• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.104.2017.tde-27032017-161141
Document
Auteur
Nom complet
Breno Silveira de Andrade
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2016
Directeur
Jury
Andrade Filho, Marinho Gomes de (Président)
Ehlers, Ricardo Sandes
Franco, Glaura da Conceição
Herencia, Mauricio Enrique Zevallos
Viola, Márcio Luis Lanfredi
Titre en anglais
GARMA models, a new perspective using Bayesian methods and transformations
Mots-clés en anglais
Bayesian approach
Continuous distributions
Discrete distributions
Generalized ARMA model
Transformed generalized ARMA model
Resumé en anglais
Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents the GARMA model with discrete distributions and application of resampling techniques to this class of models. We also proposed The Bayesian approach on GARMA models. The TGARMA (Transformed Generalized Autoregressive Moving Average) models was proposed, using the Box-Cox power transformation. Last but not least we proposed the Bayesian approach for the TGARMA (Transformed Generalized Autoregressive Moving Average).
Titre en portugais
Modelos GARMA, uma nova perspectiva usando métodos Bayesianos e transformações
Mots-clés en portugais
Abordagem Bayesiana
ARMA generalizado
ARMA transformado generalizado
Distribuições contínuas
Distribuições discretas
Resumé en portugais
Modelos Autoregressivos e de médias móveis generalizados (GARMA) são uma classe de modelos que foi desenvolvida para extender os conhecidos modelos ARMA com distribuição Gaussiana para um cenário de series temporais não Gaussianas. Este trabalho apresenta os modelos GARMA aplicados a distribuições discretas, e alguns métodos de reamostragem aplicados neste contexto. É proposto neste trabalho uma abordagem Bayesiana para os modelos GARMA. O trabalho da continuidade apresentando os modelos GARMA transformados, utilizando a transformação de Box-Cox. E por último porém não menos importante uma abordagem Bayesiana para os modelos GARMA transformados.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-03-27
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.