further details in McMillan (MCMILLAN, 1953)), this will converge to the differential entropy

of X . If x denotes the sample observations, then

h[ f (x|θ0)] =−E[log f (X |θ0)] =−
∫

R

fX(x|θ0) log fX(x|θ0)dx
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Notice that using the expectation of the parameter, does not fix θ at θ0, and does not

give us any information about the conversion of the sample negative log-likelihood, and how it

should behave (the only assumption of the asymptotic equipartition theorem is related to θ0).

Therefore, adding and subtracting the log-likelihood under the true model,

−1
n

n

∑
i=1

[log f (Xi|θ)+ log f (Xi|θ0)− log f (Xi|θ0)] =

=
1
n

n

∑
i=1

log

[
f (Xi|θ0)

f (Xi|θ)

]

− 1
n

n

∑
i=1

log f (Xi|θ0) =

= f (x|θ0,θ)− f (x|θ0)

Now the divergence of this estimator will be denoted as

DKL( f (x|θ0)|| f (x|θ)) = h[ f (x|θ0,θ)]−h[ f (x|θ0)]

where

DKL( f (x|θ0)|| f (x|θ)) =
∫

R

f (x|θ0) log
f (x|θ0)

f (x|θ) dx

known as the Kullback-Leibler divergence or relative entropy between f (x|θ0) and f (x|θ).
Notice that the mean negative log-likelihood converges to the differential entropy under the true

distribution plus the Kullback-Leibler divergence between the true distribution and the assumed

distribution.

It is also possible to show that the Kullback-Leibler divergence is non-negative and is

zero only when f (x|θ0)= f (x|θ) almost surely. Consider that to minimize the mean negative

log-likelihood, implies that it is needed to choose means θ = θ0 which minimizes this limiting

function.

Moreover, after a bit of a detour through information theory, we have seen a sketch as to

why Maximum Likelihood Estimation makes sense as a procedure for estimating a parameter θ .

The mean negative log-likelihood converges to a non-random function, as so takes its minimum at

the correct answer to our question. It is fully proving the consistency of the Maximum Likelihood

Estimator it is out of this work scope.

Limitation among regularity in TS data is presented among the usage on entropy, where

stationarity is also recurrently needed. Despite it, the regularity statistic suggested by Pincus

(PINCUS, 1991) uses the capability to discern the changing of the complexity from such a

relatively small amount of data.

Simplistically, the proposed solution to summarize the TS, in one representative statistic,

is based on a recurrent calculation of conditional probabilities at the i-th time-window. The

result is an average obtained from the numbers of distance superior to the filter (r), d[x,x*] =

max |u(a)− u*(a)|, therefore calculating through Cm
i (r) as a relative frequency of generated

vector.
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Let us consider the vector u a vector of collected data, u(i) is the i-th observation of

u, and x is an element of a partition as following. Considering x(1) = {u(1), . . . ,u(m)},x(2) =
{u(m+1), . . . ,u(2m)}, . . . ,x(N−m+1) = {u((N−m)m+1), . . . ,u((N−m+1)m)}.

STEP 1. Consider a TS, equally spaced in time, contained N raw data values (u), from

each series. Then u(1), u(2), ..., u(N).

STEP 2. Adopt a length of compared runs of data (m), and a filtering level (r). Implying

in a new vector of data x(1), x(2), ..., x(N−m+1).

STEP 3. For each i, 1 < i < N−m+1, to construct Cm
i (r) = (cardinal d[x(i),x( j)] ≤

r)/(N−m+1) where i ̸= j

STEP 4. Then, Φm(r) = ∑
N−m+1
i=1 lnCm

i (r)/(N−m+1)

STEP 5. Calculate the average over i of ln towards conditional probability as ApEn =

Φm(r)−Φm+1(r)

The choice towards m affects the conditional probabilities directly well achieved with

between 10m and 30m observations. The filter level (r) suggested is at least three times the

estimated mean noise amplitude. Important to point out about the consistency, even ApEn not

been an absolute measure, theoretic analyses, whenever entropy(A)≤ entropy(B) for noiseless

systems, then ApEn(A)≤ ApEn(B).

2.4 Simulation

The mean estimator could be a good statistic to summarize a collection of the observation

given some mild behavior, e.g., in TS under the presence of stationarity. Although, in medical

data often this is not the case. In order to illustrate a simulated case, four models were considered,

as follows, which 100 simulated series of each were calculated then its mean and Approximated

Entropy were estimated, considering different sample size (n) as n = {70,100,250,500,1000}.
Whereas Autoregressive (AR) model and Generalized AutoRegressive Conditional Heteroskedas-

ticity (GARCH) model.

Y
(1)

t = φ1Yt−1 + ε, [AR(1)]

Y
(2)

t = γ0 +Y
(1)

t +α0 +α1ε2
t−1 +β1h2

t−1, [Inter.+AR(1)+GARCH(1,1)]

Y
(3)

t = γ * t +Y
(1)

t , [Linear Trend +AR(1)]

Y
(4)

t =
γ * t2

1000
+Y

(1)
t +α0 +α1ε2

t−1 +β1h2
t−1, [Quadratic Trend +AR(1)+GARCH(1,1)]

where φ1 = 0.7,0.9 as the autoregressive with different parameters, γ0 = 2 as an intercept,

γ = 0.02,0.2 as parameters for the deterministic trends (linear and quadratic). The γ parameter

gives the series the strength (influence) of its deterministic part.
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As expected, Figure 4 shows that the mean estimator is very sensible given where the

series sample was taken. Although, primarily they are all generated from the same AR(1). As the

sample size grows both trends influence more on its estimation.

Figure 4 – Each figure represents a simulated scenario, with their respective parameters (in the top). Each
class (color) is associated with a given model. In the x-axis shows different sample size, and
y-axis the mean statistic.

Considering the EEG montages (set), a standard methodology is to use a common

reference montage which compare every electrode in the head against a referenced one (usually

the central, Cz). Therefore, each patient will present a different unit amplitude wave, regardless

of the channel, given this recording methodology uses a central channel to take an amplitude

difference as a reference. Then becoming extremely sensitive to each patients’ characteristic, so

it can be bypassed using, for example, an Approximate Entropy.

Fixing the parameters, for the entropy calculation, considering m = 2 and r = 0.2. Figure

5 explicit the simulated scenarios. Top figures considering γ = 0.02 and φ1 = 0.7, 0.9 shows

stability for models m3 and m4 (the ones containing deterministic part) versus m1 and m2 as

the sample size grows. The bottom figures, which considered γ = 0.2, turning up describing

better given the increase of the deterministic part in models 3 and 4, kept both ApEn close and

in a lower range regardless of its sample size process (closer to zero, which presents a great

deterministic component in the series).
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Figure 5 – Each figure represents a simulated scenario, with their respective parameters (in the top). Each
class (color) is associated with a given model. In the x-axis shows different sample size, and
y-axis the Approximate Entropy statistic.

It is important to mention, as Pincus (PINCUS, 1991) elucidates, that ApEn stability it is

conditioned to the fixed parameter m where the number of observations (n) needs to be between

10m < n < 30m. Thereby, samples below this will not guarantee its efficiency.

The influences observed in the estimations of the mean exemplifies this statistic is

non-robust to under non-stationarity TS. Dealing with Electroencephalography signal is very

challenge given its scale conditional to its subject and brain region. The record is made using

the technology of a differential amplifier, which takes the difference of two inputs and displays

only one output, as their difference, useful to small electrical impulse systems. Therefore, EEG

signals are not something absolute, but somewhat relative to a difference between inputs and

may be too noisy.

2.5 Results

In order to test the condition-intensity equivalence, we designed (SANTOS et al., 2018)

an experiment in which we compare the effect of electrical stimulation modulation (Anodal

and Cathodal) in different phases (baseline, 1mA, 2mA, and 3mA). Data is acquired via Elec-

troencephalogram technique and then its time series process was summarized using entropy

indices.

The dynamic across the brain network connectivity is a complex phenomenon of substan-

tial relevance which could help neurologists to understand better some pathologies and help on

the development of new treatments. Different brain areas could be compared using complexity

as a measurement among neural group communication.
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Our analysis is divided into two parts. First, we will illustrate one single case, to compare

brain regions activation (as channels) using relative entropy, and then we consider the entire

dynamic of the experiment (dose-response versus conditions).

2.5.1 Analyzing complexity within channels

We propose an Information Theoretic Approach to Neuroscience, with the application

of the Kullback-Leibler divergence and the Approximate Entropy to the analysis of time series.

Our goal is to compare different processes taking into account all their distribution moments

(considering much more than only their average), thus enabling further analysis between neural

events (PÉREZ-CRUZ, 2008; CHIANG et al., 2007; JOSHI et al., 2011; AFGANI; SINANOVIC;

HAAS, 2008).

To illustrate the previous discussion, let us consider the Kullback-Leibler divergence

(KL) between channels. For simplicity, we examined just a single trial of one subject, giving the

possibility to analyze the process’ synergy difference between the 51 channels located in the

central region (left and right motor brain area). All the analyzes consider the smoothed TS, that

is, with one observation point per the second resolution, with only 300 observations per phase

(dose-response).

Let us bear in mind that the KL divergence is not symmetric. To make it asymmetric

distance measure, we use the average shown below,

KLDIST (p,q) =
KL(p,q)+KL(q, p)

2
. (2.1)

In our case, the probability distributions represent electrical activity from each EEG channel.

In Figure 6 we use the pairwise complexity measurement (2.1). Due to the imposed

symmetry, it suffices to visualize only the bottom right to perform a comparison among the

channels through the brain hemisphere (25 first channels refer to the left brain side [left motor

+ left temporal] and right respectively). This is particularly important because we needed to

know if across each intervention there exists a change in the dynamics of system complexity (if

one stimulation region is impacting/connected to another). As well, this helps in describing the

activation areas and its structural relations.
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Figure 6 – Each matrix represents the stage of the experimentation. Due to the matrix symmetry, it was
considered only the lower triangular part of it (light gray). The red color scale correlates the
energy dynamics synergy of each EEG channel, being the dark red of greater intensity and the
light of lesser.

Notice that during baseline state (top left figure), channel 63, placed in the right side

motor, reacted remarkably, as well as channels 77 and 78 with some other channels. Due to the

electrical stimulus at 1mA (top right figure), it is possible to notice some change in the dynamic

according to the stimulation regions: especially channels 181 (stimulation tDCS point), 70 and 74

(the equivalent points in the other hemisphere) present a larger entropy. In the 2mA stimulation

(bottom left figure), the activity in channels 182, 70, and 64 (the neighbor of the stimulation

tDCS point and the equivalent points in the other hemisphere) is highlighted. Finally, in the 3mA

(bottom right figure), the channels 182, 69, 64, 70, and 77 are emphasized concerning the others,

while channels 71 and 99 also point out, but present smaller statistics.

Therefore, this approach enables the comparison between brain regions in each dose-
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response, by summarizing its complexity. It is worth mentioning that in the case of a non-

stationary process, the class of entropy must take this fact into account.

2.5.2 Analyzing complexity across dose-response effect

Pincus (PINCUS; GLADSTONE; EHRENKRANZ, 1991) presented the so-called Ap-

proximate Entropy (ApEn) as a technique to quantify the amount of regularity, and the unpre-

dictability of fluctuations, over time-series data not conditional to its stationarity. This entropy

is particularly interesting for this application given the main questions are settled discerning

about the regularity of the dose-response across the montages. Therefore, aiming to test the

patient recovery, the entropy approach target is to summarize the comparison towards the induced

neuromodulation, that is, the electrical stimulation.

Given the presence of repetitive patterns, in a time series, its predictability renders

conditionally to its fluctuation. ApEn can be interpreted as the likelihood that similar patterns of

observations will not be followed by additional similar observations, calculated by

ApEn = Φm(r)−Φm+1(r), where Φm(r) = (N−m+1)−1
N−m+1

∑
i=1

ln(Cm
i (r))

where N is raw data values from a equally spaced in time, m is the length of compared time-

window data, r is filtering level and Cm
i (r) measures within a tolerance r the regularity of patterns

similar to a given pattern.

In this manner, m = 2 and r = 0.2× sd(T S) were adopted, and the ApEn were used to

summarize the time series block experimentation and then adjusted a mixed-effect model in other

to verify its similarity. A Time Series which contains many repetitive patterns has a relatively

small ApEn; a less predictable process has a higher ApEn. Figure 7 describes the fluctuations

over time-series data in each dose-response respectively.

Figure 7 – Each group is related to one condition (Anodal, Cathodal, Sham-Anodal, Sham-Cathodal). Vi-
sually the boxplots seem to present equivalence results among the brain stimulation conditions
also considering amid their different intensities.
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Complementing the descriptive analysis, Table 1 brings the basics statistical descriptive

under the optic of the Approximate Entropy among dose-response within Conditions. It is to be

noticed that both mean and median increased once the stimulus is applied although remaining

quite similar among them, sharing a similar range of standard deviation. One thing we would

like to highlight is that the 3mA intensity in the Cathodal condition has the smallest maximum

ApEn.

Table 1 – ApEn summary among Stimulus versus Intensity

Condition Intensity MEAN SD MIN MEDIAN MAX
base 0.365 0.260 0.0064 0.336 1.043

Anodal 1mA 0.452 0.280 0.0004 0.486 1.133
2mA 0.445 0.278 0.0006 0.448 1.115
3mA 0.444 0.279 0.0006 0.457 1.116
base 0.397 0.284 0.0108 0.359 1.104

Cathodal 1mA 0.447 0.281 0.0006 0.449 1.101
2mA 0.433 0.276 0.0006 0.441 1.121
3mA 0.440 0.273 0.0006 0.445 1.050
base 0.430 0.283 0.0121 0.418 1.026

Sham 1mA 0.512 0.264 0.0068 0.536 1.150
2mA 0.514 0.260 0.0005 0.534 1.220
3mA 0.510 0.259 0.0008 0.532 1.112

The theoretical adopted mixed model is explicit by Equation 2.2, represented as

YYY =XβXβXβ +ZγZγZγ +εεε (2.2)

where the YYY is a vector of the ApEn containing 51 channels, per patient, XXX and ZZZ are design

matrices, βββ refers to the fixed-effects related to the intercept, montage (stimulation), intensity

and their interaction, and γγγ is a matrix including the random-effects been channel and condition

nested patient.

The number associated with the intention stage (configured by each dose-response - 1,

2 and 3mA) is equivalent to ten periods in total (baseline + 3 replicas of each dose-response).

Due to the number of condition is three (Anodal, Cathodal, and Sham), per patient which are

seven, then twenty-one obtained trials. All this combination summarizes in a total of 10,710

observations (given that a scalar number - ApEn represents each TS). Therefore, the model’s

fixed effects were converted into dummies variables (Stimulations versus Intensity).

According to Table 2, which presents the estimations relating the variances of each

random component, a similar variance among the different stimulus are observed conditioned to

the subjects (involving personal characteristic).

Analyzing the estimates associated with the fixed effects, in Table 3 and considering

a significance level of 5%, shows the differences among the complexity across the intensity

effects (not distinguish the stimulus). No difference was shown cross stimulus (regardless of
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Table 2 – Mixed model - Random effects estimations

Groups Variance Std.Dev.
Channel (Intercept) 0.0012 0.0348

Key Anodal 0.0119 0.1089
Cathodal 0.0113 0.1063
Sham 0.0165 0.1283

Residual 0.0634 0.2519

electrical stimulation) using the Anodal stimulus as a reference to compare the conditions. Then,

observing the iteration among stimulus versus intensity, only Cathodal with 2mA presented to be

statistically different between condition (Anodal vs. Cathodal).

Table 3 – Mixed model - Fixed effects estimations

Estimate Std. Error t value p-value
(Intercept) 0.365 0.044 8.373 5.13E-05 ***

INTENSITY 1mA-Baseline 0.088 0.015 5.706 1.19E-08 ***
INTENSITY 2mA-Baseline 0.080 0.015 5.221 1.82E-07 ***
INTENSITY 3mA-Baseline 0.079 0.015 5.153 2.61E-07 ***
CONDITION Sham-Anodal 0.066 0.052 1.266 0.2425

CONDITION Cathodal-Anodal 0.033 0.044 0.735 0.482
INTENSITY 1mA : Sham-Anodal -0.006 0.022 -0.298 0.7656
INTENSITY 2mA : Sham-Anodal 0.003 0.022 0.137 0.8913
INTENSITY 3mA : Sham-Anodal 0.000 0.022 -0.006 0.9951

INTENSITY 1mA : Cathodal-Anodal -0.038 0.022 -1.730 0.0837 .
INTENSITY 2mA : Cathodal-Anodal -0.044 0.022 -2.029 0.0425 *
INTENSITY 3mA : Cathodal-Anodal -0.037 0.022 -1.693 0.0905 .

— Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

These results are quite close to the obtained (SANTOS et al., 2018) which considered

only channels 164 and 66, and now extended to the motor brain region composed mainly by 51

channels, where robust results were bypassed through non-parametric techniques. The Kruskal-

Wallis test revealed intensity-dependent effects on the cathode center condition in the gamma

frequency band, and the Tukey post-hoc test indicated a significant difference between 2 and 3

mA (p = 0.044).

Furthermore, Table 4 presents the correlation of fixed effects matrix, consider Sham (S),

Anodal (A) and Cathodal (C).

Results, as expected, showed similarities with the protocol paper (SANTOS et al., 2018),

where only two (among our 51) channels were considered. The results presented in the Subsection

5.2 agree with Bikson, Perennou and others (BIKSON et al., 2016; PÉRENNOU, 2006), where

the importance of a safe protocol is highlighted. It is important to point out that the condition-

intensity equivalence shown in this past results, may be successfully applied in patients with

vertical disorder (e.g. post cerebral vascular accident).



2.6. Conclusions 51

Table 4 – Mixed model - Correlation of fixed effects estimations

(Intr) 1mA 2mA 3mA S:A C:A S:A1mA S:A2mA S:A3mA C:A1mA C:A2mA
1mA -0.265
2mA -0.265 0.750
3mA -0.265 0.750 0.750
S:A -0.461 0.222 0.222 0.22
C:A -0.721 0.260 0.260 0.26 0.535

S:A1mA 0.187 -0.707 -0.530 -0.53 -0.314 -0.184
S:A2mA 0.187 -0.530 -0.707 -0.53 -0.314 -0.184 0.75
S:A3mA 0.187 -0.530 -0.530 -0.707 -0.314 -0.184 0.75 0.75
C:A1mA 0.187 -0.707 -0.530 -0.53 -0.157 -0.368 0.5 0.375 0.375
C:A2mA 0.187 -0.530 -0.707 -0.53 -0.157 -0.368 0.375 0.5 0.375 0.75
C:A3mA 0.187 -0.530 -0.530 -0.707 -0.157 -0.368 0.375 0.375 0.5 0.75 0.75

2.6 Conclusions

This work aimed to discuss the use of an appropriate statistic in the summarization of

time series processes, preserving the information contained therein. Thus, entropy was suggested

(in Section 5) as a robust alternative replacing the average since the processes observed in real

life do not show stationarity. In the medical field, traditional statistical models are commonly

adopted, which generally depart from the principle of independence between data, then time

series are pre-processed (summarized) in an attempt to fit data into these types of models.

By using entropy, in the area of neuroscience, it has a straightforward interpretation

which is associated with the energetic dynamics of the process then statistical hypothesis tests

comparing their equivalences. Moreover, in this study, under this approach, we could discuss the

feasibility of the protocol, and its safety, towards treatment as a vertical human manipulation

task presented in, e.g. post-stroke patients.

Future works shall explore the time-varying dynamic across stimulus (voltage) versus

conditions (treatment). Other approaches shall be further explored adapting different metrics,

such as Mahalanobis or Geodesic distance, in the complexity calculation used in the approximate

entropy measure, as well as incorporate a time-varying filter level parameter.
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CHAPTER

3

BAYESIAN DYNAMIC GRAPHICAL MODELS:

ANALYZING BRAINWAVE DATA FROM

FIXED PARAMETERS TO HIERARCHICAL

DESIGN

This chapter corresponds to a white paper, in which presents the discussion towards

Bayesian dynamic networks, using the robust Hamiltonian Monte Carlo (HMC), aiming to

estimate the brain dynamic-stimulation. This work had as co-authors: Lilia Costa (IME-UFBA,

Brazil), Joao P Leite (FMRP-USP, Brazil), Dylan Edwards (MOSS, USA and Edith Cowan

University, Australia), Taiza E G Santos (FMRP-USP, Brazil), Francisco Louzada (ICMC-USP,

Brazil).

A dynamic linear model can be used in graphical modeling, enabling a complex problem

to be split up into simpler components, through some plausible assumptions, aiming to ensure

stable inference and computational feasibility. In this work, we analyzed the assessment of Mul-

tiregression Dynamic Models (MDMs) using the Hamiltonian Monte Carlo (HMC) numerical

approximation, and its multivariate version, aiming to estimate the dynamic electrical accom-

modation associated with a human brain stimulation intervention. These dynamic graphical

models can be an alternative to solve the challenge in analyzing/forecasting high-dimensional

data. The motivation came from a brain neuromodulation intervention, assessed using EEG

signals, from clinical study trials regarding understanding causal mechanisms that underpin

neural communication, considering different subjects, and regarding the dose-response from the

electrical stimulation.
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3.1 Introduction

Unraveling human brain activity and how its architecture is related to a complex function

and nontrivial task is of paramount importance in the neuroscience field. Mathematical models

can contribute to enhance the interpretation of the brain dynamics and facilitate the development

of therapeutic strategies to prevent, manage, and treat brain diseases, such as Alzheimer, Parkin-

son, and psychiatric disorders, such as schizophrenia (COSTA et al., 2017; PRADO; WEST;

KRYSTAL, 2001; GORROSTIETA et al., 2013). Human brain connectivity is a substantial

phenomenon relevant for clinical neuropsychological challenges such as postural and vertical

perception (SANTOS et al., 2018).

Brain activation and internal communication can be collected as biosignals in different

ways, such as electroencephalography (EEG), functional magnetic resonance imaging (fMRI),

diffusion tensor imaging (DTI). Nevertheless, all these biosignal tend to present a large data-

set, given its sample rate and complexity (i.e. a EEG recording can reach up to millisecond

resolution or a DTI observe billions of connections simultaneously). These oriented data address

information regarding the brain activation usually characterized by non-regular behaviors and

non-linear patterns. Therefore, computational constraints are presented in any applications and

the spatiotemporal dependence is crucial to be incorporated in the model (FRISTON et al.,

2002; SHINKAREVA et al., 2006; CRANSTOUN et al., 2002). It is expected that mathematical

models present the high-dimensional curse in neuroscience experimentation (GORROSTIETA et

al., 2013; SHEN; BAINGANA; GIANNAKIS, 2016).

Naturally, to adopt a paradigm that incorporates the flexibility in the dynamic of this

estimation process, it is necessary to reckon modifications conditionally to the time evolution

(WEST; HARRISON, 1989). These models presents time varying parameters. Consequentially,

adopting the Bayesian paradigm can assist the incorporation of information prior to the parameter

estimation process over time.

Hierarchical models allow the description of a complex phenomenon, dismembered in a

smaller dimensions, breaking a complex problem into small ones. By assigning a conditional

independence structure and adding different levels of parameter, the complex problem borrows

in different stages common information added by small contributions assumed in the description

of the problem (ANACLETO; QUEEN; ALBERS, 2013b).

This Bayesian time-varying multilevel model targets to model high-dimensional time

series which present some challenges given its temporal interdependence. For instance, the

estimation of brain network connectivity must incorporate its dynamics. State-space models are

competitive in estimating brain networks (FIECAS; OMBAO, 2011; GORROSTIETA et al.,

2012; PRADO; WEST; KRYSTAL, 2001; GRUBER; WEST, 2017), which is a wide class of

models able to incorporate even non-stationary series, for instance, as a vector autoregressive.

Traditional methods in state-space models (usually) only describe the casual relation across
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covariates (time series). Alternatively, Costa and coworkers (COSTA et al., 2017) used multi-

regression dynamic model (MDM) to estimate the brain connectivity graph from fMRI data,

including the brain dynamics to indicate a resolution for the brain structure estimation.

The present study innovates in the literature by using the graphical representation of it

(see (QUEEN; SMITH, 1993)), as MDM which uses a conditional independence supposition. In

addition, dynamical graph helps understanding human behavior, through brain’s dynamic, that

can provide hints about types of localized electrical stimulation toward a solution (or soften)

disorder related with brain activity (RUBIN et al., 1991; PAAKKI et al., 2010; COSTA et al.,

2017).

Here we analyze MDM variations related to multivariate time series, using a directed

acyclic graphical (DAG) model combined with a Bayesian paradigm (Hamiltonian Monte Carlo),

aiming to estimate cerebral connectivity dynamic under a robust and feasible estimation process.

3.2 Methodology

This work is divided into five main sections; In a methodological Section which contains

the subsections 3.2.1 briefly detailing about the structure of the adopted biosignal, electroen-

cephalogram (EEG) and its modeling challenges, and 6.2.1 describing the origin of the problem

which motivated this work as well its data acquisition. Section 6.2.2 presents the theoretical

background needed to analysis the considered clinical study. Then, Section 6.3 discuss the

empirical results towards the estimated brain connectivity across subjects over time. Finally,

Section 6.4 brings some final remarks about this work and some guidelines for further studies

and this work limitations.

3.2.1 EEG signal structure & its challenges

Electroencephalogram (EEG) is a technique which measures brain activity by recording

the electrical signals of the neurons. It results of summation of potentials derived from the mixture

of extracellular currents generated by populations of neurons. The appearance of EEG rhythmic

activity in scalp recordings is only possible as a result of the synchronized activation of massifs

of neurons, the summed synaptic events of which become sufficiently large (WINDHORST;

JOHANSSON, 2012).

EEG provides a very detailed and exact picture of brain structures involved in normal

functioning or when damaged by pathological processes. The record is made using the technology

of differential amplifier, which takes the difference of two inputs and displays only one output,

as their difference, useful to small electrical impulse systems. Therefore, EEG signals are not

something absolute, but rather relative to a difference between inputs called montage, illustrated

by Figure 8. EEG recording is displayed in different montages, and among them the common
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Figure 8 – Typical EEG montage maps described in the literature, the Czr, is discuss in the present paper.
The adopted form of mapping the EEG data signal depends directly on its structure, moreover
each participant has their own reference value (carrying out an individual structure), therefore
EEG signal comparison is nontrivial across participants.

reference montage compares every placed electrode in the head against a single point, e.g. the

central (Cz), displaying each difference as a single tracing named as channel or derivation.

Electroencephalography explicit discover the circuitry of brain processes, revealing not

only “where” but “how” information is processed in the brain. This approach is essential for

the solution of the mind-brain connectivity problem. As EEG spectrum may reflect particular

cognitive conditions, the EEG recording can be used for on-line diagnostics of cognitive opera-

tions with a possible detection of thinking errors. The EEG based biofeedback may be applied

for correction of brain malfunction, including the signaling in wrong mental operations. It is

essential in high technological processes where a value of the error is high.

Thus, EEG, which previously was treated as a result of simple and almost occasional

summation of the activity of huge masses of neurons, is now an effective tool in exploring the

intimate mechanisms of information processing in human brain (WINDHORST; JOHANSSON,

2012). EEG has a high time resolution, and rather simple in use, cheap and almost does not

disturb a subject. The EEG can be recorded near the subject’s bed and used for long-term

monitoring of sleep stages or epilepsy. EEG also is a convenient tool for psychophysiological

research when the subject has to perform some behavioral tasks or is out of the laboratory.

One may expect, therefore, those innovative EEG methods have a good perspective in future

neuroscience.

3.2.2 Brief on Motivation & Data Acquisition

The dynamic of a brain network connectivity is a complex phenomenon of substantial

relevance which could help neurologists to understand better some pathology and help on

the development of new treatments. In this manner, brain network activity could be observed

as biosignals, measure in different ways such as Electroencephalogram (EEG) or Functional

Magnetic Resonance Imaging (fMRI).

Electroencephalogram (EEG) is a technique which measures brain activity by recording

the electrical signals of the neurons, as mentioned in subsection 3.2.1. It results of the differentia-

tion of summations which potentially derived from the mixture of extracellular currents generated

by populations of neurons. The appearance of EEG rhythmic activity in scalp recordings is only
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Figure 9 – Illustration of the acquisition of EEG data used in the present paper [see (SANTOS et al.,
2018)]. Left image shows EEG cap with small electrode array covering the scalp, while the
large electrodes identifiable as a triangle configuration (4 electrodes total) represents the tDCS
stimulating electrodes. The central panel shows the predicted cortical electric field from this
tDCS montage. The right-hand image shows stacked single channel EEG potentials with time,
from the Czr montage.

possible as a result of the synchronized activation of massifs of neurons, the summed synaptic

events of which become sufficiently large (WINDHORST; JOHANSSON, 2012).

The data acquisition belongs from a novel approach to systematically analyze the dose-

response effects of a focal electrical stimulation, transcranial Direct-Current Stimulation (tDCS),

connected in the EEG cap. The adopted HD-tDCS condition comprised of three electrical

stimulation electrodes where the center was placed on the right hemisphere as circumcircle of a

triangle with vertices on C4, T4, P4. T8. All channels were referenced to the vertex (electrode

CZ) with electrical impedance 128 reduced.

The studied protocol (SANTOS et al., 2018) adopted the tDCS over the right Tem-

poroParietal Junction (TPJ), as shown Figure 41, in healthy subjects. Based on prior results that

postural perception could be manipulated (SANTOS-PONTELLI et al., 2016), which is of major

clinical importance in adult falls and post-stroke recovery (PÉRENNOU, 2006; BONAN et al.,

2007), and thus has potential clinical utility.

The systems’ imbalance and degeneration related to postural control, lead new researches

towards their origin and pathophysiology (WINTER, 1995). The different sensory information is

used as pathways in the brain to posture maintain upright position (DAY; COLE, 2002). Thus,

the postural imbalance is one of the most common findings found after stroke (BAGGIO et al.,

2016; CHERN et al., 2010). However, increasing knowledge about the effects of this strategy is

essential for the development of more effective rehabilitation protocols.

Transcranial direct current electrical stimulation protocols were suggested to influence

changes in postural control also in post-stroke patients (BABYAR et al., 2016; ZHOU et al.,

2014). However, even with current evidence and decades of experimentation on transcranial

direct current stimulation, few protocols have achieved robust scientific acceptance. Therefore, it

is essential to investigate the dose-response effects of brain stimulation in order to devise more

effective protocols for rehabilitation.

In this study, the main goal as said is to verify the dynamic polarity-intensity-dependent
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Figure 10 – Visual summary of the methodological framework. Acquired data were divided into two
parts, the first being baseline only, to estimate the common brain network structure among the
six participants (later explained in Fig. 16). Using this baseline structure together with that
acquired from a post-tDCS collection, and considering the acquisition rate (500Hz), and the
duration (300sec), we used the median value per second, for a total of 300 observations. We
then modeled its dissipation with across time (post tDCS EEG, relative to pre tDCS; using
two models, Fixed- and Time Varying-MDM). Then, structural changes across time were
analyzed and conclusions were drawn. Acronyms are Time Series Chain Graphical Model
(TSCGM), Hamiltonian Monte Carlo (HMC), and Multiregression Dynamic Model (MDM).

effect in the asymmetry of spontaneous posture after the application of HD-tDCS, applied to the

temporoparietal junction region of the right cerebral hemisphere, in healthy young adults.

3.2.3 Visual Chain of Methods

In this subsection we describe the approach employed for EEG signals analysis. First,

the observed clinical trial (from a single participant, 500Hz sample rate) seeking for pre-analysis

related to the participant baseline (resting-stage) only. Later, we pursued a common resting-

stage structure among six participants resting-stage, using the Time Series Chain Graphical

Model (TSCGM) (ABEGAZ; WIT, 2013; NASCIMENTO et al., in press). Then, combining

the reduced data (per median second observation, 1Hz sample rate) with the common estimated

connectivity structure, used as reference structure on the multivariate time series model, the so

called Multiregression Dynamic Model (MDM) (QUEEN; SMITH, 1993) accommodated the

post-stimulus towards its energetically time dissipation, then later analyzed its structural time

series change (BAI, 1994).

Carrying on, Figure 10 represents visually the adopted methodology framework, from

importing data to extracting its information. Next section will present the statistical theoretical

models used to accommodate the dynamical process.

3.3 Recalling Dynamic Graphical Models

Graphical models describes the dependence structure among sets of random variables.

There is, describe and manipulate conditional independence relations between variables in

multivariate data. For instance, let’s consider the case where one variable is regarded as response

and the others as explanatory variables. Then, a model selection problem is created to generate
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inferences towards the conditional correlations.

For a given related structure as pairwise objects, called graph, constraints under its

parametrization are often claimed (desired to be estimated). An important work developed

initially by Whittle (WHITTLE, 1953; WHITTLE, 1954) estimate than determined Gaussian

graphical models, by equations similar, using maximum likelihood estimates (MLEs). This

parametrization, using autoregressive models, allows terms to describe the contemporaneous

relation (assotiated with the inverse covariance of the process) and dynamic relation obtained by

the autoregressive coefficients.

In the analysis of neurophysiological data, correlation analysis is still an important,

widely used tool (MELSSEN; EPPING, 1987; GORROSTIETA et al., 2013). The advantage of

such time domain based methods, compared with the frequency approach, is the interpretability

of the links, which yield information concomitantly about the direction and the type of brain

connections over time (EICHLER, 1999).

Given that all inference will be leaded by the information contained only in the data,

Kullback-Leibler (KL) information is a natural candidate in the estimation process. Nevertheless,

Akaike (AKAIKE, 1973) pointed out that the KL information is related to the method of

maximum likelihood. Because MLE gives a nice interpretation, that is, maximizing the likelihood

of data under our estimate is equal to minimizing the difference between our estimate and the

real data distribution. We can see MLE as a proxy for fitting our estimate to the real distribution,

which alternatively can be done indirectly as the real distribution is unknown.

In model selection, using the final prediction error instead of the KL distance, one focus

on predicting future values of the sampled process by the past. We therefore would like to use

only those variables which lead to a substantial reduction of the prediction error. But this is

just the definition of causality (Pearl, 1990). It therefore seems to be natural to consider causal

graphical time series models when choosing models for prediction.

In this manner, dynamic models are a powerful class of models whose structure changes

over time are based on non-stationary or time-varying differential (difference equations) (ANA-

CLETO; QUEEN; ALBERS, 2013b; COSTA et al., 2017). This implies that a given phenomenon

which presents change of structure, under this class, are continually maximized. In this manner,

class of multiregression dynamic model (MDM) uses a graph to represent multivariate time

series, which is a particular case of state-space model. This work explored its application in the

neurophysiological data from the fixed to the time-varying parameters extension, as well as its

multivariate version.

From now on in this section we will adopted the notation of uppercase, for convenience,

related to random vector and lowercase for the observed vector.
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3.3.1 Multiregression Dynamic Model (MDM)

Within the large class of Dynamic Graphical Models (DGMs), the flexible State-space

model represented as a graph was discussed by Queen and Smith (QUEEN; SMITH, 1993) and

it will be adopted in this work. This models are called Multiregression dynamic model (MDM).

But first let’s present some the primarily elements needed to understand this models functionality

and challenges.

Consider a Global optimization as a collection of large finite amount of variables and add

a real valued function, with finitely imposed constraints, which requires an objective function,

assigning a value to all feasible points (HECKERMAN; GEIGER; CHICKERING, 1995). This

will lead into finding those feasible observations, whose objective function value is minimal

(maximal) among all feasible points. Nevertheless, this will leads in to a NP-hard problem

(CHICKERING, 1996b).

Moreover, global optimization problem are often represented as a directed acyclic graph

(DAG), which without changing it can be accommodated through various algorithms (SACHS

et al., 2005); i) aiming the local optimization, most compact form with the smallest number

of variables and number of non-linear equalities, ii) problem definition, interpreting all named

vertices as variables leads to a representation equivalent to the problem, and iii) increasing

sparsity and dimension, to improve the sparsity pattern of the Hessian, that is, additional vertices

can be regarded as variables.

(SCANAGATTA et al., 2015) described that often a DAG structural learning may be

plotted by its parent set identification and structure optimization. The node (variable) depends on

only of its ancestor, also called parent. And this work understands as structure optimization the

result of one structure which maximize the information, assigning an acyclic relation towards

the variables.

Consider Yt = [Yt(1), ...,Yt(p)] as an p-dimensional time series array, i.e. each time series

vector Yt(i) has i = 1, ..., p observed values. Let θt = [θt(1), ...,θt(p)] be the state vectors of Yt ,

where dim(θt(i)) = si, i = 1, ..., p.

Under mild conditions, the conditional independence relationships fulfill the Markov

Conditions and split a complex multivariate data problem into simpler ones. Then, a representative

causal structure is a DAG. Let’s consider for each time t ∈ N, for i = 2, ...,n

Yt(i) independent Y i
t |Parent(Yt(i))

where Y i
t is the set of all variables, except for node i, its parents and its descendants.

This type of graphs don’t have any cycles, which presents no path for information to

return to the nodes on the left of each diagram without doubling back and hitting a node that has

already been encountered. In this manner, its is feasible to optimize its structure. This result is

often applied in Bayesian network models where probabilistic dependence relationships among
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multiple interacting components, which sometimes be interpreted as causal influence connections

when interventional data are used (SACHS et al., 2005).

Using the conditional independence assumption, DAG structure is convenient among

the estimation of a graphical model structure by reducing its complexity. This implies that all

necessary information will be available only a part of the data (not need to use the entire set all

the time). In order to estimate this structure, this work adopted a class of models, the dynamic

linear model.

The Gaussian linear state space models are also known as Dynamic linear model (DLM)

is specified by a normal probability distribution for the p-dimensional state vector and m-

dimensional observed vector. The model is composed of the observation equation (distribution

of observations) and state equation (evolution of the parameters through time). At the time t = 0,

θ0 ∼ N(θ0,σ
2
0 )

after the time t ≥ 1 then,

Yt = Ftθt +υt
︸ ︷︷ ︸

observation equation

, υt ∼ N(0,Vt),

θt = Gtθt−1 +ωt
︸ ︷︷ ︸

state equation

, ωt ∼ N(0,Wt)

where Gt and Ft are known matrices (p× p and m× p) and the disturbance terms υt and

ωt are two independent Gaussian random vectors with mean zero and known variance matrices

Vt and Wt .

Considering a Rp-valued and Rm-valued time series satisfying

1. (θt) is a Markov chain

2. Conditionally on (θt), the observed time series (Yt) are independent and depends only on

(θt).

That is, allowing the time-varying parameters and incorporating more complex structures

adding the composition of latent variable in the estimation process. That is, to estimate the

state Vector we compute the conditional density π(θs | Y ), where t = 1, ...,T . Consider θt as the

mean parameter at the time t of a process, from a series Yt = {y1, ...,yt}, under the Bayesian

approach Figure 33 presents, as a DAG, the posterior (post.) and prior conditional densities as

DLM performing upgrade inference procedure.

Evolution or update steps, related with the state equation, may consider consecutive

stages, which is nominated as parametric hierarchy structure. Figure 12, for instance, illustrates

a MDM representation.
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Figure 11 – Here we show a dynamic linear model (DLM), demonstrating how accuracy of the model
increases by each new observed value. The model comprises three stages: evolution, forecast
and updates. These processes revise the model information [from the Unobserved/predicted
values (θ ’s)], extracting from each new inputted observation (Y ’s), across time.

Figure 12 – Multiregression dynamic model (MDM) graph representation, containing the observed time
series represented by nodes (Y’s in blue) and non-observed or hidden states (θ ’s in green),
where t refers to time and j to the elements (participants). This representation shows the
conditional independence structure of each node.

Before continuing, to distinguish estimation problems where s is the recursive period and

t is the current period, is needed where filtering (s = t), smoothing (s < t) and state prediction

(s > t). Filtering is a procedure that aims to update the current estimates as new data are

observed π(θt | y1:t). Smoothing is a retrospective analysis which compute the conditional

distribution θ given in once the data π(θt | y1:T ), starting from π(θT | y1:T ) estimating the states

backward. Prediction is a forecast procedure which estimate the next observation based on the

distribution π(θt+1 | y1:t). Further details about Bayesian Forecasting and Dynamic Models

(WEST; HARRISON, 1989; PETRIS; PETRONE; CAMPAGNOLI, 2009).

Notice that this general case is can be a vector autoregressive (VAR) model as a static

parameters, that is, if the parameters are time-invariant.
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Figure 13 – Second order latent structure (multi-level) of the multiregression dynamic model (MDM)
graph representation containing the observed time series represented by nodes (Y’s in blue),
added by the hidden structure (in gray), and states (θ ’s in green). Time is represented by t

and participants are represented by j. This parameterization allows the estimation towards the
sharing information across elements (participants) as a common structure, still maintaining
their respective personal characteristics.

The Multivariate dynamic linear model were extended to its version, based on Gamerman

& Migon (GAMERMAN; MIGON, 1993) dynamic models where they presented as a state

estimation problem considering multiple parameter layers, equivalent to hidden unobserved

stage, now considering three equation components

observation equation
{

Yt = F1,tθ1,t +υ1,t , υ1,t ∼ N(0,V1,t),

structure equation







θ1,t = F2,tθ2,t +υ2,t ,υ2,t ∼ N(0,V2,t),

. . .

θp,t = F(p+1),tθ(p+1),t +υ(p+1),t ,υ(p+1),t ∼ N(0,V(p+1),t),

state equation
{

θ(p+1),t = Gtθ(p+1),t−1 +ωt , ωt ∼ N(0,Wt)

Figure 13 exemplifies a system which considers a Two-Stage model. For instance, this

simple model illustrates, by adding one more hierarchical layer, that the structure equation is

added aiming to extract from the experiments a common latent measurement (on a collection)

related but from different units.

Thus, common latent structures are enable to be included, on the estimation process, aim-

ing to share information towards similar patterns. Regarding this work motivation, which deals
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with different participants electrical structures, given the EEG spectrum nature, by considering

consecutive latent stages we address common brain process information.

Through a multivariate approach estimation procedure, under a high-dimensional param-

eterized model, is feasible to condition the existence with just a few data points. Shrinkage in

parameter space is only doable if appropriated priors, although is not a trivial task. Using the

multilevel prior approach allows us to “learn the priors” by sharing information across units of

observation, based in conditional independence.

3.3.2 Hamiltonian Monte Carlo (HMC)

Under the Bayesian paradigm, statistical models can be calculated analytically from their

posterior distributions, with reference to their parameters. However, deterministic integration

methods are usually used to approximate this posterior distributions, which present a high

complexity especially under the presence of high dimensions.

Any unknown parameter (θ ) is associated to a probability function (π(.)) can be deter-

mined by Bayes’ theorem

π(θ |Data) =
π(θ)π(Data|θ)

π(Data)
=

π(θ)π(Data|θ)
∫

π(θ)π(Data|θ)dθ

The first study to proposed a numerical approximation to π(Data) relating this integration

problem using as solution the states of molecules systems simulation proposed by Metropolis

(METROPOLIS et al., 1953) as its updates is done as a random-walk, is known as Markov chain

Monte Carlo (MCMC). It says that a large identically and independent sample (T1, ...,Tn), where

Ti ∼ π(t|Data), from the posterior distribution results that for any function g forthcoming from

the law of large numbers

E(g(Ti)) =
∫

g(t)π(t|Data)dt =
∫

g(θ)π(θ |Data)dθ = E(g(θ)|Data)

Later combining with the idea, presented by Alder & Wainwright (ALDER; WAIN-

WRIGHT, 1959), which this states are deterministical following Newton’s laws of motion as

Hamiltonian dynamics, originated the hybrid Monte Carlo method or Hamiltonian Monte Carlo

(HMC). In order to search the position of the variables, to obtain inferences towards θ , the method

adds an auxiliary variable (ϕ) called “momentum” so the parameter space is explored through

partial derivatives of the Hamilton’s equation converging much faster. For deeper investigations

mind the see Brooks and other (BROOKS et al., 2011).

First, Hamiltonian function can be defined in terms of the probability distribution we wish

to sample from. Then, HMC method alternates simple updates for these momentum variables

with Metropolis updates in which a new state is proposed by computing a trajectory according

to Hamiltonian dynamics (using the concept of energy and gradient), implemented with the

leapfrog numerical method (Discretizing Hamilton’s Equation). That is, the non-linear update
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state may be distant from the current state although presenting a high probability of acceptance.

The steps are as follows

Algorithm 1 – Hamiltonian Monte Carlo (HMC)

Sample ϕ*1 ∼ Normal(0,Σ)
for i in 2 : N do

ϕ*i ← ϕ*i + ε
∂π(θ |x)

∂θ (θi−1)

θ *i ← θi−1 + εΣ−1ϕ*i
ϕ*i ← ϕ*i + ε

∂π(θ |x)
∂θ (θ *i )

if Uni f orm(0,1)≤ π(ϕ*i )π(θ
*
i |x)

π(ϕi−1)π(θi−1|x) then

(θi,ϕi) = (θ *i ,ϕ
*
i )

else

(θi,ϕi) = (θi−1,ϕi−1)
end if

end for

where N is the sample size (leapfrog steps), ϕ represents the position parameter, θ the momentum

parameter, where as ϕ* and θ * are the new proposed parameters, Σ the variance, and ε is step-size

for leapfrog steps. The process computes the partial derivatives of the log of the density function.

This HMC algorithm performance is based in two steps; the first step, new values for the

momentum variables are randomly drawn from their Gaussian distribution, independently of the

current values of the position variables. In the second step, a Metropolis update is performed,

using Hamiltonian dynamics to propose a new state. If the proposed state is not accepted, the

next state is the same as the current.

Some major differences comparing Metropolis to HMC are

1. The calculated distances which conduce the parameter(s) updates usually are “large", then

less iterations are needed obtain a representative sampling;

2. HMC presents a greater acceptance rate towards new calculated states;

3. Computational demands of a single iteration is higher, although more efficient;

4. HMC may be limited if sampling from distributions with isolated local minimums is

required;

This work used the R packages called rstan & rstanarm, which connect R software with

Stan, which contains the partials derivatives calculation implemented. Stan’s software enabled the

application of HMC in different applications due to its simplicity, and this helped the spread of

Hamiltonian numerical approximation based on its computational efficiency, compiling/working

in C language.
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3.4 Empirical Analysis

Considering the protocol study (SANTOS et al., 2018), which aims to study the manipu-

lation of human verticality non-invasively via tDCS dose-response. A visual representation of

clinical study trial can be seen based on the dynamic from a single subject EEG channel 147.

Figure 14 illustrates an example of EEG amplitude, among the experiment, where the light blue

shade area refers to the baseline phase (5 min duration) and the light gray refers to the moment

after the HD-tDCS dose-response (also 5 min each).

Figure 14 – Single participant EEG channel 147 full trial representation of EEG amplitude over time in a
500Hz sample rate. Light blue shade area represents the 5 min baseline response. Light gray
area refers to the 5 min post HD-tDCS dose-response.

Initially, we observed only the brainwave baseline dynamic of a single subject to highlight

their different patterns. For that, channels 164, 66 and 147 were selected respectively. Channels

164 and 66 represents an important brain spot, given that they are places at the right and left

motor regions, responsible for advanced motor functions such as motor planning and bilateral

coordination. Channel 147 because it is less sensible to noise. Figure 15 display, during baseline,

their high-resolution behavior across 5 minutes time-window.

All of them have 300-second window total, considering a frequency of 500Hz (sample

rate), then returning 150.000 observations each “resting time”. Continuing with Figure 15, it

is noticeable during “resting” time-window that non-linearity patterns are presented. Some

heteroscedastic behavior is also visually notable, as well the presence of structure break in a

form of “peaks” among time.

Personal characteristic are intrinsically presented on the EEG signals, given its recording

methods (presented in Section 3.2.1). Then a personalized model needs to by used, for each

subject responses. Based on Nascimento (NASCIMENTO et al., in press) results, a common

brain connectivity was estimated using the Time Series Chain Graphical Model (TSCGM),
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Figure 15 – Three dynamic EEG responses of a single participant showing channels 164, 66, and 147,
during the baseline period. The EEG channels indicate different patterns between each brain
location.

considering a SCAD penalization, on each 6 subjects during baseline condition, with 7 channels

(164, 173, 183, 66, 71, 72, and 147). Then based on its estimated autoregressive parameters, it

was calculated the median relating a common dynamic connectivity behaviour, then illustrated

by Figure 16 shows a median graph behavior (among the patients).

Figure 16 – Common resting-stage Network Structure estimation representation (right figure), based on
data from six participants (each participant represented by a different color in the left figures).
The structure starts on the EEG channel 164 (root node) and ends at the channel 71 (leaf
node), showing the information flowing across the right and left hemispheres. Each arc (arrow)
represents a casual relationship across the channels. This estimated network as a directed
acyclic graph (DAG) was used as a common structure in the Multiregression Dynamic Models
aiming to describe the electrical dynamic across the time.

Once we established a pre-defined brain network, a dynamic model can be adjusted based
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Table 5 – The selected priors distributions.

Parameter Prior Distribution
α*t,i,s Normal(0,10.000)

β **,t,i,s Normal(0,10.000)
σ*t,i,s Uniform(0,100)

on a preliminary structure. Adopting the Multiregression Dynamic Models (MDMs), moreover, a

first order random walk evolution and seasonal behavior of simpler state-space model as a DGM,

in which we are interest to model the dynamic connectivity after a HD-tDCS dose-response.

Thereby, we are looking how its behaviour is changing over time (or preserved). For that, the

theoretical model for each EEG channel as

Y
(164)

t,i,s ∼ N(µ
(164)
t,i,s ,τ

(164)
t,i,s ),

Y
(66)

t,i,s ∼ N(µ
(66)
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where t is related with the time-point, i with subject, and s section number. Moreover, their

respectfully mean distributions is
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All used prior distribution, for parameters, were little or non-informative. The priors

distributions, in Table 5 considered in the estimation process are

and transformed parameters were also adopted such as τ*t,i,s = 1/(σ*t,i,s)
2.

Thus high-frequency signals, naturally was required a smoothing transformation, tar-

geting data simplification, but also preserving interpretability of the time series, given the
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Figure 17 – EEG signal from channels 66 (top) and 183 (bottom) containing the observed data (in black
solid line), their model estimations from the Multiregression Dynamic Model (MDM) with
Fixed parameters (in blue dashed line), and Time Varying parameters (in red dots). In both
cases, the post-electrical perturbation is noticeable in the beginning of the series, followed by
their accommodation. The Time Varying-MDM shows to be more flexible through its fitting
along the observed values.

hyperparametrization of the MDM. Each 500 observations was taken the median, reducing the

sample size rate to its median single point observation per second. In this manner, the time series

representation would preserved such behavior and reduce its noise, as a modification of the

segmented transformation (YI; FALOUTSOS, 2000).

In this work, when we refer as MDM fix parameters implies that t, i,s will be constants,

according to the adopted notation by the theoretical model. Moreover, for MDM time-varying

parameters only i,s will be considered constants, and no dimension will be constant for the

multilevel MDM.

For instance, let’s consider a single subject EEG signal behaviour. Figure 17 shows the

performance of two channels (66 and 183), using MDMs fix versus time-varying parameters.

Once the model structure was flexibilized, via MDM time-varying parameters, the accommoda-

tion of the series was shown highly competitive.

Looking closer into the estimated parameters, based on the theoretical model, by selecting

only channel 66, and considering MDM time-varying parameters, Figure 18 shows the α

performance along four period of time (5, 100, 200 and 300 seconds). It’s noticeable that its

variation follows the observed biosignal and small magnitude are given from it thus the EEG

signal amplitude than associated with β parameters.
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Figure 18 – Dynamic accommodation from the EEG signal (channel 66) explained by the Multiregression
Dynamic Model time-varying α’s estimation parameters, during time-windows 5, 100, 200
and 300 seconds. The parameters shown in the left-hand chart are related with the electrical
dynamic explained by the channel’ self-walk (as a process average trend), not by other
channels. The electrical accommodation dynamic pattern suggesting the synergy process
through tDCS post-stimulation. The Chain used, shown in right side figures, to estimate these
parameters.

Figure 19 shows the performance of the β parameters from channel 66 also during four

period of time (5, 100, 200 and 300 seconds). As time pass by it is noticeable a contraction,

suggesting there is a influence reduction of channel 164 on channel 66.

Figure 19 – Dynamic accommodation from the EEG signal (channel 66) explained by the Multiregression
Dynamic Model time-varying β ’s estimation parameters, during time-windows 5, 100, 200
and 300 seconds. The parameters are related with the electrical dynamic explained by the
related channel (164). Moreover, in the left-hand chart, the β parameters represents the
electrical influence on channel 66, derivative from channel 164, losing strength among time.
That is, suggesting a return to the basal stage. The Chain used, shown in right side figures, to
estimate these parameters.

After comparing the models, the time-varying MDM (which is a multilevel model with

parameters across time) shows to be a competitive model, given its flexibility and robustness.

Figure 20 presents the accommodation of two channels, across all subjects, corroborating with

its high performance.
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Figure 20 – Illustration of a single participant’s right side (flipped picture for better representation), associ-
ated with the raw EEG signal of channels 66, 72, 72, 164, 173, 183, and 147. The black lines
indicate the observed EEG signals, and the estimated behavior for each channel using MDM
time-varying parameters are represented by the red points. Through their accommodation
model, a mean structure break was estimated suggesting a pattern’ shift after 163 seconds.

Additionally, it was also tested the dating structural changes in the adjusted mean of each

EEG channel, according to Bai (BAI, 1994) using the package strucchange, enabling to seek

for evidence related to structure break across time. Therefore, suggesting that after maximum

252 seconds all the observed areas (related to the EEG channels) starts to present a change

in the electrical influence, or 163 seconds on average, that is, regarding the tDCS stimulation

governable we may relate to the dynamic connectivity towards basal state.

Polarity dependence is observed, after tDCS stimulation, regarding Left and Right brain

hemisphere. Figure 21 shows the seven channels mean evolution across time.

Moreover, because the EEG signal care based on a personal characteristic, when a

clinical study is analyzed containing multiple subjects then flexible structures shall be introduced

conditioned to each personal behaviour (response).

3.5 Final Remarks

The present study results in three main highlights upon the multivariate time series

field; i) in neuroscience field, it is we are the first group, to our knowledge to use a HD-tDCS

dose-response up to 3mA in human verticality manipulation, ii) a few article uses multilevel

dynamic models in EEG task, dealing properly with non-linearity series and iii) moreover, a

Hamiltonian Monte Carlo approach has not been much explored in statistics field, especially

using time-domain time series models, alongside its computational efficiency.

In contrast to the previous studies, we developed a new methodology combining MDM

with HMC broad potential associated with computational feasibility and robustness. Our statisti-
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Figure 21 – Radar plot of standardized EEG signal showing the dynamic structural time-flow of four
time points (5, 200, 200 and 300 seconds) from a single representative participant. Higher
amplitudes can be observed in the left hemisphere (channels 66, 71 and 72) at 5 seconds (right
after the stimulus), followed by a general/mutual shrinkage performance across the channels
(except in channel 147 during 200 seconds) reflecting a "symmetric dispersion" across time.

cal approach is innovative also because we aggregate elements to discuss the application of this

complex system analysis, using the time series approach, using a momentum variable towards

estimation efficiency. As results, by analyzing the 5 minutes of EEG data after the HD-tDCS,

we could identify mean structural breaks around 163 seconds, indicating a loss of HD-tDCS

influence towards cortical activity (suggesting the return to the baseline state).

More specifically, dynamic linear models opens up a new class of non-trivial structure

data analysis, thus enabling some types of dependence (temporal, spatial, etc.) managing to be a

simpler problem given the conditional independence supposition from the state-space models.

The presented statistical approach is appropriate to human brain connectivity that is a

complex phenomenon of substantial relevance, presenting results towards non-invasive brain

treatment using tDCS. It has been an open question on how to deal with high-dimension data

without losing relevant information in the neuroscience field. Our research group have been

showing sequential evidence for the clinical and physiological effects of a non-invasive brain

stimulation protocol targeting the temporo-parietal junction to understand and treat disorders of

human verticality (SANTOS; EDWARDS, 2019). This context exposes the need for several time

series analyzes and its dependence, estimating not only the effects individually but the impact of

treatments as a whole. Understanding human neurophysiology such as the brain dynamics could

provide insights about types of localized non-invasive brain stimulation toward a solution (or

improvement) of the brain activity dysfunction (RUBIN et al., 1991; PAAKKI et al., 2010).

Furthermore, using the DLM, future works can explore the multivariate graphical models,

extensions are to be included regarding the brain initial connectivity targeting a multiplex
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complex system supposition. Additionally, exploring the high-dimensional data (EEG channels

shrinkage) shall be considered duo will be the next step to be explored in further studies.

The application of dynamic linear model extends to the entire medical field; given that

biometrics multi-sensory data fusion research displaying the technology advancement as a key

facilitator of augmented quality with concurrently reduced costs (KING et al., 2003). Examples

can be found in the subject safety programs that use emerging technologies to automate the

entire clinical continuum (PAVLOPOULOS; DELOPOULOS, 1999; SORIA-FRISCH; RIERA;

DUNNE, 2010; CACAO et al., 2017). Most of this data resulted from biosignals are time-

oriented, therefore called time series, which present a dependence requiring special attention

on modeling. Hence, the impact of this study will reach the entire medical field that needs to

analyze complex data in the spatial and temporal domains.





75

CHAPTER

4

BRAIN GRAPH COMPLEXITY: REVEALING

COMMON CEREBRAL WAVES PATTERN

This chapter corresponds to a white paper, in which presents the discussion towards

the efficiency of the Bayesian Network and its dynamism, comparing structural estimations

algorithms and numerical approximations towards the time-varying parameters, then later we

developed a probabilistic approach to select on of the parameter related with the Approximate

Entropy (ApEn) calculation. This work had as co-authors: Lilia Costa (IME-UFBA, Brazil),

Oilson Gonzatto (ICMC-USP, Brazil), Joao P Leite (FMRP-USP, Brazil), Dylan Edwards (MOSS,

USA and Edith Cowan University, Australia), Taiza E G Santos (FMRP-USP, Brazil), Francisco

Louzada (ICMC-USP, Brazil).

Describing the behavioral actions of the human brain presents several challenges since it

is a highly complex system. In particular, this system, when stimulated, is of great interest, to

neuroscientists, to infer the dynamics of the brain process (or part of it). In this typical case of

neurorehabilitation, the first step is to estimate the participant basal brain structure (understanding

causal mechanisms that underpin neural communication) and later to summarize the dynamics

of the adopted process. Thus, this work aimed to describe the brain connectivity structure

adopting probabilistic graph models (e.g. Bayesian Networks) towards its spatial dependence;

later, we calculate a complexity measurement of different brain locations based in a transcranial

stimulation trial (positioned on the EEG cap), incorporating its estimated spatial dependence.

Moreover, this work contribution is regarding the chose criteria of the parameter for the entropy

calculation, which we associated with a probabilistic distribution. The results obtained from

the simulation studies shown that Tabu Search Algorithm and MDM-IPA are plausible and

competitive solutions towards graph structural estimation, as well we conduced three numerical

estimations (MCMC, HMC and INLA) related to the BN dynamism and its computational cost;

later, a probabilistic entropy calculation illustrated the efficiency of the used models. In this

manner, we could use, on human brain experimentation, these techniques with more confidence
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towards human brain communication and its complexity estimation.

4.1 Introduction

Stroke is the third global leading cause of disability, and evidence-based rehabilitation

intervention to improve the burden from stroke remains limited (FEIGIN et al., 2014). The

numbers about the problematic on the world population with stroke is 70%, whereas 87% are

related with some physical disability or deaths both in low- and middle-income countries and,

over the last four decades, the stroke incidence has more than doubled (JOHNSON et al., 2016).

The consequences are immeasurable mainly affecting individuals at the peak of their productive

life, in people living in low-and middle-income countries when compared to those in high-income

countries (HIC). Despite its enormous impact on the socioeconomic conjuncture of developing

countries, this rising crisis has received very little attention to date.

One silent but critical symptom after stroke for which there is no present treatment

and is observed in more than half of stroke survivors, is the visual vertical disorder that can

occur with lesions in either hemisphere. Since vertical alignment in relation to gravitational

forces is required for most of daily activities, the impact on functionality of vertical disorders is

devastating (JOHNSTON; MENDIS; MATHERS, 2009). Generally, the error in the perception

of visual vertical is tilted to the contralesional side (coronal plane) leading to postural imbalance

and higher risk of falls after supratentorial lesions. Reduced visual vertical disorder is associated

with better clinical function. Yet to date there are no methods to therapeutically improve this

highly prevalent disorder.

Neurorehabilitation is a functional recovery, after some neurological injury, that stimu-

lates to obtain some neuronal restructuring (HARRIS-LOVE; COHEN, 2006). This field deals

with noninvasive stimulation techniques, and targets on understanding mechanistic of the infor-

mation flows. In this manner, this rehabilitation can provide insight regarding the physiologic

mechanisms, for instance, as a therapeutic hospital-based rehabilitation after a stroke (AADAL

et al., 2013). The brain communication plays an important role in neurorehabilitation techniques,

thus its structure rearrangement is composed by neural circuits synchronization. Estimation

regarding this topology is a needed, baring-in-mind the existence of a complex arrangement.

Spatial dependence is often described by adopting a grid approach, nevertheless, this

path presents limitations regarding a global shared information structure inter-exchange (that

is, only focusing on nearest neighborhood’s impact). Thereby adopting a complex topology

(such as a graph) one overcome this limitation. Zanabria and others (ZANABRIA et al., 2019)

elucidate mainly two gains in adopting a more flexible topological structure; i) flexibility to

explore between local regions, and ii) Identification of not only prevalent hotspots, but through

the measure of centrality to identify information’ cluster sharing.

In this manner, graph-based models, using data mining, can be seen as a dynamics of
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networks measures modalities that operate on multivariate time series (TS) (COSTA; SMITH;

NICHOLS, 2019; NASCIMENTO et al., in press). Through the notion of (temporal) causality

by Granger (GRANGER, 1969) and Sims (SIMS, 1972), the Granger causality (GC) approach

has become an important part of causal inference. A word of caution regarding GC, Solo (SOLO,

2016) shows that two main issues exists are solved by combined with state-space methods: the

effect of downsampling and the effect of filtering on Granger causal structure (GCS), to be

overcome using Probabilistic Graphical Models (PGM).

For instance, Bayesian Network (BN) is a representation of a joint distribution of random

variables as a PGM, first presented by Kim & Pearl (KIM; PEARL, 1987). In this manner,

BN is a powerful tools for representing conditional independencies and dependencies between

random variables, defined by some structure and parameters. The relation between variables is

represented by a directed acyclic graph (DAG), if satisfying a local Markov condition, and the

parameters specify as local conditional probability distributions for each variable. Costa and

others (COSTA; SMITH; NICHOLS, 2019) tested different group-structure (GS) methodologies,

using Bayesian Network (BN), that models heterogeneity between subjects and searches for

distinct homogeneous sub-groups according to some measure that reflects the connectivity maps.

Additionally, entropy analysis is a measurement of the complexity and may identify

intervention-related change as a useful “summary” statistic in non-linear dynamical systems

(NASCIMENTO et al., 2019). Zhang (ZHANG et al., 2017) discussed that network-based

analytics may increase the model structure by regulated pathways rather than common traditional

analysis (univariate/multivariate). In this manner, multivariate time series analysis shall be

unraveled using entropy-based on its systems’ biology pathways with extra support generated

by the graph-based model including some complex dependencies, nevertheless their embedded

dimension are often unknown. Such methods are capable of estimate complexity and network

topology, that is, combining their structure dependence up to dynamic, in order make feasible

the estimation process considering the space-time dependencies.

This work aimed to describe the spatial dependence, considering individual contributions,

across some brain areas, through a graph structure representation, and then using this information

as a Network-based analytics to determine the complexity of the system. Thus, we first compared

different methods to unravel the cerebral neural circuit connectivity, and suggest a computational

feasible solution.

4.2 Methods

This work was divided into four parts. Section Methods contains the statistical method-

ology adopted on the data set. Moreover, we first bring the causal inference paradigm through

the Granger Causality and its implication; its model-based, through the Bayesian Network and

its dynamic version, then used this structure dependence estimation in the entropy calculation
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Figure 22 – Visual summary of the adopted methodological framework.

(as TS summarization), whereas we used a probabilistic function to set the entropy parameter

(summarized by Figure 22). Section Simulation Studies presents, through synthetic data (in a

controlled scheme) the comparison of this model performances, from the standpoint of statistical

robustness and computational efficiency. Finally, Section Results elucidates the neural circuit

structural estimation, considering the adopted neurorehabilitation protocol presented in Santos

and others (SANTOS et al., 2018), and Section Conclusion shows the implications related from

the obtained results, and debate towards the state of art of the topic in the field.

4.2.1 Granger Causality

Granger causality is a theoretical framework which assess directional dependencies

between time series, based in conditional independence (GRANGER, 1969). The problematic

which influenced to fetch towards the dependencies across systems were brought into discussion

by Norbet Wiener (WIENER, 1956), then unfolded by Clive Granger (GRANGER, 1963).

As a result of the model-based assessment, the concept of time series influence for-

mulation can be inferred through maximizing the probability given the information contained

in the data. That is, supported by the probability theory, random variables (e.g. time series)

can be inferred unambiguously only in restricted cases, such as directed acyclic graph (DAG)

models (PEARL, 2009; WHITTAKER, 2009). Amblard & Michel (AMBLARD; MICHEL,

2013) presented a review of Granger causality, over the directed information theory perspective,

building links between conditional independence and causal conditioning.

In this manner, Granger causality can be seen as pair of time series variables, xt and yt .

Let Var(xt |Us) be the prediction error variance of xt given Us. Here Us means the information

set containing all the information in the universe up to time point s, and is called the universal

set. For instance, Granger causality is a pair of time series variables (further details see Ozaki

(OZAKI, 2012)), xt and yt as

∙ Definition 1: Causality. If Var(xt |Ut1)<Var(xt |Ut1yt1), than yt is causing xt .

∙ Definition 2: Feedback. If Var(xt |Ut1)<Var(xt |Ut1yt1) and Var(yt |Ut1)<Var(yt |Ut1xt1)
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feedback occurs, which is denoted yt ⇔ xt , that is, feedback occurs when yt causes xt and

also xt causes yt .

∙ Definition 3: Instantaneous causality. If Var(xt |Ut1,yt)<Var(xt |Ut1), instantaneous causal-

ity occurs from yt to xt . In other words, the current value of xt is better predicted if the

value of yt is included in the predictor.

∙ Definition 4: Causality lag. If yt causes xt , the causality lag is defined to be the least value

of lag k such that Var(xt |Utyk)<Var(xt |Utyk+1). Here, knowing yk+1 will be of no help

in improving the prediction of xt .

The limitations towards Granger Causality come from the following:

1. The use of the nonmathematical “universal” set Us.

2. Causality is considered on a pair-wise base.

Although the universal set Us could be a vector variable, the comparison of the value

of the prediction error variance is on a pair-wise base between Var(xt |Ut1) and Var(xt |Ut1yk).

The benefit of the pair-wise base approach is to enable a direct connection to the graph-model

representation, taking advantage of Markov properties assumptions. Moreover, the method for

finding total causal relations between the many variables in a feedback system is not well

established.

Siggiridou and others (SIGGIRIDOU et al., 2019) concluded, by using model-based

measures and information measures, that the Granger causality measures enhance with dimension

reduction are superior and should be preferred particularly in studies involving many observed

variables. In the counterpart, Zou & Feng (ZOU; FENG, 2009) made a comparative study towards

Granger causality versus dynamic Bayesian network inference, discussing that the critical point

is in the data length in order to choose the causality approach. For further discussion, this work

will present elements in the next subsections, regarding these types of PGM, as well as present a

simulation study aiming to seek the out-performance most in the next section.

4.2.2 Bayesian Networks

Bayesian Network (BN) technique was first presented by Judea Pearl, in 1985, as

a mathematical probability graph model characterization; motivated by numerous variables,

aiming to verify direction (as probabilistic influence) of causality of one variable to another

(NEAPOLITAN, 2004). In a mild way, they can be interpreted as a visual and informative

representation of the joint probability table of all the variables that involve the domain of the

problem. The technology of Bayesian networks is primarily directed to the treatment of discrete
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variables, such as, for example, the making of inference algorithms (KEVIN; NICHOLSON,

2004).

Let’s us consider a directed graphical structure which presents root and leaf node acyclic,

named as DAG, G = (V,E), where the nodes in V = {X1,X2, . . . ,Xn} represent the variables

and E the arcs of the graph encodes conditional dependence relationships among the variables

(nodes). Common terminology in the literature is (further details see (FLESCH; LUCAS, 2007)):

∙ Parent: A node is said to be a parent when there is an arc leaving it.

∙ Child: A node is said to be a child when there is an arc arriving it.

∙ Parent set: A parent set is composed by the parents and their respective parent nodes.

∙ Neighbors: Neighbors of a node are all its parents and children.

∙ Markov blanket: Markov blanket of a node is composed by its parents, its children and

the other parents of its children.

∙ Markov equivalence: is an essential graphs, with the same set of Markov constraints,

implying that offers an unique representations.

Bayesian Networks are DAG’s that represent probability distributions. This represen-

tation, according to Gamez et al. (GÁMEZ; MATEO; PUERTA, 2011) has two components:

graphical structure and set of numerical parameters. DAG’s also have a set a numerical parame-

ters (Θ), usually conditional probability distributions drawn from the graph structure: For each

variable Xi ∈V we can define a conditional probability distribution Pr(Xi | pa(Xi)), where pa(Xi)

is the parent set of Xi in G and represents any combination of the values of the variables in

pa(Xi).

4.2.2.1 Learning algorithms

The problem of training a BN can be stated as: Given a training set D = (u1, . . . ,un)

of instances of U = (X1, . . . ,Xn), find a network B that best matches the data D (FRIEDMAN;

GEIGER; GOLDSZMIDT, 1997). In this manner, BN learning algorithms can use mainly two

types of approaches to find the best network, according to Scutari (SCUTARI, 2009):

∙ Score-based algorithms: for each Bayesian Network configuration a score is associated,

then searching to maximize through some heuristic search algorithm aims to maximize the

likelihood structure. Greedy search algorithms (such as hill-climbing or tabu search) are

often used in the literature.
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∙ Constraint-based algorithms: by adopting probabilistic relations based on Markov prop-

erty, using conditional independence tests, and learning the network structure by construct-

ing a graph which satisfies the corresponding d-separation statements.

The idea of these methodologies is to search the best representation network by starting

from an initial solution and performing a finite number of steps. At each step, the algorithm

only considers local changes, i.e. neighbor DAGs, and chooses the one resulting in the greatest

improvement in the scoring metric f . Gamez et al. (GÁMEZ; MATEO; PUERTA, 2011) points

that the algorithm stops when there is no local change yielding an improvement in f .

Many score functions f can be used as the best network decider (JIANG et al., 2011), in

this paper, we are going to approach the Bayesian scoring criteria. The Bayesian scoring criteria

compute the posterior probability distribution, starting from a prior probability distribution on

the possible DAG models, conditional on the data.

scoreb(G : Data) = Pr(Data | G) =
b

∏
i=1

qi

∏
j=1

Γ

(

∑
ri

k=1 ai jk

)

Γ

(

∑
ri

k=1 ai jk +∑
ri

k=1 si jk

)

ri

∏
k=1

Γ
(
ai jk + si jk

)

Γ
(
ai jk

) ,

where ri is the number of variables Xi, qi is the number of different values the parents of Xi in G

can jointly assume, ai jk is the prior belief concerning the number of times Xi took its k-th value

when the parents of Xi took their j-th value, and si jk is the number of times in the data that Xi

took its k-th value when the parents of Xi took their j-th value.

It assumes that each unknown parameter in each DAG model is represented by a Dirichlet

distribution, where the hyperparameters ai jk are the parameters for this distribution. According

to Dash et al. (DASH; DRUZDZEL, 1999), the disadvantage of the score-based algorithms is

that they can be very slow in sense of searching through all sample space of graphs. Although

any DAG can be used to initialize the search, usually the empty graph (i.e. a graph with no arcs)

is used.

Inference task regarding the links’ strength is straightforward if such network format

is well-defined (known). Nonetheless, individual information should also be included in the

estimation process (LIAO et al., 2017; MATTAR et al., 2018), and hierarchical architecture

may be an alternative. Costa and others (COSTA et al., in press) discussed the applicability of

some network structure estimation methods and visualization of individual patterns (via cluster

analysis), highlighting the importance of personal information. Additionally, Dynamic Bayesian

Networks are also used regarding the network’ dynamism, e.g. through conditional independence

with state-space models may riddle it using MDM-IPA (COSTA; SMITH; NICHOLS, 2019)

presented next.
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Algorithm 2 – Pseudocode for TABU SEARCH

INPUT : TabuListSEARCH

OUT PUT : Sbest

Sbest ←ConstructInicialSoluction

TabuList← /0
while ¬ StopCondition() do

CandidateList← /0
for SCandidate ∈ Sbest do

if ¬ ContainAnyFeatures(SCandidate,TabuList) then

CandidateList← SCandidate

end if

end for

SCandidate← LocateBestCandidate(CandidateList)
if Cost(SCandidate)≤Cost(Sbest) then

Sbest ← SCandidate

TabuList← FeatureDi f f erences(SCandidate,Sbest)
while TabuList > TabuListSIZE do

DeleteFeature(TabuList)
end while

end if

end while

4.2.3 Dynamic Bayesian Networks

A Dynamic Bayesian Network (DBN) is an extension of a Bayesian network (BN) where

the relation across the observed variables are time-varying (DAGUM; GALPER; HORVITZ,

1992). Queen & Smith (QUEEN; SMITH, 1993) also elucidated the advantages of combine state

space model with graphical modeling, then developing the Multiregression Dynamic Models

(MDMs). In this manner, application with the MDM, uses general probabilistic representation

and inference mechanism for arbitrary nonlinear and non-normal time-dependent domains, tested

in several fields such as medical (COSTA et al., 2015; NASCIMENTO et al., in press) and traffic

(ANACLETO; QUEEN; ALBERS, 2013a).

Dynamic Linear Model (DLM) reveals to be a winning asset towards flexibility in treating

non-stationary TS or modeling structural changes, nevertheless presenting easily interpretability.

The class of models moves from deterministic to a stochastic system (PETRIS; PETRONE;

CAMPAGNOLI, 2009); the uncertainty is always present due to forgotten variables, measurement

errors, or imperfections, is supported through some probability density function (π),

π(yn+1|y1:n) =
π(y1:n+1)

π(y1:n)
.

For example, Gaussian linear state space model is a normal probability distribution for

the p-dimensional State Vector (unobserved or state equation) and m-dimensional observed

Vector (observation equation), moreover, it is a representation of conditional distribution given

the available information (deeper details see (WEST; HARRISON, 1989)).
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The Bayesian approach suits naturally for the dynamic evolution, where an important

feature, regarding the DLM, is that conditional state vector (µ), compound by the observed time

series (Yt), although independent and depends only on (µ). That is,

π(µ|y1:n) =
π(y1:n|µ)π(µ)

π(y1:n)
∝

n

∏
t=1

π(yt |µ)π(µ).

The observation evolution and state-space update are incorporated by allowing the

time-varying parameters, allowing more complex structures to be added through compounding

latent variable into the estimation process. That is, to estimate the state vector, we compute

the conditional density π(µs | Y ), where t = 1, ...,T . Consider µt as the mean parameter at the

time t of a process, from a series Yt = {y1, ...,yt}, under the Bayesian approach. The DLM

update process, on the time point t. The model comprises three stages (evolution, forecast

and updates); then as new information approach [in the form of Unobserved/predicted values

(µ’s)], combined with the t-th new observed value (Y ), across the time. Further details about

Bayesian Forecasting and Dynamic Models can be found in (WEST; HARRISON, 1989; PETRIS;

PETRONE; CAMPAGNOLI, 2009).

Related to the estimation method, s is the recursive period and t is the current period, and

is called "filtering (if s = t), smoothing (if s < t) and state prediction (if s > t)". Filtering is a

procedure that aims to update current estimates as new data is obtained π(µt | y1:t).

4.2.4 A probabilistic Approximated Entropy

Limitation among regularity in TS data is presented among the usage on entropy, where

stationary is also recurrently needed. Despite it, the regularity statistic suggested by Pincus

(PINCUS, 1991) uses the capability to discern the changing of the complexity from such a

relatively small amount of data. Therefore, he proposed a solution, to summarize the TS, as

one representative statistic, is based on a recurrent calculation of conditional probabilities at

the i-th time-window. The result is an average obtained from the numbers of distance superior

to the filter (r), d[x,x*] = max |u(a)−u*(a)|, therefore calculating through Cm
i (r) as a relative

frequency of generated vector. ApEn algorithms is similar to K-S entropy, written as

ApEn = Φm(r)−Φm+1(r), where Φm(r) = (N−m+1)−1
N+m+1

∑
i=1

lnCm
i (r).

ApEn calculation requires setting two parameters (m and r), related with the unknown

time-series dimension, crucial towards the entropy estimation consistency; the implications of it

is that for different m and r values high variability may occur. Observed time series where the

“true” dimension is unknown, can be alternatively estimated by embedding its dimension, based

on correlation dimension (d), where it can be defined as the nearest integer above 2d+1 (Takens,

1981). Chou (2014) suggested for the r value to be fixed as 0.2 times the TS’ standard deviation
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and m is fixed to 2. Bare in mind that for smaller embedding dimensions chaotic signals may not

be distinguishable.

In order to reduce systematic errors, it is often useful to represent the attractor in a

higher dimensional space than exactly necessary (Hunt, 2004). However, in higher embedding

dimensions, it may not be possible to distinguish between random and chaotic signals. Restrepo

and others (RESTREPO; SCHLOTTHAUER; TORRES, 2014) presented empirical discussions

towards undermine the ApEn discrimination capacity through misleading parameters. Casiglioni

& Rienzo (CASTIGLIONI; RIENZO, 2008) recommended solutions through some rMAX (the

value which maximizes the ApEn) and suggesting a search range (0.1 < r/σ(T S)< 1.2).

To overcome these selection criteria for Approximate Entropy parameters (m and r),

this work suggests incorporating, in the decision-making, the information available in the data,

according to the network-based, by associating a probabilistic density function to the desired

parameter. For instance, we will focus only on setting parameter (r) and adopting m=2 to all

cases as often suggested in the literature (further details see (PINCUS, 1991)).

4.3 Simulation Studies

This work, as a first empirical evidence, considered some synthetic data to compare

model-based performances, that is, from the standpoint of statistical robustness and computational

efficiency. In this manner, first, we discussed some graph structural estimation enforcement

(often presented in the neuroscience field); then later, we debate the implications towards some

Bayesian dynamical graph estimation methods. Lastly, we present a solution towards setting the

parameter (r) in order to calculate network-based entropy, associating a probabilistic distribution

to it (Inverse Nakagami-m (INK) Distribution (LOUZADA; RAMOS; NASCIMENTO, 2018)),

that is, by using the information contained in the database we aimed to maximized the information

extraction contained into the data.

Graph Structural Estimation Methods

The score-based structure search algorithms, discussed in the methodological section of

this work, assign a note to explore the verisimilitude topological structural which maximizes

the data information representation. The time/computational demand will be conditional to the

number of nodes (representation of the Time Series), whereas increases exponentially as the

number of nodes increases, given the search made per each built pairwise.

In this manner, heuristic solutions, e.g. tabu search, are presented in the literature (given

the greatness of the search for all possible structures) which outlines the most plausible structure

search based on some Markov equivalence, although not searching through the entire space.

Alternatively, Costa et. al (COSTA et al., 2015) presented the MDM-IPA which delimits the par-
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Figure 23 – Comparison of the BN structure. Left-hand side is the known network structure, center is the
Tabu Search estimated network, and right-hand side the MDM-IPA estimated structure. The
topology estimation performance of Tabu Search was superior than MDM-IPA, especially its
time cost.

enting search space in up to 3 descendants, considering this problem as an integer programming

approach, but its performance is limited by the existence of a few nodes.

This work tested the performance of Tabu and MDM-IPA algorithms, considering two

synthetic databases (contain 6 and 16 time series respectively). Figure 23 describes visually the

comparison through the original network and the estimated ones.

The Tabu Search routine is implemented in the bnlearn package in R. MDM-IPA routine

combines a Bayesian Scores using R, as a first step, then through Gobnilp (program used to

complete discrete/continuous data or precomputed local scores) the most likely DAG is formed.

Just for illustration, Table 6 shows the obtained result, moreover it shows that node X1 is the

parent of X2 and node X2 is the parent of X3 and X4.

Table 6 – BN score for the synthetic 4 nodes network.

Nodes BN score
X1← -769.99

X2← X1 -709.14
X3← X2 -655.79
X4← X2 -697.30

Total -2832.23

The elements presented, so far, brought some evidences towards the BN structure estima-

tion robustness by adopting both algorithms. The dynamic of a Network, once its structure was

defined, is an easier task adopting some dynamic graphical model. Although, different numerical

approximation are available in the literature, like Monte Carlo, and needed to be tested. Next
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subtopic will discuss that.

4.3.1 Bayesian Numerical Approximations

Some difficulties are related with the approximation method towards time-varying param-

eters models were investigated and shall be discussed in the TS non-stationary context. In this

manner, Synthetic data set used previously, considering only 4 nodes time points was considered.

Here we describe the process of this simulation.

θ
(k)
tid (r)∼N (θ

(k)
t−1id(r),W

(k)
d (r)),

for r = 1, . . . ,4; t = 1, . . . ,500 or 5,000 or 5,000,000; i = 1, . . . ,10; d = 1,2,3; k = 1, . . . , prd;

and W
(k)
d (r) = 0.04×Vd(r).

For this DAG, p11 = 1; p21 = p31 = 2 and p41 = 3. The initial values (t = 0) for the

regression parameters were −0.5 for connections Y (1)→ Y (2); 1 for Y (2)→ Y (3); 1.5 for

Y (2)→ Y (4) and the value 0 for other θ ’s (intercept parameters). The observational variance

(V1(r)) was defined as almost one for all nodes. Observed values were then simulated using the

following equations:

Ytid(1) = θ
(1)
tid (1)+ vtid(1);

Ytid(4) = θ
(1)
tid (2)+θ

(1)
tid (2)Ytid(1)+ vtid(2);

Ytid(3) = θ
(1)
tid (3)+θ

(2)
tid (3)Ytid(2)+ vtid(3);

Ytid(4) = θ
(1)
tid (4)+θ

(2)
tid (4)Ytid(2)+ vtid(4);

where d = 1 and vtid(r)∼N (0,Vd(r)), for r = 1, . . . ,4.

Considering only this BN structure with 4 nodes a analyzed about their dynamic evolution

were conduced. Figure 24 describes θ
(1)
tid (1)+ vtid(1), visually, the Bayesian mean posterior

value, through time, according three different numerical approximation (MCMC, HMC, and

INLA) for a time series size of n=500 only. Table 7 shows the time cost of adopting three

different time series size (n=500, 5,000, 5,000,000) as well.

Table 7 – Time cost (in minutes) adopting three different numerical approximation with time series size
(n=500, 5,000, 5,000,000).

Sample Size MCMC HMC INLA
500 1.035 9.305 0.172

5,000 11.04 82.315 1.333

The MDM combined with INLA approximation shows to be very promising given its

computational efficiency (much less time consuming). The next step will be to analyse the

residue of the adjusted models, seeking towards elements if some remaining pattern is left in the
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Figure 24 – MDM time-varying parameter (α1) based on numerical estimation methods. (black dot line)
Real parameter value. (red dot and dashed curved line) MCMC approximation method. (black
dot and dashed curved line) HMC approximation method. (blue dot and dashed curved line)
INLA approximation method. The real parameter (0.9) presents a time-varying characteristic,
which incorporates a random walk from a Normal distribution with 0 mean and 1 variation.

TS noise. That is, if the presence of randomness is observed (through the TS complexity) then

the BN and DBN is explaining the brain connectivity task well.

4.3.2 Probabilistic ApEn

Aproximated Entropy measures the amount of randomness in a TS, calculated based in

two determined parameter m and r. Some suggestions are presented in the literature, although it

remains as an open question. This work suggests to incorporate a probabilistic distribution to the

r parameter, aiming to maximizing the retrieve information mining from the TS.

–Random TS drawn from a Normal distribution

The chosen distribution was the INK where some interesting mathematical properties

were proven by Louzada, Ramos & Nascimento (LOUZADA; RAMOS; NASCIMENTO, 2018)

related to its rth moment, mean, variance, rth central moment, and Shannon’s entropy. Specially,

INK distribution as a asymmetry, placing the kernel of the probability distribution on the

often suggested range of the threshold tolerance for accepting similar patterns between two

subsequences (parameter r).

The probabilistic look, through the ApEn parameter selection novel was motivated by the

elements presented in the literature when most of works adopted r as 0.2* sd(T S), nevertheless

it is a reasonable to search as far as 1.2* sd(T S) (CASTIGLIONI; RIENZO, 2008). Therefore,

as an exemplification, we placed 99% of the INK density in the interval [0.1,1.2]. The workflow

of this part is described in three steps.
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Figure 25 – Visual representation toward the optimization method on estimating parameters which live
the 1% and 99% quantils of the INK distribution. Y-aes represents the accumulative INK
distribution, and X-aes the empirical distribution (based on the optimization method). The
vertical dashed red-lines are the correspondent quantils, and horizontal solid black-line the
real quantils. Since those lines has intersections in the same quantil value, then shown the
efficiency of the adopted optimization method.

STEP 1. Consider a TS, then based on the observed values, the INK’s parameters

calculated through a optimization method to minimize a function by a trust region method that

forms quadratic models by interpolation.

The used r function was optimr implemented in optimx package. Figure 25 shows an

example of a robustness of this function, where the quanties of the cumulative probability

function meets with the estimated using the data.

Figure 26 illustrates the estimated probability density, based on the obtained optimum

parameters (according to the data).

STEP 2. Generate values from the INK were taken, consider i = {1, ...,n}, where first

generate Xi ∼ Gamma(µ,µ/Ω), then Ti = (
√

Xi)
−1.

Figure 27 shows the obtained distribution of the sampled INK.

STEP 3. Varying the r values, then calculated the ApEn in order to get a picture of the

entropy behaviour. In this manner, according to some Decision Criteria, the research shall choose

the r value.

Figure 28 shows the calculated ApEn, based on a vector [0.1,1.2] with 0.1 increment.

Through some decision criteria, like rth central moment and quantil, the researcher will not

needless have to calculate empirically the ApEn every-time, but only seek for the associated

shape of the distribution (related with the data), saving computational demanding. This task
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Figure 26 – Estimated the shape of the INK distribution based on the optimal parameters obtained from
the optimx package. Blue line represents the mean of the distribution. Bare in mind the kernel
of this function is around 0.2 often the suggested value for the ApEn r value.

Figure 27 – Empirical distribution of a simulated value based on the estimated INK. Red curve represents
the real INK distribution based on the optimal obtained parameters.
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Figure 28 – Empirical ApEn calculation varying the r parameter. Different lines represent different
moments from the INK distribution, enabling the ApEn maximization through the best r value
selection criteria.

maximizes the information obtained through ApEn, as well as solves the threshold “r” influences

approximate entropy analysis (see (SANTOS et al., 2018)).

4.4 Results

Brain connectivity is a highly complex system, nevertheless, some neurorehabilitation

task focuses on estimating structural break related to some specific brain region given a stimula-

tion. That is, regarding a chain of neuronal pins, it is desirable to study three elements from a

biosignal; i) the structural brain connection, ii) the time dynamics of the brain connectivity, and

iii) the brain connectivity complexity given a stimulation per region.

The data acquisition belongs from a novel approach to systematically analyze the dose-

response effects of a focal electrical stimulation, concerning around the dynamic of the brain

vertical manipulation (related with the stroke recovery challenge) (SANTOS et al., 2018). All

of the observed biosignal (from the EEG signal) have 300-second window total, considering a

frequency of 500Hz (sample rate), returned 150.000 observations in this given time period. Due

the signals’ high-frequency, a simple transformation was conducted to simplify the interpretation

across the series. A median was taken from windows of very 500 spaced observations (the sample

size-frequency), which results in a median single point per second, thus the series representation

would be preserved such its behavior and reduce its noise (called smooth series, containing only

300 observations each TS). In this work, we only focused on a single Cathodal montage 2mA

from a single participant.
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(a) EEG cap with 6 electrodes (b) EEG cap with 16 electrodes (c) EEG cap with 64 electrodes

Figure 29 – Tabu Search to estimate the brain structure considering the number of 6, 16 and 64 EEG
electrodes.

4.4.1 Part I – Structural brain connection estimation

After this TS transformation, based on the Tabu Search algorithm performance showed

in the simulation studies, the brain network structural estimation (as a BN) was conduced

considering 6, 16 and 64 nodes. Figure 29 display the estimated structure for each scenario. This

worth to mention that the computational cost was not even 2 seconds for the biggest network

using this heuristic.

With this estimated BN, to calculate the dynamism of each link is a straight task, using

a state-space model (moreover the class of MDM). The next subsection will discuss which

numerical approximation suits appropriate with the MDM.

4.4.2 Part II – Brain connectivity dynamic

Dynamic BN (DBN) may be estimated using the MDM, for the sake of illustration,

let’s just consider the brain EEG cap with only 6 EEG-electrodes. According to the estimated

structural brain connection estimation (from part I), the theoretical equations associated with the

DBN are given

θ
(k)
tid (r)∼N (θ

(k)
t−1id(r),W

(k)
d (r)),

for r = 1, . . . ,6; t = 1, . . . ,300; i = 1; d = 1; k = 1, . . . , prd; and W
(k)
d (r) =Vd(r).

For this DAG, with connections Y (1)↔ Y (2)↔ Y (3)↔ Y (5); for Y (2)↔ Y (6)↔
Y (3)↔Y (5); for Y (4)→Y (2)↔Y (5) and the value 0 for other θ ’s (intercept parameters). The

observational variance (V1(r)) was defined as almost one for all nodes. Observed values were
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then simulated using the following equations:

Ytid(1) = θ
(1)
tid (1)+θ

(1)
tid (2)Ytid(2)+θ

(1)
tid (3)Ytid(3)+θ

(1)
tid (4)Ytid(5)+ vtid(1);

Ytid(2) = θ
(2)
tid (1)+θ

(2)
tid (2)Ytid(1)+θ

(2)
tid (3)Ytid(3)+θ

(2)
tid (4)Ytid(3)+θ

(2)
tid (5)Ytid(5)

+θ
(2)
tid (6)Ytid(6)+ vtid(2);

Ytid(3) = θ
(3)
tid (1)+θ

(3)
tid (2)Ytid(1)+θ

(3)
tid (3)Ytid(3)+θ

(3)
tid (4)Ytid(5)+θ

(3)
tid (5)Ytid(6)+ vtid(3);

Ytid(4) = θ
(4)
tid (1)+θ

(4)
tid (2)Ytid(2)+θ

(4)
tid (3)Ytid(5)+ vtid(4);

Ytid(5) = θ
(5)
tid (1)+θ

(5)
tid (2)Ytid(1)+θ

(5)
tid (3)Ytid(3)+θ

(5)
tid (4)Ytid(3)+θ

(5)
tid (5)Ytid(2)

+θ
(5)
tid (6)Ytid(6)+ vtid(5);

Ytid(6) = θ
(6)
tid (1)+θ

(6)
tid (2)Ytid(2)+θ

(6)
tid (3)Ytid(3)+θ

(6)
tid (4)Ytid(5)+ vtid(6);

where d = 1 and vtid(r)∼N (0,Vd(r)), for r = 1, . . . ,6.

Figure 30 shows the model performance, considering only the TS drift of the residual,

that is, after explained the BN dynamism suggesting the presence of a white noise. In this

manner, MDM model describes the trajectory of the biosignal, considering neuronal connectivity,

showing that the unexplained elements (pure noise), as least visually, that do not present any

pattern.

In order to verify if the MDM residuals contain some pattern, the ApEn measure of com-

plexity will be used aiming to measure of the regularity of TS. Moreover, we also incorporated

the r parameter selection based on the INK probability distribution shown as follows.

4.4.3 Part III – Brain complexity

As said, using the Network-based dependence information, the parameter r will be

associate with a probabilistic distribution INK then estimated each TS Approximated Entropy

(AnEp). We are now able to measure each EEG selected channel randomness, by looking at the

unexplained elements of each MDM adjusted equation. Moreover, given the chain information

derived from the structural brain connection, we estimated its information gain as previously

shown (in Part I and II).

Table 8 shows the complexity measurement, using the INK distribution versus 0.2×σ (TS),

of each MDM adjusted equation unexplained part only. As their scale is closer to 1, this could be

interpreted as pure noise (suggested visually in part II).

Based on the obtained results, those techniques seem to be competitive to unravel the

brain connectivity and complexity helping the neuroscientists on different experiments trials.

The obtained understanding is that after modeling the brain dynamic, as a BN, its remaining

information, using the entropy analysis with the probabilistic approach, underlies on structure

similarly from a random distribution (based on the likelihood of the noise of the originated

series). In this manner, the obtained pattern recognition through the graph-based models was

well accomplished.
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Figure 30 – Tabu Search to estimate the brain structure considering 6, 16 and 64 EEG electrodes.
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Table 8 – Probabilistic ApEn (r) based on the INK quantile 1% versus 0.2×σ (TS).

ApEn + INK ApEn (0.2×σ (TS))
Y1 0.8185 0.55
Y2 0.7369 0.48
Y3 0.7865 0.62
Y4 0.7221 0.53
Y5 0.7159 0.51
Y6 0.8409 0.68

4.5 Conclusion

Estimation towards network structure is not a trivial task (CHICKERING, 1996b).

Nevertheless, some efforts were made in the direction of a feasible new solutions (statistical and

computational per say) (COSTA et al., 2015; GLOVER, 1990). Emphasizing that inference duty

regarding the links’ strength is straightforward if such network format is well-defined (known).

This work described the estimation of communication and recognition of brain patterns in

a neuroscience experiment. The first bypassed problem referred to the estimation of the structure

of a complex network, later its dynamics, and finally, it analyzed the residuals of the models

in order to search for the existence of some pattern. Based on the empirical results obtained,

specialists in the area confirmed the veracity of the estimated structure, supporting its usefulness.

Subsequently, the extraction of relevant information from the models was confirmed (based

on some results from Figures 29 and 30), since the residues presented a random characteristic

(according to Table 8, TS patterns already extracted).

Previous work (LI et al., 2008; IDE; ZHANG; CHIANG-SHAN, 2014) also applied

Bayseian Network using VTS, CS, and IS methods to estimate the network structure, although

they all recognize the importance of personal information as latent discrimination (important in

the multi-participant scenario). (COSTA; SMITH; NICHOLS, 2019) extend the discussing by

comparing a variety of structure estimation using MDM-IPA, where conditional independence

with state-space models addresses the common network structure across Individual Estimation

of Multiple Networks (IEMN) and the Marginal Estimation of Multiple Networks (MEMN)

compared both from a theoretical/practical perspective using e.g. real fMRI data.

Therefore, we discussed in the paper (COSTA et al., in press) a new dynamic BN

structure estimation method named Hierarchical MDM (HMDM), which incorporated in the

estimation process in personal/latent feature. Thus, individual information should be included in

a hierarchical estimation process, regarding latent features (LIAO et al., 2017; MATTAR et al.,

2018). Additionally, embedding projection reduction space through cluster analysis showed that

the results incorporate the individual information combining with a common shared dynamic

enhancing the obtained estimations.

Then as a natural future work to be extended the DBN as an hierarchical dynamic
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models (specifically the HMDM) present limitations regarding the (i) large amount of parameters

(over-parametrization) and (ii) non-trivial automatized selection towards the definition of a

parsimonious transfer function to ensure the accuracy of the model’s power prediction, that is,

its lag orders and important components (DEY; RAO, 2005). As well to test some shrinkage

approach towards the data high-dimensional curse presented in neuroscience experiment.
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CHAPTER

5

DYNAMIC TIME SERIES SMOOTHING FOR

SYMBOLIC INTERVAL DATA APPLIED TO

NEUROSCIENCE

This chapter corresponds to a manuscript published at Information Sciences journal,

in which presents the discussion towards data shrinkage dimension, using the Symbolic Data

Analysis (SDA), and developing a dynamic version of smoothing a time series. This work had

as co-authors: Bruno Pimentel (UFAL, Brazil), Renata Souza (UFPE, Brazil), Joao P Leite

(FMRP-USP, Brazil), Dylan Edwards (MOSS, USA and Edith Cowan University, Australia),

Taiza E G Santos (FMRP-USP, Brazil), Francisco Louzada (ICMC-USP, Brazil).

This work aimed to appraise a multivariate time series, high-dimensionality data-set,

presented as intervals using a Symbolic Data Analysis (SDA) approach. SDA reduces data

dimensionality, considering the complexity of the model information through a set-valued

(interval or multi-valued). Additionally, Dynamic Linear Models (DLM) are distinguished by

modeling univariate or multivariate time series in the presence of non-stationarity, structural

changes and irregular patterns. We considered neurophysiological (EEG) data associated with

experimental manipulation of verticality perception in humans, using transcranial electrical

stimulation. The innovation of the present work is centered on use of a dynamic linear model

with SDA methodology, and SDA applications for analyzing EEG data.

5.1 Introduction

Over the past few years, advances in medical technology equipment has provided a range

of records containing a large volume of information, with associated effects to establish simi-

larities and find particular patterns/characteristics. In data mining, two core tasks are similarity

measurement and data segmentation, roughly classified in four fields: pattern discovery/cluster-
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ing; classification; rule learning; and summarization/visualization ((FU, 2011)). We are in an era

of big data which has enormous potential, presenting massive, complex and dynamic indexing

information indexed in time ((CORCHADO et al., 2014)). Thus, there is a growing need for

investigation into new statistical models in the medical field ((GANTI; GEHRKE; RAMAKR-

ISHNAN, 1999; JUDSON; OWEN, 1999; FERNÁNDEZ-VILLAVERDE; RUBIO-RAMÍREZ,

2007)) to analyze temporal data, using similarity measures, considering the presence of high

dimensionality with nonlinear dynamics.

The characterization of cerebral physiology is fundamental in understanding the dynam-

ics of response to an external stimulus to the brain. This type of data is developed due to the

brain complexity and the high-dimensional idiosyncrasies of each neural network. Brain function

can be assessed using non-invasive techniques such as electroencephalogram (EEG), transcranial

Doppler, and neuroimaging techniques (e.g., functional magnetic resonance imaging). There-

fore, data regarding neuroscience methods can present a high spatial dimensionality, and high

frequency (being able to reach an observation per millisecond). One relevant interest in the

neuroscience field is to interpret brain electric field patterns to understand mechanisms of brain

information processing ((KRYSTAL; PRADO; WEST, 1999; COSTA et al., 2017)).

A natural way of describing neural dynamics as a mathematical model, considering it

as a high-frequency system, would be to reduce its size (e.g., by clustering) or its frequency

(e.g., obtaining the median of one series every second). Data size can also be reduced using

Symbolic Data Analysis (SDA) techniques ((PIMENTEL; SOUZA, 2014)). More complex

information can be modeled through set-valued (interval or multi-valued) or modal (weight or

probability distribution) variables also termed as ’symbolic’, and extend classical data analysis

techniques, such as clustering, factorial techniques, decision trees and other symbolic data. These

analyses account for variability and/or uncertainty, making the symbolic data analysis more

comprehensive than classical data analyses ((DIDAY; NOIRHOMME-FRAITURE, 2008)).

This paper introduces dynamic linear models to interval neuroscience data, where interval

is defined as a set of real numbers that lies between two numbers. The applied idea is innovative

for two reasons: i) the models are capable of incorporating dynamic events regarding more

complex data, showing a competitive alternative to modeling a problem, given its flexibility and

speed in data convergence; and ii) neuroscience research dynamic accommodation questions

can be solved in order to reveal the pattern of brain activity. In this paper, we apply our analyses

to electroencephalographic data collected in an interventional study examining effects of non-

invasive brain stimulation. EEG data was collected before and after the application of anode

center conditions of a high-definition transcranial direct current stimulation (HD-tDCS) applied

over the temporal-parietal junction at a current intensity of 1mA in healthy subjects. This HD-

tDCS protocol has proved to induce clinically relevant behavioral change (verticality perception

and postural control) in healthy subjects ((SANTOS-PONTELLI et al., 2016)) and assessed as a

treatment in patients after stroke ((REDING et al., 2017; BABYAR et al., 2016)).
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This paper contributes to the literature, a dynamic linear model (DLM) for interval data

(SDA), where past SDA work ((BILLARD; DIDAY, 2000), (Lima Neto; De Carvalho, 2008))

only considered static models (linear model). Moreover, it underlies the change in the background

that stays approximately constant over time. A Dynamic regression, with a state space approach

tries to avoid some of the problems, such as stationarity. By explicitly considering variability in

the regression coefficients, the proposed model allows the system properties to change with time.

Moreover, the use of unobservable state variables allows direct modelling of the processes that

drive the observed variability, such as external forcing, and accounts for modelling error.

Since the behavior effect is described to be a consequence of a change in neuronal activity

((TEPLAN et al., 2002)), the investigators aimed to understand patterns of neuronal activation of

different brain areas in relation to the stimulation protocol (i.e. spatial and temporal dimensions).

The motivation for using a more appropriate mathematical strategy stems from the need for

a better understanding of the activation of different brain areas after non-invasive transcranial

stimulation ((SANTOS et al., 2018)).

5.2 Symbolic Data Analysis

Most of the methods in the literature discuss data analysis involving numerical data

only ((BOCK; DIDAY, 2012; DIDAY; NOIRHOMME-FRAITURE, 2008; NOIRHOMME-

FRAITURE; BRITO, 2011)). In classical data analyses, objects are often represented as quantita-

tive or qualitative values, where each one represents a variable. However, this representation may

not be adequate to model more complex information found in applied problems ((BOCK; DIDAY,

2012)). Databases, for example, may be large and many clustering methods take time trying to

extract information. A solution to execute these methods more efficiently is to summarize these

data using symbolic methods ((BILLARD; DIDAY, 2006; DIDAY; NOIRHOMME-FRAITURE,

2008)).

Nowadays the concept of Data Science, considered as a science by itself, is the extraction

of knowledge from data and is a new way of thinking Data Science by extending the standard

input to a set of classes of individual entities ((DIDAY, 2016)). SDA handles of this type of data

that may be represented as an interval, histogram, distribution and so on in order to take into

account the variability and/or uncertainty innate of data ((DIDAY; NOIRHOMME-FRAITURE,

2008; BILLARD; DIDAY, 2003)). The SDA framework extends standard statistics and data

mining tools to symbolic data, such as descriptive statistics, multidimensional data analysis,

regression, classification, dissimilarities and clustering ((BILLARD, 2008; DIDAY; SIMON,

1976)).

In the context of linear models for interval data, some approaches have been proposed

regarding the centre-range and lower-upper representations. (BILLARD; DIDAY, 2002a) pro-

posed a regression model for interval data using the lower-upper representation, and (Lima
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Neto; De Carvalho, 2008) demonstrated the superiority of the centre-range representation com-

pared to the lower-upper range in terms of the root mean square. Regarding the lower-upper

representation, (WANG; GUAN; WU, 2012) proposed a linear model which uses all interval

points and (SOUZA et al., 2017) introduced a lower-upper regression model which uses an

interval Box-Cox transformation for the interval response variable. All models used ordinary

least squares estimates.

Moreover, in the context of robust linear models for treating interval outliers, (DOMINGUES;

SOUZA; CYSNEIROS, 2010) introduced an interval linear approach which builds two models

assuming symmetric errors for centres and ranges of the intervals. (FAGUNDES; SOUZA;

CYSNEIROS, 2013) presented a robust regression model for interval data based on centre-range

representation using iterative re-weighted least-squares and (NETO; CARVALHO, 2018) pro-

posed a robust regression using an exponential kernel to penalize the outliers in the centre and

range of intervals. All of the linear models mentioned above were developed for static events,

while dynamic events for interval data are still an open question in the area of SDA.

A few studies present real data applications in SDA with interval approaches. In particular,

neuroscience data analysis is a type of application that has not yet been explored. Concerning

the social services domain, (NETO; CARVALHO, 2002) showed an application concerning

administrative management of Brazilian cities (in Pernambuco state) using interval-valued

variables. (SILVA et al., 2006) made experiments using information of web users whose aim is

to cluster users with the same web usage behavior together. (ZUCCOLOTTO, 2007) presented

Symbolic Data Analysis in a database about job satisfaction of Italian workers through the

principal component analysis method. In the economic field, (GIUSTI; GRASSINI, 2008)

presented cluster analysis using a symbolic data approach to cluster local areas in Italy based on

their economic specialization.

Concerning the domain of engineering, (CURY; CRÉMONA, 2012) applied SDA for

classifying different civil engineering structure behaviors comparing any structural behavior to

the previous classification when new data became available. (GONZÁLEZ-RIVERA; ARROYO,

2012) proposed using SDA in the daily histogram time series of S&P500 intradaily returns.

(PIMENTEL; SOUZA, 2014) showed an application in scientific production and educational data

collected from the National Council for Scientific and Technological Development (a Brazilian

agency), where a statistical analysis was carried out using SDA.

In this paper, the advantages for modelling neuroscience data in the symbolic data

framework are:

∙ Summarized data: Initially, our data set contains more than 1.5 billion observations per

dose-response. These data can be aggregated using cortical regions and a new reduced-size

dataset can be obtained whilst preserving most of the data;

∙ Use of a higher-level category: The original data contain signals of a multi-channel
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Figure 31 – The left-hand image shows the position of the HD− tDCS3×1 electrodes in a male participant,
and the right-hand illustration dispersion of EEG electrodes demarcated by cortical areas of
the brain. Written informed consent was obtained from the participant for the publication of
this image.

electroencephalogram, corresponding to a frequency over time. Here, the analysis can be

carried out combining the time-domain along with the frequency-domain in time series

analysis. The new units obtained from the aggregation process are considered as units at a

higher level of generalization than individuals.

5.3 Interval EEG data

The dataset used to describe the proposed statistical method originated from a random-

ized, double-blind, crossover clinical trial that investigated polarity and intensity-dependent

effects of high-definition transcranial direct current stimulation (HD-tDCS) applied to the

temporo-parietal junction on neuronal activity using EEG in healthy subjects (SANTOS et al.,

2018). Here we present the data of one participant, under an anode center condition of HD-tDCS,

at a current intensity of 1mA. The outcome measure of this study was the signal of a high

dimensional multi-channel electroencephalogram with 256 channels (Figure 31 left-hand side).

The electrodes were grouped into 5 areas (Left Temporal, Right Temporal, Frontal, Parietal and

Occipital). Hence, 31 channels were grouped in each temporal region, 81 channels in the frontal,

68 in the parietal and 45 in the occipital, as illustrated in Figure 31 right-hand side.

After grouping the respective channels per cortical region, the observations were sum-

marized according to their tenth and ninetieth percentile (P10, and P90) configuration. This

methodology seeks to group the brain waves of each region in a range, not only aiming to reduce

its dimension but also as a denoising method. This interval grouping procedure was necessary

due to the high-dimensionality characteristic of the data, where the experiment arrangement

for each patient considering only the time-point of assessment after the HD-tDCS generates

1,500,000 observation per current intensity, in 5 minutes of observation. Consequently, 256 chan-

nels generate 1,536,000,000 observations, considering only one montage without the repetitions,
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Figure 32 – Classical data transformation into symbolic interval data. (Left) Selected parietal cortical
region, (Right top) Time series of some channels, and (Right bottom) Symbolic interval
parietal cortical data.

and results in approximately 2.5GB of data.

By adopting the SDA methodology, instead of 256 channels, the data is reduced to

5 interval vectors (related to the 5 major cortical regions, resulting in 10 series of 1,500,000

observations) then condensed into 15,000,000 total observations, and is only 0.98% of the

original data size. Figure 32 illustrates the transformation of the classical data into symbolic

interval data, using SDA, for a selected region.

5.4 Dynamic linear model for interval EEG data

The interval statistical model presented in this paper is based on a dynamic linear

model (DLM) that is a specific case of the space-state model, considering the centre-range and

lower-upper bound representations for interval data.

5.4.1 Dynamic linear model

The Gaussian linear state space models, also known as the dynamic linear model (DLM),

are specified by a normal probability distribution for the p-dimensional State Vector and m-

dimensional observed Vector. At time t = 0,

µ0 ∼ Np(θ0,σ
2
0 )
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Figure 33 – This flowchart shows the dynamic linear model (DLM) update process, on the time point t. The
model comprises three stages: evolution; forecast; and updates. The nodes (circles) represent
the model’s revision process, using the new information [from the Unobserved/predicted
values (µ’s)], combined with the t-th new observed value (Y ), across the time.

after time t ≥ 1 then,

Yt = Ft µt +υt
︸ ︷︷ ︸

observation equation

, υt ∼ Nm(0,Vt), (5.1)

µt = Gt µt−1 +ωt
︸ ︷︷ ︸

state equation

, ωt ∼ Np(0,Wt) (5.2)

where Gt and Ft are known matrices (p× p and m× p) and υt and ωt are two independent

Gaussian random vectors with mean zero and known variance matrices Vt and Wt .

Considering a R
p-valued and R

m-valued time series satisfying

1. (µt) is a Markov chain

2. Conditionally on (µt), the observed time series (Yt) are independent and depends only on

(µt).

That is, allowing the time-varying parameters and incorporating more complex structures

adding the composition of latent variable in the estimation process. That is, to estimate the state

vector, we compute the conditional density π(µs |Y ), where t = 1, ...,T . Consider µt as the mean

parameter at the time t of a process, from a series Yt = {y1, ...,yt}, under the Bayesian approach.

Figure 33 presents the posterior (post.) and prior conditional densities.

Related to the estimation method, s is the recursive period and t is the current period, and

is called "filtering (if s = t), smoothing (if s < t) and state prediction (if s > t)". Filtering is a

procedure that aims to update current estimates as new data are observed π(µt | y1:t).

Smoothing is a retrospective analysis that computes the conditional distribution µ condi-

tioned to the data π(µt | y1:T ), starting from π(µT | y1:T ), thus estimating the states backward.

Prediction is a forecast procedure which estimates the next observation based on the data
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π(µt+1 | y1:t). Further details about Bayesian Forecasting and Dynamic Models can be found in

(WEST; HARRISON, 1989; PETRIS; PETRONE; CAMPAGNOLI, 2009).

In the next Dynamic Linear Model, presented in this section, will extended to the two

versions of SDA representation. First, we extended the static linear regression model (presented

by (BILLARD; DIDAY, 2000)), called lower-upper bounds for the interval data, and later, we

extended the center and range model (proposed by (Lima Neto; De Carvalho, 2008)), where for

both cases we present a new methodology considering time-invariant parameters.

5.4.2 Dynamic Linear model for lower-upper representation

A prediction of the symbolic interval data using linear regression models was presented

by (BILLARD; DIDAY, 2000; BILLARD; DIDAY, 2002b). Thus, the authors presented as an

alternative the fitting of two independent linear regression models, one for each interval bound

(lower and upper), however incorporating time-invariant parameters.

Let E = {e1, . . . ,ei, . . . ,en} be a dataset of n examples described by p+ 1 symbolic

interval-valued variables Y . Each example ei is represented as an interval quantitative feature

vector zi = (xi,yi), xi = (xi1, . . . ,xi j, . . . ,xip) where xi j = [ai j,bi j] is an interval and [ai j,bi j] ∈
ζ = {[a,b] : a,b ∈ℜ,a≤ b} and yi = [yL

i ,y
U
i ] ∈ ζ are the observed values X j and Y , respectively.

Thus, the proposed method considers the time-varying parameters that will minimize the errors

as being:

n

∑
i=1

[
(εL

i,t)
2 +(εU

i,t)
2] (5.3)

for the sake of simplicity, let us consider an autoregressive series with time dependence lag 1

(Markov Process), and the dependent variable similarly predicted as:

yL
i,t = β L

0,t +β L
1,ty

L
i−1,t + εL

i,t

yU
i,t = βU

0,t +βU
1,ty

U
i−1,t + εU

i,t

5.4.3 Dynamic linear model for centre-range representation

The Centre and Range representation uses the centre and range of an interval on a linear

regression structure, throughout the parameters to model the contained information in the mid-

points and ranges of the intervals. The time-invariant parameters ((NETO; CARVALHO, 2008))

considered a fitting a linear regression model to symbolic interval data using the mid-points and

ranges of the interval values assumed by the variables through a linear regression model. For
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this, the interval [a jk,b jk] can be rewritten by:

yi j = [ai j,bi j] = [ci j− ri j/2,ci j + ri j/2] (5.4)

where ci j = (ai j + bi j)/2 and ri j = bi j − ai j describes, respectively, the centre and range of

the interval for object i regarding variable j. Once again, incorporating the new approach,

time-varying parameters (dynamic), the criterion is

n

∑
i=1

[
(εc

i,t)
2 +(εr

i,t)
2] (5.5)

for the sake of simplicity, let us consider an autoregressive series with time dependence lag 1,

and the dependent variable is similarly predicted as:

yc
i,t = β c

0,t +β c
1,ty

c
i−1,t + εc

i,t

yr
i,t = β r

0,t +β r
1,ty

r
i−1,t + εr

i,t

Thus, the Markovian property, i.e. time lag equal to 1, allows the use of some dynamic

model classes that incorporate an optimization structure, specifically the Bayesian Networks (BN)

class. For instance, (COSTA et al., 2015) discuss that BN models consider a set of conditional

distributions by decomposing the joint distribution derivative from the observed outcome, thereby

allowing the estimation towards direct dependencies via graph structure.

Complementary, (COSTA et al., 2015) also discuss that the Dynamic Bayesian Network

(DBN) takes into account the dynamic nature of a process, containing certain hypotheses about

the estimation of effective connectivity and embodies a particular type of Granger causality

((GRANGER, 1969)). Thus, Granger causal hypotheses shall be expressed in a state space form.

5.5 Results

Two main questions governed this work, in which researchers sought to understand the

equivalence between the resting stage and post neuromodulation brain activity responses. For

the first question, this work used symbolic interval data to compare the dynamic before and after

the neuromodulation task. To do this, a study takes into account the lower/upper interval limits

to try and identify equivalence among baseline versus post 1mA stimulus. Secondly, the study

also aims to describe the stimulus’ interference upon the brain activity process in each region,

that is, the trace of the structural change of the process.

Figure 34 compares the resting-stage (baseline) with the post 1mA, for each major

cortical brain region. The lower symbolic interval limit (left chart) shows for all brain regions the
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Figure 34 – Data dispersion baseline versus after 1mA per region (left) lower SDA limit and (right) upper
SDA limit.

Figure 35 – Frontal time series interval (top) ninetieth-P90 and (bottom) tenth-P10 percentile or Up-
per/Lower SDA limits

amplitude and variation of post 1mA (represented by a suffix ’1’ in front of the label) are higher

than the baseline (represented by a suffix ’b’ in front of the label). The upper limit (right chart)

presents the same pattern except for the parietal, occipital and right temporal regions, which

presented post 1mA with a lower dynamic compared with the baseline.

To illustrate the analysis of the temporal evolution of each symbolic interval limit (that

is, the region percentiles), the frontal cortical region -post stimulus- was selected to have its time

dynamic observed regarding the 10th percentile (P10 - lower limit) and 90th (P90 - upper limit),

shown in Figure 35. The P10 presents a greater variation, especially at the end, compared to P90

related to the different EEG band activation.

Some studies can be found in the literature where dynamical progress from a transformed

time series is captured using SDA. (CYSARZ; EDELHÄUSER; LEEUWEN, 2015) applied
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symbolic dynamics aiming to highlight dynamical properties, in physiological time series data,

seeking regulation towards robustness, and thus symbolic transformation. Therefore, there is

only one explicit need for variance matrices related to errors of observation and state equations,

in which this work used GIBBS sampling to estimate them.

According to (VENUGOPAL; GOGATE, 2012), regarding the computational complexity

of GIBBS sampling, adopted in this work, the resulting alignment algorithm is only O(Lx),

where Lx is the length of x, respectively. Therefore, the complexity of its model depends on the

number of parameters, that is, the state vector length which is equal to the length of x. Moreover,

we considered a simple structure for the DLM (order 1), in which the state equation presents only

one hierarchical level, considering only the earliest past to explain the current observed outcome.

Considering the dynamic linear models, according to equation 5.1 represented by µ in the

general DLM form, the state equation will be related to the modeling of the unobserved factors

related to the main brain regions. That is, µ is related with the dynamic of the five upper and lower

(or centre and range) bounds from the brain areas, then as a (10-dimensional) vector of trend

level parameters with a corresponding 10-dimensional transpose vector as FT
t = (1,0, ...,0).

In Figure 36, the time shifting structure map convolution illustrates the signal amplitude

difference between each step and the one ahead (by drawing a rectangular shape out of these

points). We present this interval plot with regards to the frontal region, choosing each axis to be

the tenth and ninetieth percentile ranges.

Figure 36 also demonstrates the variability of both boundaries together (in rectangles),

and can be compared to the marginals in Figure 35. Moreover, an increase in the color blue

indicates an overlap of intervals (P10 and P90), related to step-by-step dynamics of the observed

interval dynamics.

Researchers are also interested in analyzing the dynamic structure post the neuromod-

ulation, in order to obtain information about the patterns that may be translated into a change

related to the influence of the interventional electrical current. That is, we would like to verify

changes in the structure of the series after the stimulus to what may be associated with the return

of the patient to the baseline.

The equipment used for data acquisition has a resolution of 500Hz (sample rate), that

is, it collects 500 observations per second. A data reduction was adopted, obtaining the median

per second, aiming to smooth out the series and reduce the noise of the collected signals. Figure

37 shows the smoothing of a frontal cortical region, which illustrates the summarized quantile

median observation time series using a 1Hz sample rate.

In this work, different SDA approaches were adopted regarding modeling using symbolic

interval data, i.e. directly modeling the centre and range and upper and lower limits of the

complex data. For all methods a regression structure was considered in which the best predictor

of the current state (k-th stage) is only the most recent past (k-th −1 stage, so to speak following
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Figure 36 – Interval plot that illustrates the empirical time variation. Frontal lobe Lower (P10) × Upper
(P90) SDA limits (2-millisecond variation). Amplitude variation is represented by a marginal
rectangular length. The visual interval variation in time, by considering each step (rectangle)
as only the time lag of 1, and also as a cross-correlation time series projection amplitude,
among both dimensions (in which the symbolic data is an interval, not classic data).

Figure 37 – Frontal lobe symbolic interval data after the time compressing.
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Figure 38 – (left column) Dynamic centre and (right column) dynamic range from the major cortical
regions post 1mA tDCS: DLM (blue line) Smoothed, (red line) Filtered Time Series and
(black vertical lines) the structure change. From the top to bottom the major cortical regions
are Frontal, Parietal, Occipital, Left and Right Temporal. The centre graphs (left panels)
demonstrate the different trends between the major cortical regions, and the range graphs
(right panels) show the electrical dynamic across time.

a Markovian structure.

The dynamic centre and range related to each brain region dynamic was modeled using

an order of 1 DLM, which describes the propagation of each area. Thus, the mean-related series

in Figure 38 are associated with the median dynamics of the regions and the range with its

synergy. In addition, the black vertical lines suggest the structure change (in time) of each major

cortical region.

The structure change estimation adopted used the breakpoints in regression relationships

(in Figure 38 as vertical solid and dashed lines). Loosely speaking, the breakpoints were based

on the classical linear regression model. The aim is to detect the deviations which support the
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Figure 39 – Frontal cortical time series (red dashed line) the time-invariant parameters for the inferior and
superior limits as an independent regression models [classic model], (green dashed line) the
time-invariant centre and range method [CRM], (black dashed line) the dynamic inferior and
superior limits model for each bounder [DLM], and (black solid line) the observed symbolic
data. Acronyms are Dynimac Linear Model (DLM) for lower-upper SDA representation, static
lower-upper SDA representation (Classic), and static centre and range SDA representation
(CRM).

model stability. Thus, on average, after 106 seconds the energy dissipation introduced by the

electrical stimulus begins to show a reduction/leakage.

Analyzing the dynamic upper and lower limits, Figure 39 shows the models’ comparison

estimations performance; (red dashed line) the time-invariant parameters for the inferior and

superior limits as an independent regression models, called the classic model, (green dashed

line) the time-invariant centre and range method, CRM, (black dashed line) the dynamic inferior

and superior limit model for each bounder, DLM, (black solid line) and the observed symbolic

data related to the frontal cortical region. It should be mentioned that the black dashed and solid

lines are equal most of the time.

The performance evaluation metrics for the adjusted models will be presented only for

the frontal cortical region, as shown in Table 9. These metrics are based on the comparison of

the observed versus estimated values (considering each respective adjusted model), in which this

comparison is made one-step ahead, aiming at measuring the accuracy of the point forecast. We

used the Mean Absolute Error (MAE), Relative Absolute Error (RAE), and Mean Squared Error

(MSE) respectively (further details in (HYNDMAN; ATHANASOPOULOS, 2018)). For all the
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Table 9 – Evaluation metrics on the frontal cortical performance among the models. Using the dy-
namic methodology for point forecast, smaller errors are obtained with the proposed methods.
Acronyms are Mean Absolute Error (MAE), Relative Absolute Error (RAE), Mean Squared
Error (MSE), lower-upper SDA representation (Classic), centre and range SDA representation
(CRM), and Dynamic Linear Model for lower-upper representation (DLM).

MAE RAE MSE
lower bound

Classic 9.7644 0.2137 0.2137
CRM 9.7882 0.2142 0.2142
DLM 1.0050 0.0220 0.0220

upper bound

Classic 11.9712 0.2168 286.9932
CRM 11.9635 0.2167 283.4136
DLM 0.0740 0.0013 0.0116

considered errors, a better performance was noticed for the DLM compared to the other models

found in the literature.

The time-invariant parameter CRM presents greater errors due to its estimation structure,

regarding the SDA interval limits. Not to mention that there is a possibility of switching the

interval positions (for example, the lower bound estimates are greater than the upper bound

ones) given their linear structure, in both cases for the Classic and CRM models (which are

time-invariant parameters). However, DLM models are those with structures that are flexible

enough to incorporate non-stationary data (e.g. time series data).

Finally, the greater consideration of the question refers to the structure breakdown

moment after the tDCS stimulation, where according to Figure 38, empirical evidence shows that

it is reasonable to assume between 73 and 143 seconds. This means that the patient modified the

energy dynamics related to stimulus towards returning the regular condition (which presented a

predominance of random characteristics).

5.6 Discussion

The present study results in three main highlights relevant for this interdisciplinary field;

i) in neuroscience field, it is the first work to use SDA in neuromodulation with EEG signals,

ii) this is the first statistical approach described in the literature that combines a state-space

(dynamic) model with symbolic interval data, and iii) this approach enables the analysis of the

time-domain alongside frequency-domain in time series analysis.

Previous work described by (KELLER; LAUFFER, 2003) applied an isolated SDA

methodology to detect and visualize qualitative changes of EEG data related to epileptic activity.

Moreover, (RODGER, 2015) identified a clinical change in patients after traumatic brain injury

by improving the data classification method using SDA. The authors showed that survival,
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mortality, and morbidity rates could be derived from the superset of Medical Operations data

and used for future decision-making and planning.

In contrast to the previous studies, we developed a new methodology of SDA combined

with the state-space approach which opens new dynamic modeling possibilities that include

several classes of models and present a broad potential associated with computational feasibility.

Our statistical approach is also innovative because we aggregate elements to discuss the applica-

tion of this complex system analysis, using the time series approach. For example, by analyzing

5 minutes of EEG data after the HD-tDCS intervention, we identified structural breaks around

100 seconds, indicating a loss of HD-tDCS influence towards cortical activity (suggesting the

return to the baseline state) (38).

More specifically, dynamic modeling combined with symbolic interval data opens up a

new class of non-trivial structure data analysis, thus enabling some types of dependence (temporal,

spatial, etc.) managing to be a simpler problem, given the conditional independence supposition

from the state-space models. Dynamic interval data may also incorporate multidimensional range

(frequency) structures (considering the frequency and time domain approach simultaneously).

Additionally, it can be seen as a denoising transformation that fits the kernel of the data at

time-oriented intervals (under the time-series approach).

The presented statistical approach is appropriate for human brain connectivity analyses,

a complex phenomenon of substantial relevance, presenting a big data challenge. It remains an

open question on how to deal with high-dimension data without losing relevant information in

the neuroscience field. Our research group has shown sequential evidence for the clinical and

physiological effects of a non-invasive brain stimulation protocol targeting the temporo-parietal

junction to understand and treat disorders of human verticality ((SANTOS; EDWARDS, 2019)).

This context exposes the need for several time series analyses and its dependence, estimating

not only the effects individually but the impact of treatments as a whole. Understanding human

neurophysiology such as the brain dynamics could provide insights into types of localized non-

invasive brain stimulation toward a solution (or improvement) of the brain activity disfunction

((RUBIN et al., 1991; PAAKKI et al., 2010)).

The dynamic models present limitations regarding the (i) large amount of parameters

(over-parametrization) and (ii) non-trivial automatized selection towards the definition of a

parsimonious transfer function to ensure the accuracy of the model’s power prediction, that is, its

lag orders and important components ((KRAVARIS; HAHN; CHU, 2013; DEY; RAO, 2005)).

Furthermore, using the DLM, future works can explore multivariate graphical models,

extending to brain connectivity combined with the SDA approach, exploring the multidimensional

time series relationship applied in contemporaneous interactions between brain regions with

fMRI data ((COSTA et al., 2015; COSTA et al., 2017)). This work also has constraints in

terms of the lack of exploring time and frequency domain advantages, using the developed

methodology (dynamic symbolic interval analysis), as well its additional contribution to further
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clinical intervention analyses.

The application of SDA with a dynamic linear model can be extended to the entire

medical field (not only neuroscience) since biometric multisensory data is being disseminated

and represents a technological advance that will facilitate quality of care, as well as cost reduction

((KING et al., 2003)). Examples can be found in the patient safety programs that use emerging

technologies to automate the entire clinical continuum ((PAVLOPOULOS; DELOPOULOS,

1999; SORIA-FRISCH; RIERA; DUNNE, 2010; CACAO et al., 2017)). Most of these data

resulting from biosignals are time-oriented, therefore called time series, which present a depen-

dence requiring special attention in modeling. Hence, the impact of this study will reach the

broader medical field, where these is a need to analyze complex data in the spatial and temporal

domains.
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CHAPTER

6

BRAINWAVE NETS: ARE SPARSE DYNAMIC

MODELS SUSCEPTIBLE TO BRAIN

MANIPULATION EXPERIMENTATION?

This chapter corresponds to a manuscript submitted at Frontiers in Systems Neuroscience

journal, in which presents the discussion towards sparsity in dynamic graphical models. This work

had as co-authors: Marco Pinto-Orellana (M, Norway), Joao P Leite (FMRP-USP, Brazil), Dylan

Edwards (MOSS, USA and Edith Cowan University, Australia), Taiza E G Santos (FMRP-USP,

Brazil), Francisco Louzada (ICMC-USP, Brazil).

Sparse time series models have shown promise for estimating contemporaneous and

ongoing brain connectivity. This paper was motivated by a neuroscience experiment, using

EEG signal data as the outcome of our established interventional protocol, a new method in

neurorehabilitation towards the development of a treatment for visual verticality disorder in post-

stroke patients. To analyze the complex outcome measure (EEG) that reflects the neural-network

functioning and processing in more specific way in relation to traditional analyses, we present the

comparison among sparse time series models (classic VAR, GLASSO, TSCGM, and TSCGM-

modified with nonlinear and iterative optimizations) combined with the graphical approach, as a

Dynamic Chain Graph Model. These dynamic graphical models were useful to assess the role of

estimating the brain network structure and describing its causal relationship. Additionally, this

method allowed visualization and comparison across experimental conditions and across the

brain frequency domains (using finite impulse response (FIR) filter). Moreover, using multilayer

networks the results corroborate with the susceptibility of sparse dynamic models, bypassing

the false positives’ problem in estimation algorithms. We conclude that application of sparse

dynamic models to EEG data may be useful for describing intervention-relocated changes in

brain connectivity.
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6.1 Introduction

In the neuroscience field, tasks relating to brain network structure and its dynamics are

vastly increased given the availability of the technology (high resolution and storage capacity).

Notwithstanding, the field aims to understand “how” and “why” the effects/events occur based

on learning probabilistic connection structure, to assume some feasible causal inference (PEARL,

2014). Therefore, an urge to map its complex organization is imminent and two types of con-

nectivity are commonly studied: functional and dynamic. Functional connectivity is a statistical

measure of the correlation within observations in the same time-lapse, and dynamic connectivity

is the relationship among the measurements compared also with their previous values impact.

In this manner, the links among anatomical parcellations of the brain are described by

their similarity patterns, for instance, a channel represents the activity of a group of neurons, and

it is measured according to its space relation, time and frequency domains. Statistical significance

tests are often conducted to estimate the existence of those links in order to project an estimated

topology regarding the interaction among this observed group of neurons. For example, brain

dynamics are measured as biosignals through electroencephalogram (EEG), functional magnetic

resonance imaging (fMRI), diffusion tensor imaging (DTI), Doppler ultrasound etc.

Network modeling is a mathematical framework, part of graph theory, used to represent

and analyze relationships in multivariate data. Recent advances in network estimation have moved

the emphasis of the analysis from single-layer networks to multilayer structures facilitating the

interpretation of multivariate relationships (KIVELÄ et al., 2014). This shift of paradigm

expands the possibilities of extracting information about complex systems, and multilayer

network estimation of biosignals can incorporate the change in time and/or different frequencies.

Multilayer analysis enables to unfold of the complexity of the human brain enabling

investigations to show effective functional role in brain regions activation and visual representa-

tion (DOMENICO, 2017; GRATTON et al., 2018). In this context, two main approaches are

often seen, multimodal connectivity or structural-functional relationships (different layers repre-

sent replicated nodes and its interaction) and time-varying networks (evolution of the temporal

snapshots).

The concept of sparse multivariate time series with multiplex networks benefits the

analysis of brain dynamic activation, also, by using the frequency-domain approaches as biosignal

denoising that is physiologically applicable. The frequency domain is often used when adopted

graphical models, as an example, (BACH; JORDAN, 2004) explicit under the presence of

stationary Gaussian time series, these models are related to the elaboration of time series

structured in the time domain. Moreover, sparse models deal directly with the limitations of

complex high-frequency time series, such as complex structural and computational constrains.

In this paper, we describe a novel statistical method adopting the frequency domain time

series combined with some sparse models approach; targeting a deeper understanding towards
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an applied neuroscience research question. That is, we aimed to discuss/reveal some pattern

towards brain activation, comparing the brain dynamic before and after a transcranial neuro-

modulation stimulation. The data was acquired following a systematic randomized controlled

clinical trial protocol (SANTOS et al., 2018), using a sample of the EEG signals collected

before the application of high-definition transcranial direct current stimulation (HD-tDCS) over

the temporal-parietal junction under polarity anode center condition and post the 2mA current

intensity, in a single young healthy subject.

The motivation stems from the need for understanding neuro-activation across different

brain areas, to analyze the effects of a focal transcranial brain stimulation and establish an

innovative and effective neurorehabilitation strategy to treat verticality disorder after brain lesions

(post-stroke). Moreover, the impact of this study will extend to the entire neuroscience/medical

field that needs to adopt dynamic modeling for complex data; sparse models enable the use

of large data demanding a low computational cost (shrinking the number of parameters in the

model).

6.2 Methods

The paper is organized as follows. In Subsection 6.2.1, we present an overview of the

adopted experimental protocol; Subsection 6.2.2, we present the theoretical background for

dynamic linear models, sparse estimation, sparsity in modeling, multilayer networks, network

inference, and time series from a frequency-domain approach. In Section 6.3, we discuss the

empirical clinical results comparing different sparse estimations to distinguish patterns among

different brain wavebands. Finally, some final comments are given in Section 6.4.

6.2.1 Protocol rational and data characterization

The neural systems’ imbalance and degeneration related to postural control lead new

researches towards their origin and pathophysiology (WINTER, 1995). In humans, different

sensory information is used as pathways in the brain to maintain posture in the upright position

(DAY; COLE, 2002), and postural imbalance is one of the most common disorders after stroke,

yet is insufficiently investigated (BAGGIO et al., 2016; CHERN et al., 2010). Hence, increasing

knowledge about the effects of this strategy is essential for the development of more effective

rehabilitation protocols.

Noninvasive techniques of brain stimulation are current therapeutic resources related to

the pathophysiology and behavior of the mechanisms that guide the human mind. Transcranial

direct current electrical stimulation (tDCS) is a non-invasive neuromodulation technique that

allows modeling the cerebral function with a safe profile (EDWARDS et al., 2013). tDCS consists

of electrodes unleashing weak electrical current over the scalp, inducing cortical changes; it rises

or lowers the local network excitability depending on the electrical current polarity.
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At the neuronal level, tDCS affects polarization of the resting membrane potential, and

this effect may acutely impact cortical excitability (PRIORI et al., 1998). Other mechanisms

also contribute to modifying the electrical neuronal membrane potential and maintenance of

membrane changes at least one hour (NITSCHE et al., 2003). As well as changes in synaptic

efficacy that out last the stimulation period. Studies of peripheral nerve and spinal cord stimulation

have shown that direct current effects are also non-synaptic, with transient changes in the density

of protein channels below the stimulation area (ARDOLINO et al., 2005; COGIAMANIAN et

al., 2008). High definition tDCS (HD-tDCS) is a contemporary way of transcranial electrical

stimulation, that promotes more focal stimulation than the conventional tDCS methods (for

review see (EDWARDS et al., 2013)).

In addition to this tDCS direct effects, “indirect” consequences come from connective-

driven alterations of distant cortical and sub-cortical areas (BRUNONI et al., 2012). (LANG et

al., 2005) revealed that stimulating the right frontopolar cortex (M1) with tDCS also activate

several connected regions. The changes in brain activity after a tDCS session measuring regional

cerebral blood flow, with sequential H152O PET scan. Besides, under the area of the stimulus,

that is, several motor areas such as the caudal portion of the anterior cingulate cortex, cerebellum

and superior temporal sulcus, were activated. Maybe in part, due to a modulation of the functional

interaction between M1 and these areas via cortico-cortical and cortico-subcortical connections.

Other studies using transcranial magnetic stimulation (TMS), also as a non-invasive

neuromodulation technique, described the increased activity of the homologous area, contralateral

to the stimuli (SIEBNER et al., 2000; LEE et al., 2003). The last reduction in left can explain it

to the right transcallosal inhibition between the two cortices (GILIO et al., 2003; PLEWNIA;

LOTZE; GERLOFF, 2003).

These “indirect” changes on cerebral function are fundamental issues regarding the

objective of the present study, that evaluated the effects of tDCS in the temporoparietal junction,

the area related to postural control in humans (WINTER, 1995). Inter-hemispheric interactions

may contribute to defining the temporal and spatial features of voluntary movements and

consequently, postural control (MEYER; RÖRICHT; WOICIECHOWSKY, 1998). There is a

balance between these inter-hemispheric interactions, where each human cortex exerts inhibitory

influences on the opposite motor cortex in normal conditions (FERBERT et al., 1992). Therefore,

developing non-invasive techniques which modulate this balance will be a significant advance

in the rehabilitation setting of stroke patients and other postural control disorders, after more

profound knowledge of the technique’s effects on the human brain.

The current study derived from a randomized double-blinded sham-controlled clinical

trial that aimed to investigate a polarity and intensity-dependent shift in high-density EEG

signal, following an intervention using high-definition transcranial direct current stimulation

applied over the temporo-parietal junction in healthy subjects (SANTOS et al., 2018). The study

protocol consisted of a HD-tDCS application over the right temporoparietal junction area, using
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Figure 40 – Visual representation of a resting-state baseline condition (left illustration; eyes open), added
by stimulation stage (eyes closed) and accommodation post-stimulus (right illustration; eyes
open). The main interest in the study is to compare the resting-state versus accommodation
post-stimulus.

a Soterix R○ NY-USA HD-tDCS with a constant current anode (active control). Four electrodes

were used; the central electrode was placed over the circumcenter of P4-C4-T8 EEG coordinates,

and the three peripheral electrodes were placed at a distance of 3 centimeters from the central

electrode (over the EEG coordinates P4, C4 and T8). EEG recording was made before and after

each stimulation period, allowing detect ongoing changes on the raw EEG signals in response to

tDCS (Figure 41). The total duration was 5 minutes of resting-state baseline condition added by

1.5 minutes of stimulation plus 5 minutes of accommodation post-stimulus, as shown in Figure

40 (for protocol details read (SANTOS et al., 2018)).

Dense array EEG signal was acquired using a 256-channel sensor net from Electrical

Geodesics Inc. during the aforementioned electrical stimulation conditions. All channels were

referenced to the vertex with reduced electrical impedance. The EEG was recorded continuously

before and after the stimulation, excluding ramp-up and ramp-down periods (1.5 minutes total),

lasting approximately 120 minutes the full trial experimentation. Previously, we discussed

(NASCIMENTO et al., 2019) some variation towards the condition Active Control (Anodal)-

2mA, thereby in this work we aimed to discuss a innovative statistical analyses of only a sample

of the protocol experimentation compared to its reference (baseline).

Thus, in the present study, we analyzed and discussed the data set of a single healthy adult

male participant during resting-state (baseline condition) and after 45 seconds of an electrical

stimulation. Each period (before and after stimulation) contains five minutes observation, whereas

the EEG sample rate was 500 Hz (500 observations per second), representing a total of 300,000

observations.

6.2.2 The model

Dynamic structure modeling may be considered as an alternative to estimate brain con-

nectivity, and additionally, it is natural to aggregate its estimated parameters into a graphical

representation. Nonetheless, the class of dynamic model is overparametrised (WEST; HAR-
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Figure 41 – Photograph of the experimental trial (left-hand side) and the EEG cap (right-hand side) with
small electrode array covering the scalp, while the large electrodes identifiable as a triangle
configuration (4 electrodes total) represents the tDCS stimulating electrodes (presented in
article (SANTOS et al., 2018)).

RISON, 1989; WEST; HARRISON; MIGON, 1985), especially in the time-varying approach,

demanding some shrinkage into the parameter space (that is, by adding sparsity in the parameter

vector estimation process). A word of caution must be mentioned here, search patterns in small

dimensions may deal with great noise (NAKAO, 2016), added by limitations towards how to

generalize the low-dimensional reduction approach (RODRIGUES et al., 2016) and, for instance,

brainwaves present a highly active process which comes with much noise (NATARAJAN et

al., 2004). Therefore, a filtering preprocessing is suggested to break the observed/raw time

series signal into the frequency domain, then used the finite impulse response (FIR) filter. These

elements are presented in the sequence.

6.2.2.1 Dynamic Linear Model

State space model is a flexible learning linear/nonlinear dynamical systems. As a particu-

lar case, the state transition and observation functions may be expressed as a Gaussian linear

process, often called Dynamic linear model (DLM). For instance, consider a p-dimensional

State Vector and m-dimensional observations, both normally distributed. At the initial time (t=0)

presents mean µ0 and variance σ2
0 ,

θ0 ∼ Np(µ0,σ
2
0 )

then for the time t ≥ 1,

Yt = Ftθt +υt
︸ ︷︷ ︸

observation equation

, υt ∼ Nm(0,Vt),

θt = Gtθt−1 +ωt
︸ ︷︷ ︸

state equation

, ωt ∼ Np(0,Wt)
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where matrices Gt (dimension p× p) and Ft (m× p) are known, followed by independent

Gaussian random vectors υt and ωt with mean equals to zero and known variance matrices Vt

and Wt .

Considering a R
p-valued and R

m-valued time series satisfying two proper; i) (θt) is a

Markov chain, and ii) Conditionally on (θt), the observed time series (Yt) are independent and

depends only on (θt).

Moreover, this class of models are flexible given the possibility to incorporate more

complex structures (locally they are linear, but globally performs as nonlinear dynamic), by

allowing the time-varying parameters, that is, compounding a latent variable in the estimation

process. The estimation towards the state vector uses the conditional density π(θk | Y ), where

t = 1, ...,T and Y is the observed values. Furthermore, k represents the recursive period and t is

the current period, where estimation problems are filtering (k = t), smoothing (k < t) and state

prediction (k > t).

Filtering is a procedure that aims to update the current estimates as new data are observed

π(θt | Y1:t). Smoothing is a retrospective analysis which compute the conditional distribution

θ given in once the data π(θt | Y1:T ), starting from π(θT | Y1:T ) estimating the states backward.

Prediction is a forecast procedure which estimate the next observation based on the data π(θt+1 |
Y1:t). Further details about Bayesian Forecasting and Dynamic Models (WEST; HARRISON,

1989; PETRIS; PETRONE; CAMPAGNOLI, 2009).

A particular case of DLM is the Vector Autoregressive (VAR) model, when the parameters

are invariant on time, implying that the parameter vector θt only assumes a single value θt = θ .

VAR model is widely used in the literature (KRYSTAL; PRADO; WEST, 1999; PRADO;

MOLINA; HUERTA, 2006; SCHLÖGL; SUPP, 2006; GARRISON et al., 2015) and enables to

recognize the nonlinear dependencies between different brain regions.

6.2.2.2 Sparse Estimation framework

Recent discoveries hone time series modeling, addressing the model order estimation

challenge, that is measure complexity related to the high-dimensional resolution. For instance, it

enables to rotate the eigenvalues and eigenvectors in the state-space parameter dimension, given

restrictions in the parameter vector space imposing some parameters to be equal to zero. So the

main question may be which is the “best” and “simpler” approximation (without losing relevant

information) which corresponds to the dynamic process?

This definition of “the best” is nontrivial given the lack of knowledge regarding the joint

function related to the data and parameter associated with the phenomenon under study. The only

available information is from the observed data as an information base in the estimation process.

Several inferential methods may be adopted; among them, the most popular are maximum

likelihood and ordinary least squares.
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Sparse approach is equivalent to create a bias towards sparsity, in the maximum likelihood

estimator (MLE), which may reduce the minimum square error. Thus, it is setting conditions

in the least squares aiming to minimize the l1-norm producing sparsity in the parameter vector

θ . Additionally, prior knowledge can be incorporated targeting only a subset of the parameter

vector. That is, to minimize a specific parameterization (θ0) problem then

min
s
‖θ0 + s‖1

truncating a NP hard problem (CHICKERING, 1996a) into a linear programming (LP) problem

in standard form (ZEEMERING, 2015). Loosely speaking, by adding assumptions regarding the

model reparatrization where the parameter vector θ , as well the fit of the model, is represented

as an error vector (e(θ), e.g. least squares criterion) that only dependents on θ .

The search space is limited by models, some of them equivalent, which produce the same

value of error vector and least squares error (TIBSHIRANI et al., 2012). That is, shrinkage may

be applied through a singular value decomposition (SVD) to the matrix which associates the

number of constraints kernel of the Jacobian (J(θ)) or Hessian (H(θ)) matrices.

The non-linear least squares minimization methods search direction (s(θ)) to refine the

parameters by successive iterations may be adopted, for example a Newton method, described as

s(θ) =−αH(θ)−1J(θ)′e(θ).

Based on the SVD results, this attainable to determine values that may assume to be

zero, setting up a threshold if needed. A word of caution regarding the threshold, low values may

bound the search space (then exclude valid directions to search for sparsity) and high values may

change the model behavior.

In contrast, other solutions may be obtained by the dual or primal linear programming

(LP) problem. Deviation towards the search direction accuracy during the optimization procedure,

through setting up a threshold, determines the quality of the maximization procedure. As in

the medical field exemplification, (ZEEMERING, 2015) applied to the class of regression and

state-space models adding sparse estimation in the field of atrial fibrillation research.

The models adopted were classical VAR, Graphical Least Absolute Shrinkage and

Selection Operator (GLASSO), Time Series Chain Graphical Model (TSCGM) and TSCGM-

modified using Nonlinear optimization over log-likelihood and Iterative optimizing the log-

likelihood. The TSCGM-modified in this work considered as optimization option towards the

proportion of parameters equals to zero among the total number of model parameters with a bias

towards sparsity, in MLE, which minimize through the l1-norm of the parameter vector and the

Smoothly Clipped Absolute Deviation (SCAD).
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6.2.2.3 Sparsity in modeling

The classical method for estimate connectivity matrices often uses the Vector Autore-

gressive (VAR) Model, which is a particular case of DLM when the parameters are invariant in

time. For instance, consider a vector of observed variables Y , I is a identity matrix, Matrices X

represents Y lagged dependence, Γ j are autoregressive parameters, and u is the error vector with

covariance matrix Σ, using ordinary least squares (OLS) standard estimation procedure equation

by equation. Its vectorized form would be expressed as

vec(Y ) = (Im⊗X)Γ+ vec(u), where vec(u)∼ N(0,Σ⊗ It)

where the matrix of coefficients Γ presents m× [# lagged variables + 1] dimension, that

is the dynamic connectivity (also called effective connectivity), and the matrix of coefficients Σ

represents the functional connectivity, where t represents the length of the Y series. The OLS

estimation process can be translated by

log-likelihood(Γ̂, Σ̂|observed data) =

argmin
Γ,Σ

[
1
t

tr((Y −XΓ)Σ−1(Y −XΓ)′)− log|Σ−1|
]

.

However, because the model also includes small linear dependencies, the number of

links increases exponentially with the number of channels to include in the model, along with

the analysis of complexity and the processing/interpretation rises in the results. Therefore, it is

usual to use a data-dependent threshold to remove the weak connections, but the selection of an

appropriate value can be different according to the experiment setting and goals (GARRISON et

al., 2015).

An alternative approach is to reduce the number of links during the connectivity matrices

estimation, using sparse time series models. One widely used model is the GLASSO, used as

a sparse VAR, proposed by (FRIEDMAN; HASTIE; TIBSHIRANI, 2008); the method takes

into account the sparsity towards the estimation on the functional connectivity. Inherently, the

estimated connectivity matrices often have few links, but despite to maximize the likelihood

of the observed biosignals respect to the proposed theoretical model, it can lead to a distinct

dynamic/effective connectivity estimation.

For instance, consider N multivariate normal observations of dimension p, with mean µ

and covariance Σ. Using the empirical covariance matrix, the problem is to penalized negative

log likelihood,
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log-likelihood(Γ̂, Σ̂|observed data) =

argmin
Γ,Σ

[
1
t

tr((Y −XΓ)Σ−1(Y −XΓ)′)− log|Σ−1|+

λ1

G

∑
i=1
‖γi‖2 +λ2 ∑

k ̸=k′
‖Σ−1

kk′‖]

with λ1 and λ2 penalty parameters, γi is subvector of Γ, G = q2 total number of groups and k

block coordinate descent derived from Σ (that is, shrinking only in part of the covariance matrix).

A generalization of this model is found in the TSCGM, proposed by (ABEGAZ; WIT,

2013), where sparse estimations of both effective and functional connectivity matrices are

obtained. In this method, both matrices are estimated interactively: first, a sparse functional

connectivity estimate is calculated with a non-sparse non-concave penalty (smoothly clipped

absolute deviation, SCAD); and later, sparse effective connectivity using the previous estimation

as an initial value. This cycle is performed until it reaches convergence. Further details see

(ABEGAZ; WIT, 2013).

TSCGM has been successfully applied to genetic data, and when applied to electroen-

cephalograms, numerical experiments have shown a considerable reduction in the number of

estimated connections. However, TSCGM also distorts the strength of some links, creating

connections that were not present using a VAR model, because it relies on GLASSO for the

estimation of the functional connectivity in each iteration.

The approach behind TSCGM is remarkable for increasing the sparsity of the estimations.

Due to the original algorithmic implementation presented some issues during its application

with biosignals, we introduced some adjustments. We also used a TSCGM-modified model

that estimates the effective and functional connectivity that maximizes the loglikelihood of the

model simultaneously using a Newton-type numerical optimization method. These methods are

the nonlinear optimization and iterative optimization. For deeper discussions towards sparsity

profile see (RAKOTOMAMONJY, 2011; BENSON; SHANNO; VANDERBEI, 2003; WIPF;

NAGARAJAN, 2008).

6.2.2.4 Multilayer Networks

Graphical models are useful for describing and explore patterns of dynamic/effective

and functional/contemporaneous interactions of a given phenomenon. In human neuroscience

experimentation, brain network connectivity activation could be recorded from the electrical

impulse aiming to highlight interaction among areas.

Given the complexity of the brain, multilayer networks incorporate the multivariate and

multi-scale information scheme (DOMENICO, 2017). Generally speaking, it can be seen as a
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collection of several distinct classical networks, encoding by a specific type of information about

the system as a layer, compound a Multilayer network. Those layers quantify some elements

of similarities such as (i) activity in different frequency bands, (ii) time-varying activity, (iii)

activity of different tasks, and (iv) structural and functional connectivity.

Alongside this information, two important concepts about brain networks are essential to

be pronounced; first it is the functional connectivity which expressed the statistical correlation

within a time step, also interpreted as contemporaneous interactions, and second the effective

connectivity that points across time from current to the previous steps, also called dynamic,

indicating graphically an extra information pointing out the statistical causality (FRISTON,

2011).

6.2.2.5 Inferential Networks Analyzes

Let’s consider a chain graph (or complex network) for a given network defined by a set

of vertices V and a set of edges E order in pairs, then each point is represented as P = (V,E).

Their edges’ (also called links) interpretation could be conditional within and across time steps

representing the interactions between pairs.

Time series data modeling can be combining dynamic graphical models, which enables

to incorporate sparsity, aiming to estimate statistical causality and correlation across series. For

simplicity let’s consider a Markovian dynamics (time t relates only to time t−1) then similar to

VAR(1) as

(a, b) ∈Vt×Vt−1⇔ Γab ̸= 0

where effective connectivity is represented by the link between area a and b at consecutive

time steps relate to an element from Γ (points across time). Similarly, functional connectivity

is represented by the link estimated from the effects of past and present corresponds from the

precision matrix Σ (correlation within a time step), related to the model’ errors as

(a, b) ∈Vt×Vt ⇔ Σab ̸= 0.

In this manner, a multivariate time series can be translated into a learning probabilis-

tic connection network structure (as a graph model), targeting to estimate brain connectivity

networks. Dynamic Chain Graph Model (DCGM) creates a multivariate dynamic linear model

for each chain component, (WERMUTH; LAURITZEN, 1990) discuss the class of dynamic

graphical models that enables to estimate of different signal phases and comparing their struc-

tural relations. For instance, the dynamic/contemporaneous interactions between brain regions,

presented by (COSTA et al., 2017), as a particular case of its theory in the neuroscience field.

6.2.2.6 TS Frequency Domain Approach

Brain activity can be collected as biosignals, composed by the flux of information from a

group of connected neurons (called a neural circuit). Whereby seems at first to be pure noise,
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but among specific ranges may lead to distinguish hidden patterns (SCHEFFER-TEIXEIRA et

al., 2013; PRADO; WEST, 2010). Moreover, different frequency bands can contribute towards

the brain mapping functionality, by maximize the information flow through the brain regions

(according to the observed and latent components).

The literature presents changes on the frequency cuts (FRANSSON, 2005; SU et al.,

2013), and those hubs might be very different when measured in different frequency bands.

The findings concerns to the topological information measured from components in different

frequency (in hertz unit - Hz). In this manner, such an enriched representation (decomposed TS

signal) of is more valuable than other aggregated representation (raw TS signal). For instance,

some pass band ripple filters are Butterworth, Chebyshev, Elliptic or Cauer, and Finite Impulse

Response (FIR) filter (further details see (PARKS; BURRUS, 1987)).

Moreover, results presented in the literature (NEWSON; THIAGARAJAN, 2018; WO-

JCIK et al., 2018) suggest that a healthy human brain operates at a transition point between

independent and highly dependent frequency bands (e.g. represented as functional layers). EEG

raw signals enable to establish encoding the connectivity between the neural circuit, and are

described within five frequency bands; Then reasonable bands frequency delimitation is theta

(0.01-4 Hz), delta (4-8 Hz), alpha (8-16 Hz), beta (16-32 Hz), gamma (32-49 Hz).

(DOMENICO, 2017) suggests that functional layers do not act as independent entities,

then existing mechanisms for integration and segregation of brain activity within and across

different frequency bands. Adopting multilayer techniques as potential non-invasive biomarkers

for neurological and mental studies.

In this manner, this work adopted the finite impulse response (FIR) filter, used to filter

the limit the signal coefficients given some order and frequency cutoff. Additionally, we added a

correction using a Forward and Reverse filter applied on the FIR obtained signal to correct the

phase distortion introduced by a one-pass filter, though it does square the magnitude response

in the process. Both tools are implemented in R (OCTAVE. . . , 2007), presented in the package

signal.

The multiplex sparse dynamic model framework enables to map the network connections,

across different layers encoded as frequency bands (although integrated as (DOMENICO, 2017)

suggests). Furthermore, the irreducibility of the multilayer functional representation of the human

brain raises the necessity for multilayer analysis of the underlying architecture, targeting the

identification of hubs.

6.3 Results

Neuroscientists seek to understand the brain connectivity through the functional and

effective connectivity among the brain areas, using biosignals such as Electroencephalogram
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(EEG) or functional Magnetic Resonance Imaging (fMRI). This work adopted to fathom the

brain manipulation task related to the perception of verticality and posturography as a novelty

targeting the development of a therapeutic approach for post-stroke patients.

For instance, (SANTOS; EDWARDS, 2019) pointed out that investigations towards the

influence of cortical activity using non-invasive electromagnetic brain stimulation (NIBS) sug-

gests to understand and treat disorders of verticality as a neurorehabilitation. Thereby, (SANTOS

et al., 2018) implemented a protocol towards human verticality manipulation, using neuromod-

ulation, on healthy participants aiming to understand the recovery of this intentional artificial

brain lesions, briefly introduced in section 6.2.1.

Selecting randomly a single participant, Figure 42 illustrate 5 minutes of brain response

each panel (raw EEG signals), selecting only 7 channels (out of 256), and compares his signals

during resting-state (top panel) versus post-2mA stimulation (bottom panel). Most of the selected

EEG channels were located in the motor cortex; three channels derived from the right hemisphere

(164, 173, and 183) and located nearby the region placed the tDCS four electrodes. Then, three

other channels derived from the left hemisphere (66, 71, and 72), whereupon are physiologically

related to those selected from the right hemisphere; additionally the EEG channel 143 placed in

the parietal cortical region.

Figure 42 – Single participant EEG raw signals from 5 minutes recorded biosignals (top panel) during
resting-state and (bottom panel) after HD-tDCS –Anodal Center 2mA– stimulation. The
brain responses’ amplitude (on the y-axis), from the raw EEG signals, increased after the
stimulation.

It is noticeable in Figure 42 that post-stimulation of the brain response amplitude from the

raw EEG signals increased, what is more relating with the hemisphere side to channels 183, 164,

and 173 (related with the tDCS placed region). In addition, channel 66 has had its signal shifted

up, which is physiologically explainable due to the polarity dependence created by the applied

stimulus (directly related to channel 164, through the anodal input current electrode). Studies

according to (PRADO; WEST, 2010; DOMENICO, 2017; OMBAO; HO, 2006) provide traces
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that brain connectivity may be better understood using frequency bands decomposition limiting

the influence of noise in the brain signal and describing different brain tasks as oscillatory bands.

Initially, we filtered the raw EEG signals, adopting the FIR with pass-band filter, utilizing

5 fundamental bands of brain waves (alpha, beta, delta, gamma, and theta). Figure 43 shows only

the filtered signals related to the post-stimulation period, whereas elucidating the difference in

band oscillation (signal phases) for each channel.

The channels located in the same brain hemisphere side as the neuromodulation (tDCS),

presented greater oscillation. Thus, this dynamic may be translated/associated with the electrical

transferred activity (energetic dissipation). This activity is expected given the rise of entropy

through electrical synergy in this area (see (NASCIMENTO et al., 2019)).

The study of the human brain has been developing and generates a massive amount

of data, nevertheless unfolding this complex system is not trivial and, often, mishap to aggre-

gate this information (FIECAS; OMBAO, 2011; SHEN; BAINGANA; GIANNAKIS, 2016;

CASTRUCCIO; OMBAO; GENTON, 2016). Alternatively, the multilayer networks approach

provides a mathematical background to model and analyze complex data with multivariate and

multi-scale information (KIVELÄ et al., 2014). Multiplex network shape can be formatted using

(i) activity in different frequency bands, (ii) time-varying activity, (iii) activity with respect to

different tasks, and (iv) structural and functional connectivity.

In this manner, estimation regarding the representation of a joint distribution of random

variables is needed (the network structure). This procedure seeks to describe the causal relations

across the brain regions. Thus, Vector Autoregression (VAR) model would be appropriated to

describe a brain connectivity network, nonetheless, it may present a high-dimensionality curse

in large sets. This class of models presents a significant number of parameters to be estimated.

Additionally, shrinkage either in the data (such as PCA) or parameter spaces (like GLASSO and

TSCGM) is not straightforward and may misleading information.

Graphical LASSO (GLASSO) model, proposed by (FRIEDMAN; HASTIE; TIBSHI-

RANI, 2008), estimates matrices tended to be different from those determined by a classical

VAR method. It was noticeable that non-sparse VAR estimation not only increased the sparsity

of the effective connectivity matrix, but “created links” that didn’t appear before (based on

our empirical analysis). Those models present a high sensibility to non-stationary series, and

might mislead the estimation point connections (given the shrinkage on the covariance matrix

–Contemporaneous Effect–, then changing the dynamic interactions).

Alternatively, TSCGM and TSCGM-modified was performed using a nonlinear opti-

mization over the log-likelihood, and iterative optimizing the log-likelihood (with l1-norm and

SCAD penalization, not only in the covariance matrix) (ABEGAZ; WIT, 2013). Figure 44 shows

the supra-adjacency matrix related with the functional connectivity, across 7 EEG channels,

comparing seven estimation methods (classic VAR, GLASSO, TSCGM, TSCGM-nonlinear
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Figure 43 – Bandpower from the filtered EEG signals (top left) considering the alpha band, (top right) filter
in beta band, (middle left) in delta band, (middle right) in gamma band, and (bottom center)
filter in theta band. The EEG electrodes placed in the right-side brain hemisphere present
higher dynamic/variation (channels 164, 173 and 183), related to post-2mA stimulation.
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Figure 44 – Functional connectivity as supra-adjacency matrix, in-which rows and columns form group
from the 7 filtered EEG alpha frequency-band signals, throughout the methods (VAR,
GLASSO, TSCGM, TSCGM-nonlinear l1-norm and SCAD, and TSCGM-iterative l1-norm
and SCAD). The VAR method is the reference, whereas the target is to maintain the strong
links and remove the weak using sparsity. The TSCGM-nonlinear provided a competitive
insight preserving the structure and function of the human brain.

l1-norm, TSCGM-nonlinear SCAD, TSCGM-iterative l1-norm and TSCGM-iterative SCAD),

for instance, only the performance of a single band (alpha).

The VAR model includes weak linear dependencies, as mentioned in section 6.2.2,

then it is desirable to use a data-dependent threshold to remove the weak connections without

losing information. GLASSO and TSCGM led to different interpretation, compared to the

VAR-estimated matrix. Nevertheless, TSCGM-modified with nonlinear optimization using both

l1-norm and SCAD penalization maintained the strong links presented in the VAR, but also

eliminating the weak ones, therefore suggesting a competitive performance among the others.

The same can not be said for the TSCGMs-modified with iterative optimization.

Figure 45 shows the estimated brain dynamic/effective connectivity among the seven
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Figure 45 – Multiplex EEG signals, per bandpower, (top panels) resting-state and (bottom panels) after
unilateral HD-tDCS –Anodal Center 2mA– stimulation. Comparing resting-state versus
post-stimulation, we obtained additional links within the gamma and theta bands during
post-stimulus suggest an outgrowth on the electrical brain dynamic.

filtered channels, (top figures) during resting-state and (bottom figures) post-stimulation, adopt-

ing the performance of TSCGM-nonlinear optimization using SCAD. That is, the brain illus-

trates with the correlation matrices the neuronal information floating connectivity (in different

frequency-band signals).

No visual modification can be observed through the analysis of the alpha, beta and

delta bands, according to Figure 45. Although gamma and theta band shows a change slightly

(considering the new estimated coefficients intensity during post-stimulus). Preview results

regarding the gamma band modification, after the neuromodulation, was previously discussed in

agreement with (SANTOS et al., 2018).
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6.4 Final remarks

This work aimed to implement and discuss the comparison of sparse methods, towards

parameter dimension shrinkage. Notwithstanding preserving the information, in the empirical

data, aiming to develop elements towards the brain manipulation intervention related to the

perception of verticality and posturography as a novelty targeting the recovery of post-stroke

patients. Multilayer network approach enabled to integrate of the information retained given the

electrical post-stimulus synergy (through different frequency bands).

The findings obtained in this paper help the process of estimating the neuronal circuit

connections, with robust inference and computationally feasible. Estimating a network structure

can be a non-trivial (CHICKERING, 1996a), highly complex task (RODRIGUES et al., 2016),

despite this sparse models showed to be promising bypassing the false positives’ problem in

estimation algorithms (results in Figure 44).

Using the sparse models (as a dynamic linear model) combined with frequency domain

approach represented as multilayer network enables the neuroscience field to take advantage

to interpret/estimate the dynamic of the neural circuits based on the data. Moreover, this work

aimed to contribute with deeper data analysis towards the protocol (SANTOS et al., 2018),

discussing its feasibility, enlightening the human manipulation intervention response dynamic.

This work is limited given conclusions are based on a single participant response, whereas

future works shall extend this modeling using hierarchical models and interpretation of the entire

sample and protocol. (LIAO et al., 2017) showed that the modular structures of brain networks

completely vary across individuals. Thus, hierarchical modeling is required, in the form of a

set of state vectors for each chain component, as an exchangeable sample with common mean.

Therefore, future work shall explore the time-varying parameters, enclosed by the dynamic linear

models, in a hierarchical version, suitable for interventions such as presented here, indexed in

time.
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CHAPTER

7

CONCLUSION

In this doctorate thesis we provide advances towards the neurorehabilitation data mining

and its statistical analysis, towards time series dynamism and high-dimensional data. Moreover,

we condensed in seven scientific work relating to the Dynamic Graph Models (DGMs) and

complexity measurement, improving some of these models.

The novel starts in chapter two where it highlights some characteristics from these

neurological data, that is the presence of high complexity. Generally, biosignals present a high

spatial-temporal dependence. Naturally, one way of dealing with the structure is through the

information theory, by using measures of complexity such as entropy. The main goal was

to summarize/transform these data, and later, combined with classical statistical modeling

(respecting its supposition). This work aimed to discuss the use of an appropriate statistic in the

summarization of time series processes, preserving the information contained therein. By using

entropy, in the area of neuroscience, it has a straightforward interpretation which is associated

with the energetic dynamics of the process then statistical hypothesis tests comparing their

equivalences. Moreover, in this study, under this approach, we could discuss the feasibility of the

protocol, and its safety, towards treatment as a vertical human manipulation task presented in,

e.g. post-stroke patients.

The visualization of these complex neuronal relation is needed and, commonly, ex-

plored via graph theory (complex networks). Therefore, this work adopted also the class of

dynamic graph models (DGM), allowing to estimate the brain structure and dynamic, bringing

more interpretation to the researchers regarding its connectivity. That is, the estimation of dy-

namics/evolution is a statistical problem that requires a numerical approximation towards the

time-varying parameters, presented in chapter three. Moreover, we used the Multiregression

Dynamic Models (MDM) developed by Queen & Smith (QUEEN; SMITH, 1993), recently

explored in several areas such as neuroscience (COSTA et al., 2015), traffic (ANACLETO;

QUEEN; ALBERS, 2013a), economics (ZHAO; ZHOU, 2012) etc. As results, by analyzing the

5 minutes of EEG data after the HD-tDCS, it could identify mean structural breaks around 163
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seconds, indicating a loss of HD-tDCS influence towards cortical activity (suggesting the return

to the baseline state).

Further discussions were made towards the network problems require preliminary struc-

ture estimation. Estimating the structure of a network is an NP-hard complexity issue. That is,

the search among all possible representations of its best structure is a highly complex task. Then,

chapter four brings with the discussion about this structural estimation task, alternatively, using

a heuristic method in comparison to the MDM-IPA, as well compares three type of numerical

alternative to the MDM parameters; later, proposing a complexity measure, incorporating a

probabilistic approach of the entropy parameter selection (incorporating a developed distribution,

the Inverse Nakagami-m (INK) Distribution (LOUZADA; RAMOS; NASCIMENTO, 2018)),

to verify the randomness of the residual of this models. It was described the estimation of

communication and recognition of brain patterns in a neuroscience experiment. Subsequently,

the extraction of relevant information from the models was confirmed and, since the residues

presented a random characteristic, TS patterns already extracted.

The chapter five proposed a dynamic smoothing data compression, using a Symbolic

Data Analysis approach by concatenating some TS as interval data. In this manner, this big data

problem is reduced to a simpler/feasible task, where the shrinkage of this data is reduced to the

decision-making granularity without further loss. In this manner, this work enables to identify

some clinical change in patients after traumatic brain injury by improving the data classification

method using SDA.

Finally, in chapter six it was discussed some filtering alternative and sparse DGM.

The graph-based structure estimation may require some reduction, by imposing sparse on a

complete dynamic model. In this manner, we compared (classic VAR, GLASSO, TSCGM, and

TSCGM-modified with nonlinear and iterative optimizations) in order to reduce the amount of

false positive link estimation combined with multilayer networks. The results were promising

towards the susceptibility of sparse dynamic models. The findings obtained in this paper help the

process of estimating the neuronal circuit connections, with robust inference and computationally

feasible.

The chapters of this work solve, in a fraction, the complex problem that refers to the

analysis of brain data from EEG signals. Presenting the discussion from the summarization of

series, as complexities, to modeling their connectivity structure, as well as dynamics. Subse-

quently, techniques related to the reduction in data space and parametric space of DGM models

were developed. The limitations regarding the results of this work refer to the fact that most of

the interpretations obtained were derived from only one participant, thus it is necessary to carry

out an analysis contemplating the others for generalization purposes in the area of neuroscience.
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7.0.1 Perspectives

Some works that can provide continuity to the current research project are listed in the

following.

∙ Combine all the presented adopted/developed models towards the analysis of the full EEG

experiment (SANTOS et al., 2018).

∙ To analysis other structural graph-based method, using a hybrid of Score-based and

Constraint-based algorithms.

∙ To extend the class of DGM to the SDA approach.

∙ To develop a extension of the Dynamic SDA incorporating restrictions upon the boundaries

estimation procedure.
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GLOSSARY

Bayesian Inference: is a methodology which incorporates prior information (the specialist’

expertise) with the empirical information (dataset) using Bayes’ theorem..

Biosignals: is any monitored signal derived from a living been. Express as electrical, or non-

electrical, signals in a given spaced time..

Complex Network: any non-trivial topological which connects events as edges through links is

a graph (network)..

Dynamic Models: represents a class of models which behaves conditional the time-variant

parameters giving flexibility to the model, incorporating non-linearity from the system. In

contrast, static (or steady-state) model calculates the system in equilibrium, and thus is

time-invariant..

Entropy: describes the amount of information which derivate from the system, considering all

the moments which generates a given process. It can be thought as the accumulated energy

from the system, defined by the second law of thermodynamics states..
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APPENDIX

A

THE INVERSE NAKAGAMI-M

DISTRIBUTION: A NOVEL APPROACH IN

RELIABILITY

This chapter corresponds to a manuscript published at IEEE Transaction in Reliability

journal, in which proposed the inverse Nakagami-m (INK) distribution. This work had as

co-authors: Pedro Ramos (ICMC-USP, Brazil) and Francisco Louzada (ICMC-USP, Brazil).

Abstract

In the paper, the inverse Nakagami-m (INK) distribution is proposed. This distribution is the

reciprocal of the Nakagami distribution that plays an important role in the general area of

communications engineering and reliability system. The proposed model is useful to describe

data that have a relatively high initial failure rate. An account of mathematical properties is

presented such as the r-th moment, mean, variance, r-th central moment, survival properties

and Shannon’s entropy. The maximum likelihood estimators are explored under complete and

censoring, but a bias correction was applied with the order O(n−2) for obtaining nearly unbiased

performance. An efficient closed-form maximum a posteriori estimator was also proposed. A

simulation study compares the performance of the estimators with clear advantage for the closed-

form maximum a posteriori one. We illustrate the INK distribution fitting on an aircraft survivor

scope and a sugarcane harvester associated with the failure of an item given its repair, analyzing

the components associated with a high failure rate after a short repair time.

Bias correction, censored data, inverse Nakagami-m distribution, maximum likelihood

estimators, Nakagami-m distribution, Reliability.
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Introduction

The Nakagami distribution (NAKAGAMI, 1960) plays an important role in the gen-

eral area of communications engineering, such as communication range test (WANG; SONG;

CHENG, 2012). This distribution has also been applied successfully in many areas such as

medical image processing (SHANKAR et al., 2001; TSUI; HUANG; WANG, 2006), hydrologic

engineering (SARKAR; GOEL; MATHUR, 2010) and seismological analysis (NAKAHARA;

CARCOLÉ, 2010). Considering X a random variable with a Nakagami-m (NK) distribution, its

probability density function (PDF) is given by

f (x|µ,Ω) =
2

Γ(µ)

(µ

Ω

)µ
x2µ−1 exp

(

−µx2

Ω

)

(A.1)

for all t > 0, where µ ≥ 0.5 and Ω > 0. The NK distribution is related to the gamma distribution,

if Y ∼ f Γ(a,b), then T =
√

Y has a NK distribution with µ = a and Ω = ab. Therefore, the µ

parameter can also take values on 0 < µ < 0.5. In this case, its hazard rate function exhibits

bathtub shape.

The study of inverse distributions has provided a better comprehension of standard

distributions and contributed to adding more flexibility for fitting data. For instance, if X follows

a standard normal distribution then the inverse distribution of X is bimodal (JOHNSON; KOTZ;

BALAKRISHNAN, 1970). Some well-known inverse distributions are the Inverse Weibull

(JOHNSON; KOTZ; BALAKRISHNAN, 1970), Inverse Gamma (REVFEIM, 1991) and the

inverse t distribution, to list a few.

In the paper, a new inverse distribution is proposed, named as inverse Nakagami-m (INK)

distribution. The mathematical properties associated with the new INK distribution are presented,

such as the r-th moment, mean, variance, r-th central moment and Shannon’s entropy. Thus, the

reliability properties of the INK distribution are studied in details, proving the hazard model

(mean residual life) function as a unimodal (bathtub) shape. Parameter estimation is based on

maximum likelihood approach. Although the maximum likelihood estimator (MLE) of Ω is an

unbiased estimator, we observed the MLE of µ contains a positive bias. Therefore, we discussed

a MLE bias correction based on Cox and Snell (COX; SNELL, 1968) approach. Moreover, an

efficient closed-form estimator are important for practical purposes, since they can be applied to

compute real time estimators in embedded technology (SONG, 2008). Besides, we considered

the MLEs in the presence of randomly censored data, since it has received special attention in

medical experiments and industrial lifetime testing. Recently discussions of new probability

distributions can be see in (ALMALKI; NADARAJAH, 2014; BALAKRISHNAN et al., 2015;

BALAKRISHNAN; HAIDARI; MASOUMIFARD, 2015).

The proposed INK distribution is illustrated on a dataset related to the failure time

of a given components of aircrafts and a sugarcane harvester. The variables in analysis are

associated with the failure of items given its repair proving its efficiency in describing the

components associated with a high failure rate after a short repair time. Hence, it can describe
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well the quality of a given maintenance performed. From the practical point of view, in the first

scenario, our model shows to be useful in different studies aimed at describing the lifespan of

different internal cabin mechanical devices, improving consumer satisfaction and increasing the

company respective profits. In the second, the improvement this heavy machine could optimize

the production of a given factory.

The paper is organized as follows. Section 2 introduces the properties of the proposed

distribution. Section 3 presents the inferential procedure based on MLEs for complete and

censored data, as well as the bias correction. Section 4 discusses the results of a simulation

studies to verify the performance of the MLEs. Section 5 illustrates the relevance of our proposed

methodology in a real lifetime data. Section 6 summarizes the present study.

Inverse Nakagami-m

Let T be a random variable with an inverse Nakagami-m (INK) distribution, its probability

density function (PDF) is given by

f (t|µ,Ω) =
2

Γ(µ)

(µ

Ω

)µ
t−2µ−1 exp

(

− µ

Ωt2

)

(A.2)

for all t > 0, where µ > 0 and Ω > 0. This new distribution could also be named as Complemen-

tary Nakagami or Reciprocal Nakagami.

Important probability distributions can be obtained from the INK distribution such as

the inverse Rayleigh distribution (µ = 1), the inverse half-normal distribution (µ = 0.5) and the

inverse chi distribution (Ω = 1,µ = ν/2, and ν = 1,2, . . .). Moreover a new inverse distribution

can obtained as special case, named, the inverse Hoyt distribution (0 < µ < 1). The proposition

bellow relates the INK with the Nakagami-m distribution.

Proposition 1. Let T ∼ f INK(µ,Ω) then X = 1/T follows a Nakagami-m distribution.

Proof. Define the transformation X = g(T ) = 1
T

then the resulting transformation is

fX(x) = fT

(
g−1(x)

)
∣
∣
∣
∣

d

dx
g−1(x)

∣
∣
∣
∣

=
2

Γ(µ)

(µ

Ω

)µ
x2µ+1 exp

(

−µ

Ω
x2
) 1

x2

=
2

Γ(µ)

(µ

Ω

)µ
x2µ−1 exp

(

−µ

Ω
x2
)

.

The cumulative distribution function (cdf) is given by

F(t|Ω,µ) =
1

Γ(µ)
Γ

(

µ,
µ

Ωt2

)

, (A.3)
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where Γ(y,x) =
∫ ∞

x wy−1e−wdw is the upper incomplete gamma function.

The quantile function is obtained by inverting the cdf, i.e., solving

1
Γ(µ)

Γ

(

µ,
µ

Ωt2
p

)

− p = 0, (A.4)

similar to gamma distribution the inverse of incomplete gamma function does not have closed-

form expression. The computation of the incomplete gamma and its inverse have been discussed

earlier (DIDONATO; JR, 1986) and are implemented in many software (R, Matlab, SAS, Maple,

among others). The quantile function is usually used to generated random values. However,

the values of the INK distribution can be easily generated using its relation to the inversion of

gamma distribution. As follow the algorithm step:

1. Generate Xi ∼ f Γ(µ,µ/Ω), i = 1, . . . ,n

2. Then take Ti =
1√
Xi

, i = 1, . . . ,n

Proposition 2. For the random variable T with f INK distribution, the r-th moment is given by

µr = E[T r] =
1

Γ(µ)

(µ

Ω

) r
2

Γ

(

µ− r

2

)

for µ >
r

2
. (A.5)

Proof. We have

µr = E[T r] =
∫ ∞

0
tr 2

Γ(µ)

(µ

Ω

)µ
t−2µ−1 exp

(

− µ

Ωt2

)

dt

=
2

Γ(µ)

(µ

Ω

)µ ∫ ∞

0
t2( r

2−µ− 1
2) exp

(

− µ

Ωt2

)

dt.

Let x = t2 and dx = 2tdt, then

µr = E[T r] =
1

Γ(µ)

(µ

Ω

)µ ∫ ∞

0
x(

r
2−µ− 1

2) exp
(

− µ

Ωx

)

dx

=
1

Γ(µ)

(µ

Ω

) r
2

Γ

(

µ− r

2

)

for µ >
r

2
.

Proposition 3. The r-th central moment for the random variable T is given by

Mr =E[T −µ]r =
r

∑
i=0

(
r

i

)

(−µ)r−iE[T i]

=
r

∑
i=0

(
r

i

)(

− 1
Γ(µ)

(µ

Ω

) 1
2

Γ

(

µ− 1
2

))r−i

×

×
(

1
Γ(µ)

(µ

Ω

) i
2

Γ

(

µ− i

2

))

for µ > r
2 .
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Proof. The result follows directly from the Proposition 2.

From Proposition 2, the mean and variance of (A.2) are respectively given by

E(T ) =
1

Γ(µ)

(µ

Ω

) 1
2

Γ

(

µ− 1
2

)

, for µ >
1
2

(A.6)

and

Var(T ) = Ω

(

1−
(

Γ(µ−1/2)
Γ(µ)

)2
)

for µ > 1. (A.7)

Reliability Properties

The reliability function that represents the probability of an observation does not fail

until t is

R(t|Ω,µ) =
1

Γ(µ)
γ
(

µ,
µ

Ωt2

)

, (A.8)

where γ(y,x) =
∫ x

0 wy−1e−wdw is the lower incomplete gamma function. The hazard rate function

is obtained through h(t) = f (t)/S(t). For the INK distribution the hazard function is given by

h(t|φ ,λ ) = 2
(µ

Ω

)µ
t−2µ−1 exp

(

− µ

Ωt2

)

γ
(

µ,
µ

Ωt2

)−1
. (A.9)

The behaviors of the hazard function (A.9) when t → 0 and t → ∞ are h(0) = 0 and

h(∞) = 0, respectively. Presented by Glaser (GLASER, 1980), consider the following lemma in

order to obtain the shapes of the hazard function.

Lemma 1. Glaser (GLASER, 1980) Let T be a non-negative continuous random variable with

twice differentiable p.d.f. f(t). Then if η(t) =− d
dt

log f (t) has a unimodal shape, then h(t) has a

unimodal shape.

Theorem 1. The hazard rate function h(t) of the INK distribution is unimodal, for all µ > 0 and

Ω > 0.

Proof. Firstly

η(t) =− d

dt
log f (t) =

(2µ +1)Ωt2−2µ

Ωt3 and

η ′(t) =
6µ

Ωt4 −
2µ +1

t2 .

Following Lemma 1, for all µ > 0 and Ω > 0, η ′(t) = 0 implies that η(t) is unimodal

shaped with a global maximum at t* =
√

6µ
(2µ+1)Ω . Therefore, h(t) is also unimodal shaped.

Figure 46 presents different shapes for the density and hazard functions for the INK

distribution considering different values of µ and Ω.

The mean residual life (MRL) represents the expected additional lifetime given that a

component has survived until time t.
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Figure 46 – Left panel: probability density function of the INK distribution. Right panel: hazard function
of the INK distribution.

Proposition 4. The mean residual life function r(t|µ,Ω) of the NK distribution is given by

r(t|µ,Ω) =
1

S(t|µ,Ω)

∫ ∞

t
y f (y|λ ,φ)dy− t

=

√
µ

Ω




γ
(

µ− 1
2 ,

µ
Ωt2

)

γ
(

µ, µ
Ωt2

)



− t.

(A.10)

for µ > 1/2.

The behaviors of the MRL function (A.10) when t→ 0 and t→ ∞ are, respectively

r(0) =

√
µ

Ω

(

Γ
(
µ− 1

2

)

Γ(µ)

)

and r(∞) =
1

h(∞)
= ∞.

The following Lemma is useful to obtain the shapes of the MRL function.

Lemma 2. Let T be non-negative continuous lifetime random variable with hazard function h(t)

and mean residual life function r(t). If h(t) has unimodal shape and f (0)r(0)> 1(≤ 1), then r(t)

has bathtub shape (see Gupta and Akman (OLCAY, 1995)).

Theorem 2. The mean residual life function r(t) of the INK distribution is bathtub shaped for

µ > 0.5 and Ω > 0.

Proof. For µ > 0.5 and Ω > 0, h(t) has a bathtub shape and f (0)r(0)> 1. Therefore, based on

Lemma 2, r(t) has a unimodal shape.

Figure 47 presents examples for the shapes of the mean residual life function for different

values of µ and Ω.

Entropy

In information theory, entropy has played a central role as a measure of the uncertainty

associated with a random variable. Shannon’s entropy is one of the most important metrics
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Ω.

in information theory. The Shannon’s entropy from INK distribution is given by solving the

following equation

H(µ,Ω) =
∫ ∞

0
log

[
2

Γ(µ)

(µ

Ω

)µ
t−2µ−1 exp

(µ

Ω
t−2
)]

× f (t|(µ,Ω)dt.

(A.11)

Proposition 5. A random variable T with f IWL distribution, has Shannon’s entropy given by

HS(φ ,λ ) = log

(
2

Γ(µ)

)

+µψ(µ)+
1
2

log
(µ

Ω

)

+
ψ(µ)

2
−µ

Proof. From the equation (A.11) we have

HS(φ ,λ ) = log

(
2

Γ(µ)

)

+µ log
(µ

Ω

)

− (2µ +1)E [log(X)]

− µ

Ω
E
[
t−2
i

]
.

Since

E[log(T )] =
1
2

(

log
(µ

Ω

)

−ψ(µ)
)

and E
[
T−2]= Ω

Then

HS(φ ,λ ) = log

(
2

Γ(µ)

)

+µψ(µ)+
1
2

log
(µ

Ω

)

+
ψ(µ)

2
−µ.

Inferential Procedures

In this section, we explore the maximum likelihood estimator properties for the µ and Ω,

then analyzed the correction of the bias, later present some closed-form estimators and hereafter

the case for censored data.
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Maximum Likelihood Estimation

The maximum likelihood method, among the classical methods of statistical inference,

is well preferred considering it presents better asymptotic properties. The likelihood function

maximizes the estimators through the maximum likelihood method. Let T1, . . . ,Tn be a random

sample such that T ∼ f NK(Ω,µ). In this case, the likelihood function from (A.2) is given by

L(Ω,µ; t) =
2n

Γ(µ)n

(µ

Ω

)nµ
{

n

∏
i=1

t
−2µ−1
i

}

×

× exp

(

−µ

Ω

n

∑
i=1

t−2
i

)

.

(A.12)

The log-likelihood function is

ℓ(Ω,µ; t) =2log(n)−n log(Γ(µ))+nµ log
(µ

Ω

)

− (2µ +1)
n

∑
i=1

log(ti)−
µ

Ω

n

∑
i=1

t−2
i .

(A.13)

From the expressions ∂
∂Ω

ℓ(Ω,µ; t) = 0, ∂
∂ µ ℓ(Ω,µ; t) = 0, the likelihood equations is

given as
n(1+ log(µ)))−nψ(µ)−n log(Ω)

−2
n

∑
i=1

log(ti)−
1
Ω

n

∑
i=1

t−2
i = 0

(A.14)

−nµ

Ω
+

µ

Ω2

n

∑
i=1

ti
−2 = 0 (A.15)

where ψ(k) = ∂
∂k

logΓ(k) = Γ′(k)
Γ(k) is the digamma function. The MLE for Ω̂ is given by

Ω̂ =
1
n

n

∑
i=1

ti
−2 . (A.16)

Note that, substituting Ω̂MLE in (A.14) the estimate for µ̂MLE can be obtained solving,

ξ (µ; t) = log(µ)−ψ(µ)− log

(

1
n

n

∑
i=1

ti
−2

)

+
1
n

n

∑
i=1

log(t−2
i ) = 0 .

(A.17)

Theorem 3. Let Ω̂ = 1
n ∑

n
i=1 t−2

i be the MLE of Ω. Then, the root of ξ (µ; t) = 0, µ̂ , is unique.

Proof. Since log(µ)−ψ(µ) is strictly monotone and continuous with range in (−∞,0). Then,

for µ > 0 there is a unique solution for

log(µ)−ψ(µ) = log

(

1
n

n

∑
i=1

ti
−2

)

− 1
n

n

∑
i=1

log(t−2
i )

which completes the proof.
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Following (MIGON; GAMERMAN; LOUZADA, 2014), the MLE estimates are asymp-

totically normal distributed with a joint bivariate normal distribution given by

(µ̂MLE ,Ω̂MLE)∼ N2[(µ,Ω), I−1(µ,Ω))] for n→ ∞,

where I(µ,Ω) is the Fisher information matrix given by

I(µ,Ω) = n






(µψ ′(µ)−1)
µ

0

0
µ

Ω2




 (A.18)

and ψ ′(k) = ∂
∂k

ψ(k) is the trigamma function. Importantly, this model has orthogonal parameters

(φ ,λ ) in the sense discussed by Cox and Reid (COX; REID, 1987), i.e., Iφ ,λ (φ ,λ )= 0. Therefore,

the covariance between φ and λ is equal to zero.

A1. Bias correction

Cox and Snell (COX; SNELL, 1968) showed that when the sample are independent (but

not necessary identically distributed) the bias of θm, for m, . . . , p can be written as

Bias(θ̂m) =
p

∑
i=1

p

∑
j=1

p

∑
k=1

smi(θ)s jl(θ)
(
hi j,l(θ)+0.5hi jl(θ)

)

+O(n−2)

(A.19)

where si j is the (i, j)-th element of the variance-covariance matrix of θ̂ ,

hi jl(θ) = E

(
∂ 3 logL

∂θi∂θ j∂θl

)

and (A.20)

hi j,l(θ) = E

(
∂ 2 logL

∂θi∂θ j
.
∂ logL

∂θl

)

, i, j, l = 1, . . . , p . (A.21)

Cordeiro and Klein (CORDEIRO; KLEIN, 1994) proved that even if the data are depen-

dent on the expression (A.19) it can be re-written as

Bias(θ̂m) =
p

∑
i=1

smi(θ)
p

∑
j=1

p

∑
k=1

s jl(θ)
(

h
(l)
i j (θ)−0.5hi jl(θ)

)

+O(n−2),

(A.22)

where h
(l)
i j (θ) =

∂hi j(θ)

∂θl

, i, j, l = 1, . . . , p. For the INK distribution the higher-order derivatives

are given by

h111(θ) = h
(1)
11 (θ) =−

n

µ2 −nψ ′′(µ),

h122(θ) = h221(θ) = h212(θ) = h
(2)
12 (θ) = h

(1)
22 (θ) =−

n

Ω2 ,
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h222(θ) = h
(2)
22 (θ) = 4n

µ

Ω3 and

h211(θ) = h112(θ) = h121(θ) = h
(1)
12 (θ) = h

(2)
11 (θ) = 0.

Since the MLE of Ω is unbiased. The correction approach is applied directly in the µ .

After some algebraic manipulation we obtain the corrected MLE given by,

µ̂CMLE = µ̂− µ̂ψ ′(µ̂)− µ̂2ψ ′′(µ̂)−2

2n(µ̂ψ ′(µ̂)−1)2 (A.23)

that is unbiased to O(n−2).

It is important to point out that, due to the one-to-one transformation in the model, the

higher-order derivatives are the same of the Nakagami-m distribution (SCHWARTZ; GODWIN;

GILES, 2013).

A2. Censored Data

In reliability analysis, random censoring schemes have received special attention. Sup-

pose that the ith individual has a lifetime Ti and a censoring time Ci, moreover the random

censoring times Cis are independent of Tis and that their distribution does not depend on the

parameters, then the data set is (ti,δi), where ti = min(Ti,Ci) and δi = I(Ti ≤Ci). This type of

censoring has as special case the type I and II censoring mechanism. The likelihood function for

θ is given by

L(θ , t) =
n

∏
i=1

f (ti|θ)δiS(ti|θ)1−δi .

Let T1, · · · ,Tn be a random sample of INK distribution, the likelihood function consider-

ing data with random censoring is given by

L(µ,Ω|t,δ ) = 2d

Γ(µ)n

(µ

Ω

)dµ
exp

(

−
n

∑
i=1

δiµ

Ωt2
i

)

×

×
n

∏
i=1

{

t
−(2µ+1)δi

i γ

(

µ,
µ

Ωt2
i

)1−δi

}

.

(A.24)

where d = ∑
n
i=1 δi. The logarithm of the likelihood function (A.24) is given by

l(µ,Ω|t,δ ) = dµ log
( µ

Ω

)

− (2µ +1)
n

∑
i=1

δi log(ti)−
n

∑
i=1

δiµ

Ωt2
i

+
n

∑
i=1

(1−δi) log

(

γ

(

µ,
µ

Ωt2
i

))

−n log(Γ(µ)).
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From ∂ l(µ,Ω|t,δ )/∂ µ = 0 and ∂ l(µ,Ω|t,δ )/∂Ω = 0, the likelihood equations are

given as follows

d log
(µ

Ω

)

+d−2
n

∑
i=1

δi log(ti)+
n

∑
i=1

(1−δi)Ψ1(µ,Ωt2
i )

−nψ(µ)− 1
Ω

n

∑
i=1

δi

t2
i

= 0

(A.25)

n

∑
i=1

(1−δi)Ψ2(µ,Ωt2
i )+

n

∑
i=1

δiµ

Ω2t2
i

− dµ

Ω
= 0 (A.26)

where

Ψ1(a,b) =
∂

∂a
logγ

(

a,
a

b

)

, Ψ2(a,b) =
∂

∂b
logγ

(

a,
a

b

)

can be computed numerically. Numerical methods are required to find the solution of these

non-linear equations.

The bias correction methodology can be extended to the censored data. Regardless the

missing closed form expression, the Fisher information matrix related to the MLEs (A.28) can be

considered as a bias correction as presented in A1. The approximated bias-corrected maximum

likelihood estimates (ACMLE) are achieved as
(

φ̂ACMLE

λ̂ACMLE

)

=

(

φ̂MLE

λ̂MLE

)

− K̂−1Â.vec(K̂−1)

where K̂ = K|
φ=φ̂MLE ,λ=λ̂MLE

, Â = A|
φ=φ̂MLE ,λ=λ̂MLE

and φ̂MLE and λ̂MLE are the solutions of

(A.25) and (A.26).

Generalized inverse nakagami-m

Let T be a random variable with INK distribution. Then, a generalized inverse Nakagami-

m (IGNK) distribution, with a parameter vector θ = (Ω,µ,α), can be obtained by taking Y = T
α
2 ,

where α > 0 and its PDF is given by,

f (y|θ) = α

Γ(µ)

(µ

Ω

)µ
y−αµ−1 exp

(µ

Ω
y−α

)

. (A.27)

The likelihood function from (A.27) is given by

L(θ ;y) =
αn

Γ(µ)n

(µ

Ω

)nµ
{

n

∏
i=1

y
−αµ−1
i

}

× exp

(

−µ

Ω

n

∑
i=1

y−α
i

)

.

(A.28)

B1. Bayesian approach
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Ramos et al. (RAMOS; LOUZADA; RAMOS, 2016) considered the Bayesian approach

to derive efficient closed-form estimators for parameters of the Nakagami-m distribution. They

considered the following objective prior

π (θ) ∝
1

Ωc1 µc2αc3
(A.29)

where ci ≥ 0, i = 1,2,3 are known hyperparameters. This approach can be easily adapted for our

distribution due the one-to-one invariance property. From the product of the likelihood function

(A.28) and the prior distribution (A.29), the joint posterior distribution for θ is given by,

π(θ |y) = 1
d(y)

αn−c3

µc2Ωc1Γ(µ)n

(µ

Ω

)nµ
{

n

∏
i=1

y
−αµ
i

}

× exp

(

−µ

Ω

n

∑
i=1

y−α
i

)

,

(A.30)

where d(y) is the normalized constant and A = {(0,∞)×(0,∞)×(ε,M)} is the parameter space

of θ , where 0 < ε < 2 is a small constant and M > 2 is a large constant. We chose (ε,M) for the

interval of α since the only interest is in the case where α = 2. Therefore, any interval (ε,M)

containing α = 2 will be satisfactory for our purposes.

The maximum a posteriori probability estimator (MAP) of θ is computed through

θ̂ MAP = argmax
θ

log(π(θ |t)). After some algebraic manipulation we have,

Ω̂ =
µ ∑

n
i=1 y−α̂

i

nµ + c1
· (A.31)

Then (A.31) will be equal (A.16), if and only if c1 = 0, i.e, Ω is unbiased when α = 2.

Hence we consider only that c1 = 0. Note that, if c1 = 0, then (A.30) is a proper posterior

distribution, i.e, d(t) < ∞. This fact can be easily proved considering 1/Y instead of Y in the

proof presented by Ramos et al. (RAMOS; LOUZADA; RAMOS, 2016).

The other MAP estimators are given by

µ̂ =
(n− c3)

(
1
Ω̂

∑
n
i=1 y−α

i log
(
y−α

i

)
+∑

n
i=1 log

(
y−α

i

)) , (A.32)

and the MAP for α is obtained by solving the non-linear equation

log(µ̂)−ψ(µ̂) = log
(
Ω̂
)
− 1

n

n

∑
i=1

log(y−α̂
i )+

c2

nµ̂
.

Therefore, for the INK distribution (α = 2), the MAP estimator for Ω is given by

Ω̂MAP = 1
n ∑

n
i=1 t−2

i and the parameter µ can be estimated by,

µ̂ f MAP =
(n− c3)

1
n ∑

n
i=1 t−2

i
(

1
n ∑

n
i=1 t−2

i ∑
n
i=1 log

(
t2
i

)
−∑

n
i=1 t−2

i log
(
t2
i

)) · (A.33)
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The asymptotic variance of µ and Ω are obtained by considering the same derivation as

presented in Ramos et al. (RAMOS; LOUZADA; RAMOS, 2016). Then,

Var(µ f MAP) =
(n− c3)

2

n3

(
1+µψ ′(µ)

µ +µψ ′(µ)−1

)

(A.34)

and

Var(ΩMAP) =
Ω2

nµ
· (A.35)

Although the asymptotic variance of µ and Ω is presented in (A.34 and A.35), we

observed that the variance obtained from the Fisher information matrix (A.18) provided results

with better coverage probabilities. Hereafter, we considered the variances from µ and Ω obtained

from this procedure.

Numerical Analysis

In this section, we studied the performance of the estimators by computing the mean

relative errors (MRE) and the relative mean square errors (RMSE), comparing both scenarios

with complete and censored data, given by

f MRE i =
1
N

N

∑
j=1

θ̂i, j

θi
, f MSE i =

1
N

N

∑
j=1

(θ̂i, j−θi)
2,

f f ori = 1,2 where N is the number of estimates. As a measure instrument, it observes the MREs,

with desirable levels close to one, and RMSEs, preferably the smaller levels. Given a level of

confidence, the coverage probability (CP) should be close to the nominal value, considering the

asymptotic confidence intervals were evaluated at a level of 95%.

Complete Data

The simulation studies consider θ = ((0.5,2),(2,4)), N = 1,000,000 and n= (10,15, . . .,

200). The presented results were analogue for different parameters values, and considering the

space limitation not showed. The obtained results in the Figures 48 and 49 present the MRE,

RMSE and coverage probability (CP) of the 95% asymptotic confidence intervals.

Analyzing the results was ascertain that Ω̂ = 1
n ∑

n
i=1 ti

−2 is an unbiased estimator for Ω.

An important result is that Ω̂ showed an unbiased estimator. In addition to that, the CPs converge

to the nominal value assumed when n increases.

On the other hand, the outcome also indicates that µ has a positive bias, as shown (A.23).

By this fact, it was added a correction resulting in an unbiased estimator with O(n−2) with great

efficient even for small samples. Therefore, among the three proposed estimators the CMLE

provided superior estimates in all cases. Additionally the coverage probability for all estimators

tend to the nominal levels as n increase.
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Figure 48 – MREs, MSEs and CPs related to the estimates of µ = 4 and Ω = 2 for N = 1,000,000
simulated samples, considering different values of n.

Although, the CMLE produced unbiased estimates with O(n−2), there is a high com-

putational cost involving non-linear equation solution and transcendental function. The MAP

estimator presents similar results with a lower computational cost and can be an alternative in

problems evolving embedded technology to compute real time estimators.

Censored Data

Considering censored data, used the same procedures adopted by Goodman et al. (GOOD-

MAN; LI; TIWARI, 2006). Two scenarios were analyzed, with proportion assumed in 30% and

another with 50%. The simulation study is performed considering the estimates of µ = 4 and

Ω = 2 to N = 1,000,000 simulated samples, considering different values of n.

Figures 50 and 51 present the MRE, RMSE and CPs of the 95% asymptotic confidence

intervals of the estimates obtained through the MLE and the CMLE.

An important aspect is that Ω̂ is shown as an unbiased estimator even in the presence of

censoring and small sample sized data.

The outcome indicates that MLE for µ has a systematic bias, as shown Figures 50 and 51.

Considering the CMLE, an improved estimation was obtained. However this corrected estimator

is not equivalent to the unbiased estimator with O(n−2), the used in the complete data, presented
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Figure 49 – MREs, MSEs and CPs related to the estimates of µ = 2 and Ω = 0.5 for N = 1,000,000
simulated samples, considering different values of n.

in the section A1. This fact derives from the argument which the bias correction was not obtained

from Fisher information matrix given censored data, since it has no closed form. Finally, for

both parameters, results show the coverage probabilities converge to the nominal value assumed

when n increases.

Prediction analysis

Here, we consider the Bayes prediction of the INK using the observed order statistics.

The Bayesian approach is considered due its facility in obtain the predictive density of the

future observation. The notation and the steps assumed in this section follows Kundu and Raqab

(KUNDU; RAQAB, 2012). Let t(m) denote the m-th order statistic, T(1) < .. . < T(m) be the

observed sample and T(m+1) < .. . < T(n) be the unobserved future sample. Now, let us consider

the posterior density (A.30) when α = 2 in the presence of complete data with sample size m,

that is, the posterior density of the INK distribution given by

π(Ω,µ|t) = 1
d(t)

1
µc2Ωc1Γ(µ)m

(µ

Ω

)mµ
{

m

∏
i=1

t
−2µ
i

}

× exp

(

−µ

Ω

m

∑
i=1

t−2
i

)

,

(A.36)
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Figure 50 – MREs, MSEs and CPs related to the estimates of µ = 4 and Ω = 2 for N = 1,000,000
simulated samples, considering different values of n and 30% of censorship.
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Figure 51 – MREs, MSEs and CPs related to the estimates of µ = 4 and Ω = 2 for N = 10,000 simulated
samples, considering different values of n and 50% of censorship.
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Table 10 – Data set related to the failure time of 194 internal cabin mechanical devices in an aircraft.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5
5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7
7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 11

12 12 13 13 13 13 13 14 14 14 14 16 17 18 18 18 18 19
19 19 19 20 20 20 20+ 21 22 25 27 29 29 31 31 32 32 34
35 37 38+ 39+ 40 42 43 43+ 45 53 60 62+ 64 65 65 70 77 78
80 85+ 88 90+ 90+ 90+ 90+ 90+ 90+ 90+ 90+ 90+ 90+ 90+

where c1 and c2 are the constants with the values given in the Section A. On the other hand, in

the presence of random censoring the posterior distribution is given by

π(Ω,µ|t) = 1
d(t)

1
µc2Ωc1Γ(µ)m

(µ

Ω

)dµ
exp

(

−
m

∑
i=1

δiµ

Ωt2
i

)

×
m

∏
i=1

{

t
−(2µ+1)δi

i γ

(

µ,
µ

Ωt2
i

)1−δi

}

.

(A.37)

From the Markov property of the conditional order statistics, we have

fTm+k
(y|t) = fTm+k|Tm

(y|t) = (n−m)!
(k−1)!(n−m− k)!

× f (y)(F(y)−F(tm))
k−1 (1−F(y))n−m−k

(1−F(tm))n−m

(A.38)

for y > t(m). The posterior predictive density of Tm+k given t is

pTm+k
(y|t) =

∫ ∞

0

∫ ∞

0
fTm+k

(y|t)π(Ω,µ|t)dΩdµ. (A.39)

Therefore, the predictive density of T(m+k) under the assumption of y > t(m) is

f *Tm+k
(y|t) =

∫ ∞

0

∫ ∞

0
fTm+k|Tm

(y|t)π(Ω,µ|t)dΩdµ. (A.40)

An important aspect of this Bayesian predictive approach is its convenience in construct

a two-sided predictive interval for Tm+k using the Metropolis-Hastings (MH) algorithm. For the

necessary details of constructing the MH algorithm see Kundu and Raqab (KUNDU; RAQAB,

2012).

Applications

This proposed model can be useful in problems related to reliability maintenance. Thus,

this model proved useful to be applied in different studies aimed at describing the lifespan of
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Figure 52 – Reliability function adjusted by different distributions and the Kaplan-Meier estimator (left
panel) and the INK estimated hazard function (right panel) considering data set related to the
failure time of 194 internal cabin mechanical devices.

different internal cabin mechanical devices, related to improving consumer satisfaction and

increasing their respective profits, and in the improvement of a heavy machine (Sugarcane

Harvester) optimizing the production of a given factory.

The outcome was compared to the NK, Weibull, Gamma, Lognormal, and Logistic

distributions and the nonparametric reliability curve adjusted through the Kaplan-Meier estimator,

regarding the INK distribution. Also it was considered the sub models of the INK distribution

such as the inverse Rayleigh distribution, the inverse half-normal distribution and the inverse

Hoyt distribution. As part of the analysis process, different discrimination criteria constructed

under the log-likelihood function. The discrimination criterion methods are: Akaike information

criterion (AIC) computed through AIC=−2l(θ̂ ;x)+2k, Corrected Akaike information criterion

AICC=AIC+ 2k(k+1)
(n−k−1) , Hannan-Quinn information criterion HQIC= 2l(θ̂ ;x) + 2k log(log(n))

and the consistent Akaike information criterion CAIC=AIC+k log(n)−k, where k is the number

of parameters to be fitted and θ̂ the estimates of θ , respectively.

Internal cabin mechanical devices in an aircraft

In this subsection, a dataset related to the failure time of a given component of aircraft

of an airline company is considered. The failure of those repaired items was analyzed in 194

equipment, the failure times are reproduced in Table 1, describing a high defect rate after a short

repair time, compromising the quality of the equipment. The experiment considered a period

of 90 days, which the data has been censored after such given period. Censored observations

with less than 90 days were also observed due to the replacement of the defective item during

the experiment.
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To compute the MLEs were used the equations (A.25) and (A.26), given the presence of

censored data. Table 11 displays the MLEs, standard-errors and 95% confidence intervals for φ

and λ . Table 12 presents the results of AIC, AICc, HQIC, CAIC criteria.

Table 11 – MAP, Standard deviation and 95% credibility intervals for µ , Ω and y*

θ MAP SD CI95%(θ)

µ 0.2485 0.0207 (0.2120; 0.2917)
Ω 0.2006 0.0323 (0.1565; 0.2836)
y* 106.2933 30.0782 (91.4465; 192.3394)

Table 12 – Results of AIC, AICc, HQIC, CAIC criteria for different probability distributions considering
the data set related to the failure time of 194 of internal cabin mechanical devices in an aircraft.

Test INK Weibull Gamma Lognormal
AIC 1322.34 1378.71 1394.53 1338.70
AICc 1318.40 1374.78 1390.59 1334.76
HQIC 1324.99 1381.36 1397.17 1341.34
CAIC 1330.88 1387.25 1403.06 1347.23
Test Logistic Nakagami I-Rayleigh I-H.Normal
AIC 1695.79 1426.11 1735.49 1400.29
AICc 1691.86 1422.17 1733.51 1398.31
HQIC 1698.44 1428.76 1736.82 1401.61
CAIC 1434.64 1739.76 1403.06 1404.56

Since the inverse Hoyt distribution is as two-parameters special case of the INK distribu-

tion and the obtained estimate of µ was inside of the interval 0 < µ < 1, the obtained results

were the same for both models. Comparing the empirical reliability function with the adjusted

models available in Figure 52 we observed a goodness of fit for the INK distribution. The present

data showed a hazard rate function with unimodal shape. The superior performance for the INK

distribution is confirmed from the different discrimination methods since the best model is the

one which provides the minimum values of those criteria. Although in this case the inverse Hoyt

distribution could be used, there is no need to limit the parametric space between 0 and 1 since

the MLE of the INK distribution is unique and allows more flexibility in the hazard rate. From

Table 11 we see that given the last failure was observed at 90 days the prediction of the 194th

failure will be at 106 days with 95% predictive interval given by (91.4;192.3). Therefore, the

practical importance of the INK distribution is observed for the dataset, since it provides a better

fitting in comparison with other well-known distributions.

Sugarcane Harvester

The harvest of sugarcane requires the usage of heavy equipment, which improves the

process. In the following two subsections, the included dataset demonstrates two of the highest

failure components from the sugarcane harvester, given its intensive operation, which is one of
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the high-cost machines. Over a period of 30 months, from a given factory, the motor defaulted

66 times. In this same period of time, the elevator defaulted 54 times.

Elevator

Table 13 presents a high defect rate after a short repair time as well, compromising the

cost of the production. The experiment considered a total period of 30 months. As the operating

equipment had three off-seasons, these were not included in the dataset. The equipment was only

observed during the time of active operation.

Table 13 – Dataset related to the sugarcane harvester’s elevator.

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 2 2 2 2
2 3 3 3 4 4 4 5 6 7 7
7 7 9 9 11 11 11 12 17 17 17

21 23 23 24 25 31 56 61 61 122

As the previous subsection, the same criteria to compute the MLEs were used. Table 14

displays the MLEs, standard-errors and 95% confidence intervals for and given the harvester’s

elevator. Table 15 presents the results of AIC, AICc, HQIC, CAIC criteria. Comparing the

empirical reliability function with the adjusted models available in Figure 53 we observed a

goodness of fit for the INK distribution.

Table 14 – MLE, Standard-error and 95% credibility intervals intervals for µ and Ω

θ MAP S. Error CI95%(θ)

µ 0.3225 0.0506 (0.2351; 0.4358)
Ω 0.3663 0.1076 (0.2492; 0.6674)
y* 166.6787 19.4699 (125.4677; 198.0177)

Table 15 – Results of AIC, AICc, HQIC, CAIC criteria for different probability distributions considering
the data set related to the failure time of 54 related to the elevator, device in a sugarcane
harvester

Test INK Weibull Gamma Lognormal
AIC 345.99 366.48 371.31 354.42
AICc 342.22 362.71 367.55 350.66
HQIC 347.52 368.01 372.84 355.96
CAIC 351.96 372.46 377.29 360.40
Test Logistic Nakagami I-Rayleigh I-H.Normal
AIC 456.57 384.90 413.14 350.95
AICc 452.81 381.14 411.22 349.03
HQIC 458.11 386.44 413.91 351.72
CAIC 462.55 390.88 416.13 353.95
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Figure 53 – Reliability function adjusted by different distributions and the Kaplan-Meier estimator (left
panel) and the INK estimated hazard function (right panel) considering data set related to.

Motor

Table 16 presents likewise high defect rate related to the sugarcane harvester’s motor.

Table 16 – Dataset related to the sugarcane harvester’s Motor.

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 2 2
2 2 3 3 3 4 4 4 4 5 5
5 5 5 5 7 8 8 9 9 11 11
11 11 12 12 13 16 17 17 18 18 19
22 24 29 32 33 33 41 41 121

Table 17 displays the MLEs, standard-errors and 95% confidence intervals for and

given the harvester’s motor. Table 18 presents the results of AIC, AICc, HQIC, CAIC criteria.

Moreover, comparing the empirical reliability function with the adjusted models, Figure 54

explicit the goodness of fit for the INK distribution.

Table 17 – MAP, Standard-error and 95% credibility intervals intervals for µ and Ω

θ MAP S. Error CI95%(θ)

µ 0.3230 0.0469 (0.2434 ; 0.4289)
Ω 0.3412 0.0884 (0.2357; 0.5815)
y* 154.5397 23.5575 (122.9326; 207.6934)

Final remarks

In this paper the INK distribution is proposed. This distribution has a relatively high

initial failure rate, such characteristic is observed in distributions that exhibits unimodal hazard
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Table 18 – Results of AIC, AICc, HQIC, CAIC criteria for different probability distributions considering
the data set related to the failure time of 66 related to the motor, device in a sugarcane harvester

Test INK Weibull Gamma Lognormal
AIC 414.23 427.49 430.99 416.70
AICc 410.43 423.68 427.10 412.90
HQIC 415.93 429.19 432.69 418.40
CAIC 420.55 433.81 437.30 423.02
Test Logistic Nakagami I-Rayleigh I-H.Normal
AIC 512.68 448.38 494.47 420.57
AICc 508.87 444.58 492.53 418.63
HQIC 514.38 450.08 495.32 421.42
CAIC 518.99 454.70 497.63 423.73
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Figure 54 – Reliability function adjusted by different distributions and the Kaplan-Meier estimator (left
panel) and the INK estimated hazard function (right panel) considering data set related to.

function. Furthermore, an account of mathematical properties was presented, such as the r-th

moment, mean, variance, r-th central moment and Shannon’s entropy.

The parameter estimators and their asymptotic intervals were explored using the maxi-

mum likelihood theory, a bias correction was proposed with the order O(n−2) which provided

nearly unbiased estimators. Efficient closed-form estimators for µ and Ω were also presented

to allow problems evolving embedded technology and to compute real time estimators. Since

in reliability analysis it is common the presence of incomplete data, the MLEs in the presence

of random censoring were discussed as well as a bias correction approach for the parameters.

The final exemplification was made by applying the INK distribution on aircraft survivor scope

and a sugarcane harvester associated with the failure of items given its repairs, analyzing the

components associated with a high failure rate after a short repair time.

There is a large number of possible extensions of this current work. The presence of

covariates and long-term survivals are very common in practice. Our approach should be investi-
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gated further in these contexts as in (PERDONÁ; LOUZADA-NETO, 2011). This distribution is

also a promising distribution to be used in studies involving recurrent event data. In this case,

we can consider the idea of Zhao and Zhao (ZHAO; ZHOU, 2012) to derive a rate model from

nonhomogeneous Poisson process, where the parametric baseline rate function is an INK rate

function.
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