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ABSTRACT

SALDANHA, M. H. J. Considerations and Possible Solutions to the Problem of Estimating
the Population Minimum with Applications to Earthquake Data. 2024. 125 p. Disserta-
cao (Mestrado em Estatistica — Programa Interinstitucional de P6s-Graduacdo em Estatistica) —
Instituto de Ciéncias Matemaéticas e de Computagao, Universidade de Sao Paulo, Sao Carlos —
SP, 2024.

A myriad of physical, biological and other phenomena are better modeled with semi-infinite
distribution families, in which case not knowing the populational minimum becomes a hassle
when performing parametric inference. This problem has not been directly discussed in the
literature thus far, but it is straightforward to devise a maximum likelihood solution (denoted
hereafter as “pure MLE”), and endpoint estimators proposed in the literature could also be used.
Although endpoint estimators are usually evaluated according to their bias and variance, in this
project we argue that these are not adequate metrics, so we discuss and use alternatives. We
then propose some solutions of our own, some of them aiming to achieve simplicity in terms
of their computational cost, and one method (what we call “maximum likelihood estimation
with parameter-dependent support,” or MLEPDS) where we estimate the population minimum
indirectly, by maximizing a modified likelihood function L(-| @) that shifts the sample by a
certain amount depending on #. Experiments demonstrate that the proposed MLEPDS method
outperforms both the pure MLE method as well as the approaches that use endpoint estimators
proposed in the literature. In particular, our method offers significantly better results in smaller
samples, which will surely be of use to many practitioners out there who have to work with
limited data. The dissertation is concluded with an application of the proposed MLEPDS
method to predict the maximum magnitude of earthquakes. The probability distribution of
earthquake magnitudes is subject to a lot of discussion in the literature; Kijko (2004) describes a
few options, which we modify appropriately for use in the MLEPDS method, with which we
estimate maximum magnitudes. The regions of Japan, New Zealand, Balkan peninsula and
worldwide are analyzed. Experiments show that our method overall gives higher estimates for
the maximum magnitude than two other methods inspired by the literature, and also displays an
apparent sensitivity in the year-by-year analysis, indicating that it manages to better capture and

understand the underlying changes in seismic activity.

Keywords: endpoint estimation, maximum likelihood estimation, extreme value theory, extreme

quantile estimation, earthquakes.






RESUMO

SALDANHA, M. H. J. Consideracoes e Possiveis Solucoes para o Problema da Estimacao
do Minimo Populacional com Aplicacoes em Dados de Terremotos. 2024. 125 p. Disserta-
cao (Mestrado em Estatistica — Programa Interinstitucional de P6s-Graduacdo em Estatistica) —
Instituto de Ciéncias Matemaéticas e de Computagao, Universidade de Sao Paulo, Sao Carlos —
SP, 2024.

Existem indmeros fendmenos fisicos e bioldgicos (e de outras dreas da ciéncia) que sdo
inerentemente mais bem modelados se forem utilizadas familias de distribui¢des com suporte
semi-infinito, caso em que o desconhecimento sobre o minimo populacional torna-se um obstaculo.
Esse problema ainda nao foi discutido de forma clara na literatura, mas € razoavelmente direta
a constru¢ao de uma solu¢do por maxima verossimilhanga (denotada “método MLE puro”),
e também ha na literatura os estimadores de endpoint, que também podem ser utilizados.
Porém, apesar da literatura comparar tais estimadores por meio de seus biases e variancia, aqui
argumenta-se que essas métricas nao sejam adequadas ao propdsito dessa dissertacdo, e portanto
sao discutidas algumas alternativas. Em seguida, sdo propostas solu¢des para o problema,
algumas delas objetivando a simplicidade computacional, e uma, que chamamos de “maximum
likelihood estimation with parameter-dependent support” (ou MLEPDS), que maximiza uma
fun¢do modificada de méaxima verossimilhanca L(- | §). Experimentos demonstram que o método
MLEPDS consegue resultados melhores do que o método MLE puro, assim como as abordagens
que utilizam estimadores de valor extremo propostos na literatura. Em particular, o método
MLEPDS oferece melhores resultados em pequenas amostras, o que € de grande utilidade para
estatisticos que trabalham com quantidade limitada de dados. Essa disserta¢do é concluida
com uma aplicacdo do método MLEPDS para predizer a mdxima magnitude de terremotos.
A distribui¢do de probabilidade da magnitude dos terremotos € sujeita a muita discussao na
literatura; Kijko (2004) descreve algumas opg¢des, as quais modificamos apropriadamente para
uso com o método MLEPDS e possibilitar a estimagdo da magnitude maxima de uma dada
regido. As regides do Japao, Nova Zelandia, peninsula Balcanica e do globo terrestre como um
todo sdo analisadas. Os experimentos demonstram que o método MLEPDS, em geral, retorna
estimativas mais altas para a magnitude méxima, quando comparado com os dois outros métodos
inspirados na literatura, e apresenta também uma sensibilidade maior na andlise ano-a-ano,
indicando que o método tem capacidade de melhor capturar e entender as mudangas subjacentes

que eventualmente ocorrem na atividade sismica de uma regiao.

Palavras-chave: estimacdo do endpoint, estimacao por méxima verossimilhanca, teoria do valor

extremo, estimacao de quantis extremos, terremotos.
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CHAPTER

INTRODUCTION

In parametric inference, it is often the case that the underlying phenomenon is known
to have some population minimum, that is, its support is bounded from below. In these cases,
it becomes necessary to establish what will be considered as the population minimum, as is
often done (somewhat arbitrarily) for phenomena whose population minimum is clearly zero. In
more complex cases, this can be done by giving an educated guess for its value, or by adding the

population minimum as a parameter to be optimized by maximum likelihood estimation (MLE).

However, the former can be counterproductive, especially when there are multiple datasets
to be analyzed, as occurs in the case study that motivates this dissertation (see Section 1.1). The
latter option, on the other hand, often estimates the population minimum as being the the sample
minimum, which leads to poor performance; this could be seen as overfitting caused by adding
an extra parameter to the distribution family (ANDERSON; BURNHAM, 2004).

It is also often the case that the underlying probability distribution is known to have
population minimum zero, but with a long and shallow left tail; we demonstrate, further in this
document, that this case also causes problems for parametric inference, so much that taking a low
quantile as being the population minimum can actually increase the performance of inference, in
terms of the difference between the inferred model and the actual model. This project is intended

to investigate and attempt to bring better solutions to this problem.

In practice, complicated cases of the aforementioned problem happen frequently. In
survival analysis, for example, even though the data is always supported on a semi-infinite
interval, there is rarely sufficient evidence that the population minimum is indeed 0, and even if it
was, it is likely that the left tail would be long (LAWLESS, 2003).

An exception is data concerning failure count, which most of the times do not fall into the
problematic scenarios mentioned above; however, it holds for lifetime data, temperatures, sea and
river levels and flow rates (OKUNO; IKEUCHI; AIHARA, 2021), material resistance, fraction
apertures (MUSTAFAYEV; HAZLETT, 2019), execution time of programs (SALDANHA;
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SOUZA, 2019) etc (LAWLESS, 2003).

For illustration, the time between failures in a supply chain might follow a Weibull
with shape 8 = 10 and scale A = 80, in which case there is almost zero probability (9.5 - 107>,
more precisely) of observing a sample minimum lower than 20 in a sample of size 100, so the
statistician would never have certainty that the population minimum was indeed zero. Another
example would be the time of a flight from Tokyo to Toronto, which clearly has a certain positive
minimum value given by the natural limitations of airplane speed. These examples illustrate the
two cases distinguished above: one when the underlying random variable has a long left tail; the

other, when its support is [, o) for some unknown m > 0.

In both cases, one would perform inference using positively supported distributions (e.g.,
gamma, lognormal, Weibull), maybe after subtracting the experimental data by a certain value
1 that the statistician believes is the theoretical minimum of the underlying distribution. If
the underlying distribution has a long left tail, then optimizing the likelihood is made difficult
by the necessity of providing it with adequate initial conditions. Of course, simple models
can be given initial conditions based on method of moments, but the same cannot be said
about more complex models such as generalized versions of gamma and Weibull (STACY;
MIHRAM, 1965; MUDHOLKAR; SRIVASTAVA, 1993), nested models (e.g., Kumaraswamy-
and logistic-generalized distributions (CORDEIRO; CASTRO, 2011; TORABI; MONTAZERI,
2014)), mixture models (LINDSAY, 1995) etc.

A problem arises here when choosing models by maximizing likelihood or some
information criteria for model selection (ANDERSON; BURNHAM, 2004). The chosen model
might be far from the actual model due to an unrealistic assumption of the population minimum,
or due to difficulties in the mathematical optimization caused by the necessity of initial conditions
that could not be anticipated by the experimenter. One consequence would be biased conclusions
in favour of simpler models, which are less prone to optimization issues due to bad initial
conditions; in other words, it might effectively render usage of complex models useless. We thus

argue that the sample should be modified in some way in order to avoid these issues.

In this project we attempt to devise methods with as much theoretical support we can
leverage, using results from nonparametric statistics (e.g., law of iterated logarithm), extreme
value theory (EVT) and properties of the maximum likelihood estimator. Nonetheless, we are
also considering giving room to informal reasoning, in the style of how 25 (or 30) is accepted as
a sufficient sample size for the central limit theorem to usually hold (WALPOLE et al., 1993), or
how the whiskers of a box-plot usually serve as a good detector of outliers (HOAGLIN, 2003).
We argue that methods to cope with the problem in question must comply with the following

objectives:

* avoid the need for case-by-case analysis to “guess” the population minimum;
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Figure 1 — Ideal scenario for performing inference simultaneously over the multiple data sets (in our
particular case, sets of execution times). The experimenter has collected data from a number
of different phenomena whose underlying probability distribution is believed to belong to a
certain family & (a, 8, ¥, §). We then would like to infer a;, B;, v;, 6; for each experiment. For
computational maximization of the likelihood, a grid of initial parameters is necessary, and in
the ideal scenario, the grid of initial parameters is the same, and works well, for all data sets.

Source — Prepared by the author.

* make it possible to recycle the same grid of initial parameters for performing inference

over multiple datasets;

* obtain higher overall performance over multiple models and datasets (performance metrics

will be discussed in Section 4.1);
* serve as a good initial value for inferring the population minimum by MLE; and

* increase the computational complexity of MLE as little as possible.

There does not seem to exist approaches, for the problem outlined above, that manage to
comply with these objectives. The estimators found either require assumptions in the underlying
distribution of the random variable, such as in (VALK; CAI, 2018; DREES et al., 2003;
DEMOULIN; GUILLOU, 2018), or they are computationally expensive, often due to usage of
resampling techniques (e.g., Dong and Nakayama (2017), Kala (2019), Minasny and McBratney
(2006), Liu and Yang (2012)). A more comprehensive overview of related work is deferred to
Chapter 3.

1.1 Motivation

In this chapter’s opening, we mentioned various problematic scenarios to which we would
like to make a contribution to. We ourselves have faced one of these problems in a previous
project (SALDANHA, 2020) whose results were published recently (SALDANHA; SUZUKI,
2021). In that project, we were interested in determining the probability distribution for the
execution time of computer programs. Obviously, the random variable in question here has a
population minimum 7 > 0 that is unknown, since the time to execute each computer instruction
is lower bounded by some value; if anything, one could use the speed of light to give a rough

estimate of this value, which is not negligible.
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The execution time of programs is a key element in certain fields of computer science;
one of them is the now widely known field of cloud computing, which most users of smartphones
and laptops use in some way or another (TANENBAUM; BOS, 2015). However, running the
same program multiple times yields different time measurements, which calls for a probabilistic

treatment of the problem.

This is heavily neglected in the literature concerning cloud computing, which often
considers only the expected value of execution times (PANDA; JANA, 2015; RODRIGUEZ;
BUYYA, 2014; ZUO et al., 2015; XAVIER; ANNADURAI, 2019; TANG et al., 2015), or
conveniently assuming that they are normal, uniform or exponential (SUJANA et al., 2019;
HAIDRI; KATTI; SAXENA, 2019; SHESTAK et al., 2008; CHEN et al., 2016; ZHENG;
SAKELLARIOU, 2013) without further discussing whether these are reasonable assumptions.

The objective of our previous project was to contribute to this field (the stochastic
branch of cloud computing) by determining the distribution family that best models execution
times. The Weibull distribution is likely the most frequently used for lifetime data (LAWLESS,
2003), because we know a posteriori that it is a suitable model for many lifetime scenarios; in a
similar manner, why can we not have a distribution family that is reasonably suitable for most
scenarios of execution times? In (SALDANHA; SUZUKI, 2021) we argue that the exponentiated
Weibull MUDHOLKAR; SRIVASTAVA, 1993) is one such family.

A number of problems were faced during the process of finding such a distribution. We
had executed different algorithms in different machines, and obtained 37 sets of 1000 execution
times, upon which parametric inference had to be performed. Naively considering the population
minimum to be zero for all these sets was out of question, as it led the more complex distribution
families to poorly fit the data due to convergence issues of the underlying optimization algorithm;
this is illustrated in Figure 2. Namely, the generalized gamma (STACY, 1962), exponentiated
Weibull MUDHOLKAR; SRIVASTAVA, 1993), odd log-logistic generalized gamma (OLL-
GG) (CORDEIRO et al., 2017), and the Kumaraswamy complementary Weibull geometric
(KW-CWG) (AFIFY et al., 2017) distributions, which have 3 or more parameters, suffered from

severe convergence problems.

The convergence problems could be solved by looking at each set of 1000 execution
times individually, and handcrafting a suitable grid of initial parameters for each of them. We
were not interested in such a solution, as it would take a lot of manual effort, and thus would
go against the objectives posed in this chapter’s opening. We wanted parametric inference to
work well for all sets of execution times, using a single standard grid of initial parameters (see

Figure 1). In order to do this, it was necessary to deal with the unknown population minimum .

‘We could not find, in the literature, a theoretical discussion on this sort of “simultaneous
parametric inference” with an existing mathematical language that we could use here. Therefore,
in order to use existing concepts, we formulate the problem as multivariate parametric inference,

although this might transmit a different idea as to what our objective really is.



1.1. Motivation 23

=
©

———— O -GG
—— e Kw-CWG
— s G.Gamma
- == = EWeibull

———— Gamma
— e \Neibull
s s Normal
= == = TNormal

Lognormal
= =
w w
= =
@ a
[a [a
I T T T T 1 r T T T T l
0.92 0.93 0.94 0.95 0.96 0.97 0.92 0.93 0.94 0.95 0.96 0.97
Execution Time (s) Execution Time (s)
- ] —— GAMMA - o O L-GG
@ 7 e \Neibull = — K W-CWG
s e Normal — e (G, Gamma
== w= = T Normal = == = EWeibull
- Lognormal
(=2 <o _
w (=]
LN,
b Y
= - =
2 g 2
AN e \ 8 %7
] \ 8
o - =
T T T T 1 T T T T 1
0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04
Execution Time (s) Execution Time (s)

Figure 2 — Example of convergence problems faced during our previous project. The histograms on the
top show a bad inference result that happened when naively assuming the population minimum
to be zero. On the bottom is shown a possibly more reasonable inference obtained after using a
better estimate for the population minimum, though it might not be good that the estimated
population minimum is so near the sample minimum.

Source — Prepared by the author.

The 37 sets of 1000 execution times can be organized as a matrix with terms x;;
corresponding to the j-th execution time obtained for the i-th program experimented with. Each
row i is thus a sample from a certain random variable X; with density f;(x | 6;), each 8; possibly

having different dimensions.

By assuming that each experiment is independent from each other, and that the execution
times obtained in each experiment are independent and identically distributed (iid), the log-

likelihood then becomes:

1(6y,...,0;) =log 1—[ fi (it Xi2s + oy Xin | 07)

1<i<k

k
= > log (fi (xi1 16:) - fi (xia | 60) - ...« f; (xin | 6:)
i=1
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k
:Zuei),

where n is the number of measurements made in each experiment, and k& the number of

experiments.

Note that in our case we want to use the same distribution family for all experiments,
which is equivalent to dropping the subscript in the functions f; (but keeping the subscripts of

0)). Since it is true that:

argmax {a(x) + b(y)} = argmax {a(x)} x argmax {b(y)},
(x.y) x y

then we have:

argmax {/(01,...,0;)} =argmax {/(61)} x argmax {[(03)} X --- x argmax {[(6¢)},
] 0, a9, 0

1reesOk k

which gives the theoretical the basis to state:

1. the optimal parameters €1, . .., 8 can be obtained by optimizing each experiment sepa-

rately; and

2. the maximum likelihood for using the same distribution family on all experiments is

equivalent to the sum of the maximum likelihood obtained for each experiment separately.

This gives a metric to compare the performance of different distribution families on all experiments;

it suffices to sum the maximum likelihoods it obtained in each experiment.

It was by this reasoning that we argued in (SALDANHA; SUZUKI, 2021) that the
exponentiated Weibull was superior to the other families tested. However, we had used an
estimator for the population minimum that might be suboptimal, whereas the theoretical
formulation above assume that the support of the distributions are correct. Therefore, having a
good estimator for the population minimum is imperative, and in this project we aim to investigate

this issue more thoroughly.

1.2 Obijectives

Considering the discussion above, the general objective of this dissertation is thus
to investigate the problem of performing parametric inference while (ideally) fulfilling two
objectives simultaneously: (i) inferring the distribution of the data, and (ii) estimating a left
endpoint that is as close as possible to the real population minimum; while also paying attention

to the computational cost of each solution to the problem.
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The specific objectives are: (i) devise solutions to the estimation problem mentioned in
the general objective, (ii) find methods in the literature that could be used, even if adaptations
are necessary, (iii) devise a way to compare different methods, preferably with a metric that can
correctly classify the different methods in terms of how well they achieve the two objectives
mentioned in the general objective,(iv) perform simulation experiments comparing the proposed
solutions with methods taken from the literature, evaluating the results using the metrics devised
in item (iii), and (v) use the methods that had best performance in the experiments to analyze and
forecast earthquake magnitudes.

1.3 The Problem of Earthquake Prediction

Frequent seismic events of considerable magnitude lead to significant casualties and
substantial economic damages. Even with thorough preparation, developed nations remain
vulnerable to the devastating impacts of earthquakes measuring M8.5! or higher (STEIN;
WYSESSION, 2003).

The inability to accurately forecast earthquakes stems from several factors. Primarily,
our understanding of the mechanisms behind strain energy accumulation on faults remains
limited. Fundamental processes like mantle convection are not fully comprehended, with only
a few compelling geoscientific theories, such as the “plume tectonics” theory, offering some
insight (YUEN et al., 2007; LARSON, 1991).

Given the complex nature of earthquakes, a stochastic approach is essential for analysis
and potential forecasting. This makes earthquakes one of the most important use-cases of methods
to estimate extreme values while also inferring the underlying distribution. Therefore, this

dissertation also aims to apply the investigated methods to earthquake data.

1.4 Outline of this Document

This document is organized as follows. We begin by giving an overview, in Chapter 2,
of the main research fields related to our project, namely extreme value theory (Sections 2.1
and 2.3) and quantile estimation (Section 2.2), although they are both tightly interconnected.
In Chapter 3 we present all the relevant related work we could find; although the problem of
parametric inference with unknown population minimum has not been discussed directly yet (to
the best of our knowledge), we were able to find a decent number of proposed techniques that
could be used to solve the problem. Is any of these methods better than the natural solution to the
problem, that is, better than inferring the population minimum by MLE? Also, what performance
metric should we use for such comparison? We tackle these questions in Chapter 4, where we

also discuss our own proposed solutions to the problem. More specifically, in Sections 4.1 and

' M stands for magnitude, with no specification of the particular method to calculate it.
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4.2 we present and discuss the performance metrics we intend to use; our proposed methods are
discussed in Section 4.3; and preliminary experiments are given in Section 4.4. Chapter 5 shows
applications of the estimators discussed throughout the dissertation to the field of seismology.

Finally, concluding remarks are given in Chapter 6.
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CHAPTER

THEORETICAL FOUNDATION

This chapter gives an overview of theoretical topics and research fields that are related
to the main objective of this dissertation which revolves mainly around extreme value theory,
the field that investigates the asymptotic distribution of the sample minimum, which leads to
interesting subfields such as extreme quantile estimation and even estimation of the population

minimum (also called endpoint estimation).

2.1 Extreme Value Theory

Fisher and Tippett (1928) and Gnedenko (1943) brought forth important asymptotic
results concerning sample minima and maxima. What is known as the Fisher—Tippett—-Gnedenko
(FTG) theorem gives an asymptotic distribution to both extreme order statistics, in a similar
fashion as the central limit does to the sample mean. This theorem gives hope that we are
able to study (and maybe foresee) extreme events before they are observed in practice, which
is of particular importance when it comes to natural disasters such as earthquakes and floods.
Extreme value the