ESTUDO DA DEMANDA DE ÁGUA DO FEIJOEIRO

(Phaseolus vulgaris L) Var. Goiano Precece

CARLOS RAMIREZ FRANCO DA ENCARNACAO
Pesquisador da Empresa Pernambucana de
Pesquisa Agropecuária - IPA

Orientador: Nilson Augusto Villa Nova

Dissertação apresentada à Escola Superior de Agriculuta "Luiz de Queiroz", da Universidade de São Paulo, para obtenção do título de Mestre em Agrometeorologia.

PIRACICABA
Estado de São Paulo - Brasil
Janeiro, 1980
A
meus pais
meus irmãos
minha sogra
meus parentes
meus amigos,
por tudo de bom que me propiciaram,

D E D I C O

À minha filha RENATA,
principal motivação de minha existência,
e à compreensão, apoio e incentivo
de minha esposa VILMA

O F E R E Ç O
AGRADECIMENTOS

Ao término deste trabalho, agradeço às seguintes pessoas e entidades:

- Prof. Dr. NILSON AUGUSTO VILLA NOVA, pelo apoio, estímulo e orientação precisa em todas as diferentes fases deste trabalho.

- Coordenação do Curso de Pós-Graduação em Agrometeorologia, na pessoa do Prof. Dr. JESUS MARDEN DOS SANTOS, pela organização da infra-estrutura que possibilitou a execução desta pesquisa.

- Prof. Dr. HUMBERTO DE CAMPOS, pela orientação na análise estatística dos resultados.

- Demais Professores do Departamento de Física e Meteorologia e outros Departamentos, pela contribuição à minha formação.

- Empresa Pernambucana de Pesquisa Agropecuária - IPA - pela oportunidade concedida.

- Engenheiros Agrônomos FRANCISCO DO CARMO FILHO, ÍTALO AUGUSTO DE SOUZA ALBÉRIO, MIGUEL ANGELO MANIERO, NORBERTO VILAS BOAS DA SILVA, pela colaboração dentro e fora do Curso.

- Demais colegas do Curso de Pós-Graduação em Agrometeorologia, pela convivência amiga no transcorrer deste.
Índice

<table>
<thead>
<tr>
<th>Seção</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RESUMO</td>
<td>1</td>
</tr>
<tr>
<td>2. INTRODUÇÃO</td>
<td>3</td>
</tr>
<tr>
<td>3. REVISÃO DE LITERATURA</td>
<td>5</td>
</tr>
<tr>
<td>4. MATERIAL E MÉTODOS</td>
<td>19</td>
</tr>
<tr>
<td>4.1. Material</td>
<td>19</td>
</tr>
<tr>
<td>4.1.1. Área Experimental</td>
<td>19</td>
</tr>
<tr>
<td>4.1.2. Solo e Preparo</td>
<td>21</td>
</tr>
<tr>
<td>4.1.3. Cultura</td>
<td>21</td>
</tr>
<tr>
<td>4.1.4. Evapotranspirômetros a Nível de Lençol Freático Constante</td>
<td>21</td>
</tr>
<tr>
<td>4.1.5. Equipamentos Complementares</td>
<td>22</td>
</tr>
<tr>
<td>4.1.5.1. Tanque "Classe A"</td>
<td>22</td>
</tr>
<tr>
<td>4.1.5.2. Pluviômetro</td>
<td>22</td>
</tr>
<tr>
<td>4.1.5.3. Anemômetro</td>
<td>22</td>
</tr>
<tr>
<td>4.1.5.4. Heliógrafo</td>
<td>24</td>
</tr>
<tr>
<td>4.1.5.5. Termohigrógrafo</td>
<td>24</td>
</tr>
<tr>
<td>4.2. Metodologia</td>
<td>24</td>
</tr>
<tr>
<td>4.2.1. Operação dos Evapotranspirômetros</td>
<td>24</td>
</tr>
<tr>
<td>4.2.2. Determinação da Área Foliar e do Peso Seco</td>
<td>25</td>
</tr>
<tr>
<td>4.2.3. Irrigações Complementares</td>
<td>25</td>
</tr>
<tr>
<td>4.2.4. Considerações sobre Kp, ET₀, ETm e Kc</td>
<td>26</td>
</tr>
<tr>
<td>4.2.5. Determinações Fenológicas</td>
<td>26</td>
</tr>
<tr>
<td>4.2.6. Processos de Estimativa de ET₀</td>
<td>27</td>
</tr>
<tr>
<td>4.2.6.1. Método de Penman</td>
<td>27</td>
</tr>
<tr>
<td>4.2.6.2. Método da Radiação Solar</td>
<td>28</td>
</tr>
<tr>
<td>4.2.6.3. Método do Tanque "Classe A"</td>
<td>29</td>
</tr>
<tr>
<td>4.2.6.4. Método de Linacre</td>
<td>29</td>
</tr>
</tbody>
</table>
5. RESULTADOS .. 31
 5.1. Relativos ao Desempenho do Conjunto Lisimétrico 31
 5.1.1. Condições Operacionais 31
 5.1.2. Precisão de Medidas 32
 5.1.3. Condições de Desenvolvimento das Plantas 32
 5.2. Relativos aos Valores de ET₀ Estimados Através dos Diferentes Métodos ... 33
 5.3. Relativos aos Valores de ETm Medido e Obtidos Através de Estimativas ... 33
 5.4. Relativos aos Valores de Kc Sugeridos pela FAO (1979) e Estimados Através de Diferentes Métodos 33

6. DISCUSSÃO .. 40
 6.1. Dos Resultados Relativos ao Manuseio dos Evapotranspirômetros ... 40
 6.1.1. Obstrução pela Argila na Entrada do Tanque 40
 6.1.2. A Fixação das Coberturas de Plástico 40
 6.1.3. Penetração de Água da Chuva 40
 6.1.4. Utilização de Fertilizantes 41
 6.2. Dos Resultados Relativos aos Métodos da Estimativa de ET₀ ... 41
 6.3. Dos Resultados Relativos às Determinações de Kc, Kc₁, Kc₂, Kc₃, Kc₄ .. 42
 6.4. Dos Resultados Relativos aos Valores de ETm Medido e Estimado ... 44

7. CONCLUSÕES ... 46

8. SUMMARY ... 48
9. LITERATURA CITADA .. 50

10. APÊNDICE ... 56

 Tabela A1 - Valores de Δ/y entre 1 e 40°C 57

 Tabela A2 - Radiação solar recebida no limite mais externo da atmosfera no 15º dia de cada mês, entre latitudes 10ºN - Equador e 40ºS (Valores de Q₀, em cal/cm². dia) ... 58

 Tabela A3 - Valores do fator de ajuste (W) para estimativa de ET₀(*) em relação à temperatura e altitude 59

 Tabela A4 - Coeficiente angular de ajuste para estimativa de ET₀ em relação à velocidade do vento (u) e umidade relativa (UR). Transcrito de "Yield Response to Water", FAO (1979) ... 60

 Tabela A5 - Valores do coeficiente de conversão do Tanque "Classe A" (Kp), para estimativa da evapotranspiração potencial (ETP) ... 61

 Tabela A6 - Duração máxima da insolação diária em horas, nos vários meses do ano e latitudes de 10 graus norte e 40 graus sul. Os valores correspondem ao 15º dia de cada mês ... 62
1. RESUMO

No presente trabalho, objetivou-se desenvolver um tipo de evapotranspirômetro a nível de lençol freático constante, que permitisse determinar, a baixo custo, com finalidades práticas, o consumo de água em condições de otimização da cultura do feijoeiro.

Simultaneamente a estas determinações, estimativas de evapotranspiração através de referência pelos métodos de Penman, Radiação, Tanque Classe A, recomendados pela FAO (1979) e o proposto por LINACRE (1977) foram realizadas, e seus resultados comparados através de análise estatística, a qual não revelou diferença significativa entre os métodos de Penman (M₁) e Tanque Classe A (M₂), e nem entre os métodos da Radiação (M₃) e o de Linacre (M₄), diferindo, entretanto, (M₁) e (M₂) de (M₃) e (M₄).

Valores de Kc (coeficiente de cultura), igualmente recomendados, foram comparados aos estimados através dos diversos métodos
propostos e a análise estatística revelou que a determinação de \(K_c \) através do Tanque Classe A foi a única que não diferiu significativamente do padrão recomendado.

Observações sobre área foliar e matéria seca elaborada foram realizadas revelando condições superiores de desenvolvimento e produção dentro do evapotranspirômetro, cujo projeto e manuseio são também descritos no trabalho.
2. INTRODUÇÃO

É fato reconhecido que o limite superior de produção de uma espécie qualquer depende, além do potencial genético, das disponibilidades edáficas e climáticas. Desde que a precipitação pluviométrica se constitui no elemento de clima de maior variabilidade, na maioria dos casos, é a disponibilidade natural de água o fator que determina a máxima produção possível para dado local e variedade.

Em termos de irrigação, complementar ou não, para que se possa fazer uso eficiente de água, faz-se necessário conhecer não só a demanda de cada espécie, como a época correta de aplicação. Vários são os métodos existentes e que se propõem a resolver o problema de quanto e quando aplicar água. Alguns processos são complexos demais para serem utilizados na prática cotidiana, outros, de menor precisão, mas consagrados pela alta viabilidade de utilização, são comumente empregados.

Numa recente pesquisa da F.A.O. (1979), um consenso de
especialistas selecionou alguns métodos considerados viáveis tanto pela precisão como pela praticidade.

No presente trabalho procurou-se julgar a eficiência de utilization desses métodos na cultura do feijoeiro (*Phaseolus vulgaris*) var. goiano precoce, em condições climáticas locais. Para isto, desenvolveu-se um tipo de lisímetro a lençol freático constante, pelo qual, a demanda climática em cada fase do ciclo pode ser estimada com razoável precisão, tanto para servir de teste para o conjunto de métodos propostos, como para trazer informações sobre as necessidades potenciais de água ao longo do ciclo do feijoeiro.
3. REVISÃO DE LITERATURA

A transferência da água para a atmosfera realizada diretamente do solo e através dos tecidos vegetais, representa uma importante fase do ciclo hidrológico na natureza. Especificamente, em campos vegetados, os fenômenos de evaporação e transpiração são, na maioria das vezes, considerados conjuntamente, recebendo a denominação de evapotranspiração. Este conceito foi introduzido na literatura por THORNTHWAITE (1944), que definiu como evapotranspiração potencial a perda de água de uma superfície de solo úmido, completamente coberta por vegetação em fase de desenvolvimento ativo e de dimensões suficientemente grandes de modo a minimizar os efeitos de oásis. Para o mesmo autor, quando essas condições não são satisfeitas, tem-se a evapotranspiração real.

A partir destes conceitos, houve a proliferação de inúmeros trabalhos visando quantificar estes fenômenos através de medidas de campo, estimativas por modelos teóricos e correlações com elementos do clima.
Para Penman (1963), a evaporação total de uma área cultivada está dividida em três partes:

1. Evaporação da água interceptada pela vegetação
2. Transpiração
3. Evaporação do solo.

Bahrani e Taylor (1961) consideram que a evapotranspiração é uma função da evapotranspiração potencial que representa os fatores da demanda evaporativa e da umidade do solo que condicionam a transpiração e que a demanda evaporativa é uma função de vários fatores meteorológicos como a radiação líquida, velocidade do vento, temperatura, umidade e energia advectiva. Os mesmos autores afirmam que, quando os fatores da planta são constantes e favoráveis à transpiração máxima, a evapotranspiração depende de dois grupos de fatores intimamente relacionados:

- aqueles que afetam a disponibilidade de calor na superfície
- aqueles que afetam a disponibilidade de água para a evaporação da superfície do solo e do tecido foliar.

Para Thornthwaite (1948), a taxa de evapotranspiração é função do clima, do suprimento hídrico do solo, da cobertura vegetal e do manejo do solo, sendo que os dois primeiros se mostram como os mais importantes. Para o mesmo autor, quando o suprimento de água aumenta, como por exemplo, num projeto de irrigação em um deserto, a evapotranspiração alcança um máximo em função unicamente do clima, a qual ele denomi
na de evapotranspiração potencial, que é diferente da evapotranspiração atual.

TANNER e LEMON (1962), avaliando a energia radiante utilizada na evapotranspiração, dividem os fatores que influenciam a conversão desta energia em:

1. Umidade do solo e a condução capilar
2. Fatores da planta que afetam o transporte de água do solo para a atmosfera e que incluem a arquitetura da planta, o desenvolvimento do sistema radicular e variações fisiológicas
3. Em alguns casos, a advecção do calor sensível, sendo esta ocasionada pela secagem diferencial da área circundante.

Inúmeros experimentos conduzidos demonstraram que a radiação líquida é a principal fonte de calor para a evapotranspiração. SUOMI e TANNER (1958) dividem a radiação líquida, quanto à sua utilização, em três partes:

- aquecimento do ar
- aquecimento do solo
- energia empregada na evaporação da água.

Em regiões áridas, uma área irrigada pode receber energia adicional para evaporar água através do ar que sopra da região seca para a úmida (BAHRANI e TAYLOR, 1961); para os mesmos autores, em um campo agrícola bem irrigado, onde existe um alto potencial de umidade ao redor
das raízes absorventes, mais de 80% da radiação líquida é utilizada para a evapotranspiração e existe uma correlação íntima entre evapotranspiração e radiação líquida, mesmo que em algumas vezes possa haver mais evaporação do que o esperado, utilizando toda a radiação líquida daquele local.

ROSEMBERG (1974) afirma que, do total de água retirado do solo pela planta, apenas 1% é utilizado nas suas atividades metabólicas.

Embora a água seja limitante para o desenvolvimento vegetal, para FADL (1978) a habilidade da raiz em extrair água é temporariamente reduzida em condições de saturação.

Para determinar a evapotranspiração em condições de campo e em ambiente controlado, torna-se necessário desenvolver instrumentos que se destinem a estas quantificações. Esses equipamentos denominam-se lisímetros e servem de padrão comparativo para as estimativas através dos diferentes métodos (GANGOPADHYAYA, 1966). Evapotranspirômetros podem ser adaptados para permitir medidas de evapotranspiração potencial, desde que mantenham a umidade do solo na zona radicular próxima à capacidade de campo (THORNTHWAITE, 1965).

BLACK et alii (1968), estudando a construção, a calibração e testando um lisímetro hidráulico de precisão, observou que a evaporação diária do lisímetro comparada a dois métodos micrometeorológicos distintos, diferiu em 5%.

RITCHIE e BURNETT (1968), analisando a precisão do lisímetro de pesagem no campo, recomendam sua utilização, embora possa se utili
zar equipamentos menos precisos e de menor custo. Sugerem ainda a subs-
stituição do recipiente de concreto por recipiente de aço, o que evitará
a perda de água para o exterior.

GANGOPADHYAYA (1966), comentando a utilização dos evapo-
transpirômetros, afirma que estes estão sujeitos a limitações que ocor-
rem devido a si próprios e à sua localização. Considera, no primeiro
caso:

1a - Dimensões: têm que ser suficientemente representativas em área e
profundidade.

1b - Alteração das condições de temperatura e umidade: devido ao isola-
mento térmico do interior e à infiltração vertical junto às paredes, bem como a restrição à drenagem nas regiões próximas ao solo em estudo.

1c - Alteração devido às bordas: aumentando a turbulência, sendo este e-
feito mascarado pelo crescimento da vegetação.

1d - Alteração devido à espessura das paredes: que absorvem energia pro-
veniente da cultura e do solo.

1e - Outras limitações: o escoamento superficial no interior do lisíme-
tro não é representativo das condições de campo, porque não há movimento lateral da água.

1f - Alteração do solo quando do enchimento: modificando as caracterís-
ticas de retenção de umidade e de fluxo de calor.
1g - Influência devido à cobertura vegetal não ser representativa: ocasionando efeitos térmicos e de turbulência.

Considera, no segundo caso:

2a - Efeitos da localização: o solo utilizado não ser representativo da área, o evapotranspirômetro não está localizado no centro de uma área de cultura uniforme, no mesmo estágio de crescimento e com mesmo regime de água.

Para os mesmos autores, as medidas de evapotranspirômetros em regiões áridas mostram-se como antieconômicas por terem que ser feitas em grandes evapotranspirômetros, com grande capacidade de balanço e serem realizadas muitas medidas na mesma área, como também a dificuldade no estabelecimento da cultura. Afirmam ainda que:

- lisímetros de menor porte, embora com menor precisão, podem ser utilizados em pesquisas gerais e para fins práticos;

- os evapotranspirômetros volumétricos simples dão resultados úteis para fins práticos, se suas dimensões forem satisfatórias e em condições de irrigação ou chuvas frequentes;

- os efeitos de parede podem ser minimizados com a utilização de lisímetros com dimensões adequadas;

- o lisímetro de pesagem requer uma aferição correta para zerar a balança; já o de flutuação requer a eliminação dos efeitos da temperatura e da pressão na superfície líquida da câmara de flutuação.
Como em condições satisfatórias de umidade do solo a evapotranspiração passa a ser função do potencial da planta e dos elementos de clima (THORNTHWAITE, 1948), é possível, através de modelos matemáticos que englobem os elementos meteorológicos, a estimativa da evapotranspiração.

HALSTEAD e COVEY (1957), analisando alguns aspectos da evapotranspiração, consideram como possíveis fontes de erro para modelos empregados na estimativa da evapotranspiração, a suposição implícita ou explícita de que:

- o tamanho da área não é um fator limitante;
- a temperatura e a evapotranspiração só se correlacionam fisicamente;
- o efeito do vento pode ser determinado por sua velocidade em apenas um nível;
- valores médios podem ser usados em lugar de valores instantâneos.

THOMPSON e BOYCE (1967), medindo, na África do Sul, a evapotranspiração diária em cana-de-açúcar, através de lisímetro hidráulico com suprimento máximo de água, e os elementos meteorológicos acima da cultura, verificaram que a estimativa da evapotranspiração potencial através do método de Penman tendeu a ser menor do que o valor medido, tornando-se maior quando a advecção aparente foi maior. No mesmo trabalho, verificaram que a correlação obtida mais aproximada foi entre a evapotranspiração medida e a estimada através do Tanque Classe A, confirmando os resultados obtidos no Havaí e na África do Sul.

VAN BAVEL e HARRIS (1962), comparando resultados obtidos
entre evapotranspiração medida em grama bermuda (*Cynodon dactylon* L.) e milho através de lisímetro e estimada pela fórmula de Penman, pelo produto 0,8 x H, e através do nomograma de Penman, encontraram boa correlação entre os métodos de estimativa e os medidos, para períodos relativamente longos, decrescendo esta precisão à medida que se diminuiu o período.

GANGOPADHYAYA (1966) , analisando os modelos para a estimativa da evapotranspiração, conclui afirmando que os métodos combinados têm vantagem sobre as medidas de evapotranspirômetros através de perfis aerodinâmicos, métodos de balanço de energia ou métodos de correlação turbulenta, porque envolvem parâmetros de simples determinação e os seus resultados são suficientemente precisos para fins agronômicos.

PARMELE e McGUIinness (1974), comparando valores diários de evapotranspiração nas culturas de milho e trevo, medidas e estimadas em uma região úmida através dos métodos de Blaney-Criddle, Jensen - Haise, Christiansen, Penman, Van Bavel, Radiação Líquida, Mustanen - McGuinness, a nível diários, concordaram entre si.

GORNAT et alii (1977), medindo a evapotranspiração em cultura de beterraba e a evaporação em tanque Classe A, em períodos de 4 e 6 dias, durante seis meses, verificaram que a relação entre elas variou durante o ciclo de desenvolvimento da cultura. Esta variação mostrou-se independente do desenvolvimento das plantas e da cobertura do solo, dependendo, todavia, das condições de evaporação e, principalmente, do teor de umidade da camada superior do solo.

DENMEAD e McLROY (1970), determinando a evaporação não po
tencial em trigo, através de lisímetros e do balanço de energia, verificam que as diferenças entre elas variaram em torno de ± 0,1 mm.h⁻¹. Para eles, esta diferença foi da mesma ordem de grandeza do erro experimental, considerando que a evaporação pelo balanço de energia foi uma estimativa real da medida no lisímetro, afirmando ainda que este representou adequadamente a área experimental.

EKERN (1966), medindo a evapotranspiração em Grama bermuda (Cynodon dactylon) L. Pers., no Havaí, através de lisímetros de percolação e hidráulicos, verificou que, durante altas taxas de evaporação potencial, o uso consultivo de água pela grama foi essencialmente o mesmo que o do tanque Classe A, havendo pequenas deficiências na umidade do solo. Quando ocorreu o aumento na deficiência de água no solo, a grama ainda manteve altas taxas de uso de água, até mesmo quando a deficiência na umidade do solo excedeu a 1 bar. Mas foi incapaz de manter essas taxas quando a deficiência cresceu para 15 bars. Esse comportamento contrastou com o do solo nu ou com cobertura morta, os quais desenvolveram baixas taxas de evaporação quando a deficiência de umidade do solo variou entre 0 e 15 bars.

EVANS (1971), através de medida da evaporação na cultura do arroz, observou que a evaporação diária foi consideravelmente superior à radiação líquida, indicando forte advecção, atribuindo este fenômeno à natureza semi-árida da região onde o experimento foi conduzido e à alta rugosidade da cultura.

FRITSCHEN e SHAW (1966), correlacionando a evapotranspiração do milho com a evaporação do tanque Classe A, verificaram que, embora
as necessidades hídricas da cultura variem durante o seu ciclo, a utiliza-
ção do tanque Classe A mostra-se adequada à estimativa da evapotranspira-
ção para o cálculo da irrigação.

GRANT (1975), comparando valores obtidos de evaporação a-
través de vários métodos (aerodinâmico, balanço de energia, lisímetro de
pesagem e sonda de neutrons), em um campo de trigo, verificou ótima con-
cordância entre eles. Constatou ainda que, quando o valor da razão de
Bowen é baixo, o melhor método para medir a evaporação diária durante to-
da a estação de crescimento é o método do Balanço de Energia.

TANNER (1960), verificando a aproximação entre o balanço de
energia e a evapotranspiração de culturas, observou que, em regiões ú-
midas, a transferência de calor sensível para a superfície é pequena, e,
por isso, em condições de evapotranspiração potencial, esta se aproxima
da radiação líquida diária, enquanto que em regiões áridas, em solo bem
molhado, a evapotranspiração poderá atingir até o dobro da radiação líqui-
da. Para o mesmo autor, o balanço vertical de energia não é adequado
para a estimativa da evapotranspiração em pequenas áreas, afirmando ainda
que, devido aos erros inerentes de medida da umidade do solo, um valor
mais preciso da evapotranspiração não deve ser determinado para períodos
inferiores a 5 dias. Afirma-se que somente métodos micrometeorológicos
têm a vantagem de permitir estimativas da evapotranspiração em períodos
muito curtos (**TANNER, 1960; PARMELE e MCGUINNESS, 1974**).

PRUITT (1966), estudando a utilização do tanque Classe A
em métodos empíricos para a estimativa da evapotranspiração potencial,
a-
firma que, quando bem instalado, este equipamento se presta com grande
utilidade para este emprego e que dois problemas afetam sobremaneira a relação entre a evapotranspiração e a evaporação: o ambiente onde o tanque está localizado e forte advecção.

SLATYER (1956), relacionando a evapotranspiração com a umidade do solo em culturas de algodão e amendoim, observou que a evapotranspiração decresceu com a umidade do solo, confirmando as observações feitas por THORNTHWAIT (1948).

PRUITT e DOORENBOS (19??), comentando a necessidade de ajustar as equações empíricas utilizadas na estimativa da evapotranspiração a cada região onde for empregada, observou que a interação entre os diversos parâmetros incluídos, principalmente a distribuição do vento no período, défice de saturação e nível de radiação, podem subestimá-las de 20 a 40% ou superestimá-las em 200 a 300%.

FEDDES e ZARADNY (19??), correlacionando através de modelo matemático a umidade do solo com a evapotranspiração, concluíram ser possível obter-se resultados satisfatórios para posterior emprego em condições de campo.

Para PELTON et alii (1960), a temperatura média e a evapotranspiração potencial são altamente correlacionadas, porque ambas dependem da radiação. Assim, a evapotranspiração mensal estimada pelo método da temperatura média se apresenta como representativa.

Utilizando também a temperatura média e a temperatura do ponto de orvalho, LINACRE (1977) propõe um modelo matemático para estimar a evapotranspiração potencial.
No Brasil, algumas pesquisas têm sido realizadas. ORTO-LANI et alii (1966), correlacionando valores decendiais da evapotranspiração, medidos com valores estimados pelas fórmulas de Penman e de Thornthwaite, verificaram que a segunda subestimou em cerca de 9% a evapotranspiração no período, enquanto que a primeira superestimou em 2%.

CAMARGO (1966), realizando estudos comparativos entre evapotranspiração potencial medida em três localidades do Estado de São Paulo, e estimada através de quatro diferentes métodos (Thornthwaite, Blaney-Criddle modificado, Penman-Bavel e Blaney-Criddle original), constatou que os valores estimados pelos dois primeiros métodos se mostraram consistentes com os medidos, enquanto que os dois últimos evidenciaram discrepância. Para o autor, todos os métodos sobrestimaram os valores da evapotranspiração potencial no período de inverno e subestimaram no verão.

CURI (1972), relacionando medidas de evaporação em tanque IA-58 com estimativas da evapotranspiração através das equações de Thornthwaite e Camargo, para o município de Botucatu, determinou que não há correlação mensal significativa a nível de 5% entre estas variáveis, existindo, entretanto, uma correlação anual significativa das médias mensais no período entre a evaporação medida e a evapotranspiração estimada.

VAREJÃO SILVA (1977), correlacionando a variação total da água do solo (disponível à evapotranspiração) através do processo gravimétrico, em uma parcela de alfafa (Mendicago sativa) irrigada, com as perdas por evapotranspiração estimadas através de sete variantes do método de Penman, verificou que este método não se constitui no melhor processo para estimar a evapotranspiração desta cultura no Grumossolo do semi-árido
sub-médio São Francisco.

FURTADO DA SILVA et alii (1977), fazendo irrigação com base no valor encontrado pela multiplicação do total da água evaporada pelo tanque Classe A a cada 10 dias por 1,0; 0,85; 0,70 e 0,55, não encontraram diferença significativa entre as produções dos quatro tratamentos.

MILLAR et alii (1978), controlando a umidade do solo através da curva característica para potenciais matriciais iguais a -0,3; -1,0; -2,0; -3,0 e -5,0 bar, em camadas de 30 cm, a 1,20 m de profundidade, determinaram que, para produzir 80 e 90% do seu potencial, a cultura do tomate consome 510 e 570 mm no ciclo, respectivamente, e que a evapotranspiração acumulada no ciclo do tomate decresceu de 626 para 451 mm, à medida que o potencial matricial decresceu de -0,3 a -5,0 bar na camada de solo onde se localizou o sistema radicular da cultura.

NETO DE ASSIS (1978), estudando algumas relações entre evapotranspiração medida e estimada pela equação de Penman e pelo tanque Classe A, encontrou que a relação entre a evapotranspiração estimada e a medida em base diária para a região de Piracicaba é de 0,81. Para o autor, este valor se deve à advecção local, não computada pela equação de Penman. O mesmo autor verificou que as relações entre evapotranspiração medida e a evaporação do tanque Classe A, em períodos médios de não diferem daquelas de períodos diários, embora os coeficientes de correlação sejam diferentes.

ALBERIO (1979), objetivando simplificar os métodos de medida e de estimativa da evaporação da água e da evapotranspiração baseado
no tanque Classe A, no método de Penman e em evapotranspirômetros, verificou que os evapotranspirômetros dotados de sistema de registro mostraram-se eficientes para a determinação do comportamento diário da evapotranspiração potencial, apesar de, em algumas ocasiões, terem apresentado funcionamento irregular, porém, possibilitando detectar o pico máximo deste fenômeno durante o dia.

SILVA e MILLAR (1979), fazendo balanço hídrico em cultura de feijão-de-corda, para períodos de 3 dias e para uma profundidade de 30 cm, verificaram que a evapotranspiração acumulada durante todo o ciclo foi de 301 mm quando foram aplicados 466 mm de irrigação. Medidas feitas simultaneamente no tanque Classe A, deram um valor acumulado de 724 mm.

VILLA NOVA (1973), utilizando-se de um sistema de amostragem espacial de umidade e radiação líquida, determinou, através do método do balanço de energia, a evapotranspiração em cultura de arroz de sequeiro irrigado, obtendo valores bastante consistentes em escala horária, chamando atenção para as vantagens do método do balanço de energia sobre os outros métodos, quando empregado racionalmente.
4. MATERIAL E MÉTODOS

4.1. Material

4.1.1. Área Experimental

O presente trabalho foi conduzido no campo experimental, em uma área medindo 32,0 x 13,5 m, e na estação meteorológica do Departamento de Física e Meteorologia da Escola Superior de Agricultura "Luiz de Queiroz", na cidade de Piracicaba, Estado de São Paulo, cujas coordenadas geográficas são:

Latitude: 22°38'00" S
Longitude: 47°38'00" WGr
Altitude: 576 m

A figura 1 representa a planta baixa da Estação Meteorológica e da área onde foi conduzido o experimento.
Figura 1 - Localização do ensaio dentro da área experimental do Departamento de Física e Meteorologia - ESALQ/USP.
4.1.2. Solo e Preparo

O solo foi classificado como Terra Roxa Estruturada, série "Luiz de Queiroz" (Alfisol), segundo RANZANI et alii (1966).

No preparo do solo para o plantio, foi utilizada a adubação aos níveis de: 63 Kg/ha de P₂O₅ e 27 Kg/ha de N, distribuída em sulcos e as plantas foram espaçadas em 0,4m entre as linhas e 0,2m entre covas, com duas plantas cada.

4.1.3. Cultura

A cultura utilizada foi o feijão (Phaseolus vulgaris) Var. Goiano precoce, que apresentou um ciclo de duração de, aproximadamente, 75 dias.

4.1.4. Evapotranspirômetros ao Nível de Lençol Freático Constante

Esse instrumento consistiu de um tanque, confeccionado em chapa de ferro galvanizado 22 (AWG), reforçado nas bordas por cantoneiras de ferro com 1,5 cm de largura e 0,3 cm de espessura, devidamente impermeabilizado, pintado de branco, tendo lados com 1,0 e 2,0 m e altura igual a 0,5 m. Na parte inferior e central da parede lateral de maior comprimento, foi soldado um cano de cobre com o diâmetro de 1,0 cm, por onde se dava o abastecimento do tanque. Acoplada a este cano, uma mangueira de plástico de mesmo diâmetro o interligava a uma caixa de passagem controlada por um sistema de bóia com as dimensões de: 8,0 x 15,0 m de base, e 10,0 cm de altura, que, por sua vez, foi acoplada a um recipiente de PVC.
através de uma mangueira de igual diâmetro que funcionava como abastece-
dor, cujas dimensões eram 25,8 cm de diâmetro e 50,0 cm de altura, ao qual
foi associada uma escala graduada em função do volume de água requerido
pela superfície de exposição do sistema (Figura 2).

4.1.5. Equipamentos Complementares

Para a estimativa da evapotranspiração potencial, através
dos métodos incluídos no presente trabalho, e para informações complementa-
tares, foram utilizados os seguintes instrumentos:

4.1.5.1. Tanque "Classe A" - Tanque de formato cilíndrico,
confeccionado em chapa de ferro galvanizado Nº 22 (AWG), com 1,20 m de di
âmetro e 0,25 m de profundidade, tendo como acessórios para as leituras
um poço tranquilizador convencional, nivelado por três parafusos calantes
e um micrômetro com uma precisão de medida do nível da água de até 0,02
mm, sendo este assentado sobre o poço tranquilizador quando da
realização das leituras. Entre o tanque e a superfície do solo, foi
colocado um estrado de madeira, pintado de branco, de modo que a
distância entre o fundo do tanque e a superfície do solo era igual a 0,15m.

4.1.5.2. Pluviômetro - Tipo HH, com leitura efetuada
em proveta graduada em mililitros, sendo, posteriormente, convertida em
milímetros.

4.1.5.3. Anemômetro - Integrador de fabricação FUESS,
modelo 91g, instalado a uma altura de 2,0 m da superfície do
solo.
Figura 2 - Conjunto Evapotranspirométrico
4.1.5.4. Heliôgrafo - Campbell - Stokes, de fabricação FUESS, modelo 96c.

4.1.5.5. Termohigrógrafo - De fabricação FUESS, modelo 159r, de rotação semanal, com precisão de ±5% para Umidade Relativa e ±1% para Temperatura, devidamente calibrado.

4.2. Metodologia

4.2.1. Operação dos Evapotranspirômetros

As leituras de evapotranspiração eram feitas diariamente às 07 e 18 horas, nas duas unidades, nas quais o lençol freático era mantido constante a 0,4 m da superfície do solo.

Devido à evapotranspiração, havia uma tendência de abaixamento do lençol freático. Esse abaixamento, de acordo com o princípio dos vasos comunicantes, era transmitido à caixa de passagem, onde uma bóia era acionada, propiciando o reabastecimento do evapotranspirômetro. A quantidade de água requerida nesse processo era igual à evapotranspirada pela superfície ao fim de cada período. No reservatório, um tubo de vidro com 0,8 cm de diâmetro, colocado na vertical e solidário a uma escala graduada, permitia a leitura direta do total diário; pois, às 07 horas, o reservatório era abastecido até ficar zerado. A escala do reservatório era graduada em milímetros e, por ocasião da leitura, utilizava-se um nônio de precisão igual a 0,1 mm, confeccionado em plástico transparente e devidamente adaptado ao tubo de vidro. A superfície vegeta
da do evapotranspirômetro era devidamente protegida da chuva por uma cobertura feita em madeira e plástico transparente, medindo 2,5 x 1,5 m, as sentada em 4 suportes de ferro com 0,7 cm de diâmetro, os quais possibilitavam sua colocação em duas alturas, respectivamente, 0,30 e 0,50 m. Essas cobertas eram imediatamente retiradas após as chuvas, permanecendo a superfície o máximo de tempo exposta.

4.2.2. Determinação da Área Foliar e do Peso Seco

Foi utilizada, para a determinação da área foliar, um vaza dor de área conhecida igual a 26,6 cm².

Correlacionando o peso referente a esta área, com o peso das folhas, obteve-se a área foliar para cada planta.

Para a determinação do peso seco, o material foi colocado em estufa a 105°C, até apresentar peso constante, posteriormente pesado em balança de precisão de 0,01 g. Para isso, foram utilizadas 2 plantas de cada lisímetro, eleitas ao acaso, e 4 plantas da área externa, também tiradas ao acaso.

4.2.3. Irrigações Complementares

Esta prática foi utilizada sempre que o solo se apresentava como seco, sem que as plantas viessem a sentir grandes deficiências. Foi utilizada a aspersão.
4.2.4. Considerações sobre K_p, E_{To}, E_{Tm} e K_c

As definições dos parâmetros K_p, E_{To}, E_{Tm} e K_c, utilizadas no presente trabalho, foram as seguintes (FAO, 1979):

K_p (coeficiente do tanque Classe A) = valor pelo qual se deve multiplicar a leitura do tanque Classe A para obter-se a evapotranspiração de referência (E_{To}).

E_{To} (evapotranspiração de referência) = água perdida na forma de vaporização e transpiração, por uma superfície de grama batatais (Paspalum notatum Flugge), em condições ótimas de suprimento hídrico, desenvolvimento vegetativo e bordadura.

E_{Tm} (demanda climática ideal de água) = taxa de perda de água por evapotranspiração, necessária para o ótimo de desenvolvimento. No trabalho em questão, E_{Tm} foi medida pelos lisímetros e também estimada pelos vários métodos propostos.

K_c (coeficiente de cultura) = Valor pelo qual se deve multiplicar a evapotranspiração de referência (E_{To}) para obter-se a demanda climática ideal (E_{Tm}).

4.2.5. Determinações Fenológicas

Durante o período do experimento, observeu-se a duração dos períodos característicos, relacionados com a variação do coeficiente de cultura K_c, de acordo com os critérios da FAO (1979).
4.2.6. Processos de Estimativa de ET_0

Para estimativa de ET_0, foram utilizados os métodos de Penman, Tanque Classe A e Radiação Solar, recomendados pela FAO, e o método simplificado, elaborado por LINACRE (1977).

As equações básicas utilizadas foram as seguintes:

4.2.6.1. Método de Penman

\[
ET_0 = \frac{\Delta}{\gamma (\Delta - \gamma + 1)}
\]

sendo: Δ/γ = determinado em função da temperatura média do ar para o período, segundo VILLA NOVA (1967) - Ver Tabela A1.

Δ = tangente à curva de saturação de vapor, determinada pela expressão.

$\Delta = e_s \left(\frac{6886}{T_a^2} - 5,31/T_a^2 \right) \ldots \left(\text{mm} \cdot \text{C}^{-1} \right)$

T_a = temperatura do ar, média do período (°C)

e_s = tensão de saturação de vapor sobre a água, calculada pela relação:

\[
e_s = (6,11 \times 10^{b+T}) \times 0,75
\]

sendo: $A = 7,5$

$b = 237,5$

H = balanço de energia, sendo:
onde: Q_0 = radiação solar global recebida na ausência da atmosfera por uma superfície unitária e horizontal (cal.cm\(^{-2}\).dia\(^{-1}\)). (Ver Tabela A\(_2\)).

n = insolação média do período (hora e décimos)

N = duração máxima de insolação (horas e décimos)

r = albedo médio para superfícies vegetadas

c = constante de Stefan-Boltzman

σ = $(8,123 \times 10^{-11}$ cal.cm\(^{-2}\).dia\(^{-1}\).K\(^4\))

Ta = temperatura do ar média do período (\(^0\)K)

e = tensão atual de vapor, em mmHg, calculada pela expressão:

$$ e = \frac{VR}{100} \cdot e_s $$

UR = umidade relativa (%)

Ea = poder evaporante do ar, calculado através da equação:

$$ Ea = 0,35 \times (1+0,54V_2) \times (e_s - e_a) \ldots \text{(mm.dia}^{-1}) $$

U_2 = velocidade do vento a 2,0 m de altura (m.seg\(^{-1}\))

4.2.6.2. Método da Radiação Solar

$$ ET_0 = C (\omega \cdot Rs) $$

sendo:
onde: $Q_0 = \text{radiação solar global recebida na ausência da atmosfera por uma superfície horizontal e unitária (cal.cm}^{-2}.\text{dia}^{-1})$. (Ver Tabela A_2).

$n = \text{insolação média do período (hora e décimos)}$

$N = \text{duração máxima da insolação (hora e décimos). (Ver Tabela A}_6\text{)}$.

$\omega = \text{valor tabular, referente ao efeito da radiação na } E_T_0, \text{ em diferentes temperaturas e altitudes (Ver Tabela A}_3\text{)}$.

$C = \text{coeficiente angular de ajuste de } E_T_0, \text{ determinado em função da umidade relativa e da velocidade do vento. (Ver Tabela A}_4\text{)}$.

4.2.6.3. Método do Tanque "Classe A"

$$E_T_0 = K_p \cdot E_C A$$

onde: $ECA = \text{evaporação medida em tanque Classe A (mm.dia}^{-1})$

$K_p = \text{coeficiente de conversão do tanque Classe A, sendo utilizados os valores recomendados pela "Food and Agriculture Organization" (FAO), em função da velocidade do vento, da exposição do tanque e da umidade relativa. (Ver Tabela A}_5\text{)}$.

4.2.6.4. Método de Linacre

$$E_T_0 = \frac{500 \ T_m}{(100-A)} + 15 \ (T-T_d)$$

$$80 - T$$
sendo: \(T = \) temperatura do ar, média do período (\(^\circ\)C)

\(T_m = T + 0,006 \times h \)

\(h = \) altitude (m)

\(T_d = \) temperatura do ponto de orvalho (\(^\circ\)C)

\(A = \) latitude em graus e décimos
5. RESULTADOS

5.1. Relativos ao Desempenho do Conjunto Lisimétrico

Este sistema, de acordo com os resultados obtidos, possibilitou analisar o seu comportamento sobre diversos aspectos, tais como:

5.1.1. Condições Operacionais

Nesse aspecto, destacou-se a simplicidade de observação, já que é um instrumento de leitura direta, dispensando correções ou acessórios auxiliares, apresentando ainda a vantagem da simplicidade operacional, que se limita apenas ao abastecimento ao fim de cada período de observação, com água de boa qualidade e às limpezas periódicas, para evitar possíveis obstruções nos condutos e válvula da bôia na caixa de passagem. Sobre este aspecto, tornava-se conveniente o acompanhamento da altura do lençol freático no interior do instrumento e isso foi feito através de tubos de PVC, colocados verticalmente a partir da superfície inferior do tanque, nos quais foram inseridas réguas de madeira com lar-
gura inferior ao diâmetro dos tubos, nas quais a altura do lençol freático era acompanhada (Figura 2).

5.1.2. Precisão de Medidas

No presente estudo, a precisão instrumental foi de 0,05 mm, considerada satisfatória para a utilização a que se destinou, apesar de ser menor que a oferecida pelo método clássico do micrômetro de gancho, que possibilita uma aproximação de 0,02 mm. Observou-se que esta perda de precisão era compensada por uma certeza de medida muito maior, devido à facilidade de leitura já ressaltada, sem os inconvenientes advindos das operações de carga e recarga do tanque.

5.1.3. Condições de Desenvolvimento das Plantas

As plantas, submetidas às condições de umidade e aeração do solo no interior do lisímetro, apresentaram, em média, o dobro da área foliar, do peso seco e da produção de grãos em peso das não submetidas a estas condições, conforme demonstra a Tabela 1. Apresentaram, ainda, uma pequena precocidade na fase de maturação. Quanto ao desenvolvimento do sistema radicular, foi observado que este atingiu, em média, 0,2 m, não havendo, portanto, restrições quanto ao seu desenvolvimento. Acreditamos, nesta situação, ter obtido dentro do lisímetro condições de maximização em relação à água, pois, ao mínimos valor de tensão da água no solo na zona das raízes, aliou-se um máximo em condições de aeração (somente a água capilar, em todo instante, ocupava a porosidade total). É evidente que novas repetições deverão ser conduzidas com testemunhas a diferentes...
veis de aplicação de água, para que se possa comprovar definitivamente tal condição.

5.2. Relativos aos Valores de ET₀ Estimados Através dos Diferentes Métodos

Na Tabela 2 são relatados os valores de ET₀, estimados de acordo com os métodos de Penman (M₁), Tanque Classe A (M₂), Radiação Solar (M₃) e Linacre (M₄).

5.3. Relativos aos Valores de ETₘ Medido e Obtidos Através de Estimativas

Na Tabela 3 são descritos os valores de ETₘ, obtidos através dos valores medidos no evapotranspirômetro (M₀) e através dos métodos M₁, M₂, M₃ e M₄. Na Figura 3 é demonstrada a acumulação destes valores ao longo do ciclo.

5.4. Relativos aos Valores de Kc Sugeridos pela FAO (1979) e Estimados Através de Diferentes Métodos

Na Tabela 4 demonstram-se os valores de Kc, sugeridos pela FAO (Kc), em confronto com os obtidos pelo quociente da evapotranspiração medida/estimada pelos diferentes métodos, ou seja, Kc (sugerido), Kc₁ = M₀/M₁, Kc₂ = M₀/M₂, Kc₃ = M₀/M₃ e Kc₄ = M₀/M₄. Na Figura 4 são representados graficamente estes valores.
Tabela 1 - Valores de área foliar e peso seco de plantas sujeitas e não sujeitas às condições do evaportranspirômetro

<table>
<thead>
<tr>
<th>Elemento Condição</th>
<th>Área Foliar (cm²)</th>
<th>Número de Folhas</th>
<th>Número de Vãgens</th>
<th>Peso Seco (g) Folhas</th>
<th>Peso Seco (g) Haste</th>
<th>Peso Seco (g) Vãgens</th>
<th>Peso Seco (g) Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lisímetro 1</td>
<td>1188,78</td>
<td>14</td>
<td>20</td>
<td>4,20</td>
<td>3,55</td>
<td>2,68</td>
<td>10,43</td>
</tr>
<tr>
<td>Lisímetro 2</td>
<td>1764,79</td>
<td>15</td>
<td>22</td>
<td>6,05</td>
<td>4,64</td>
<td>2,35</td>
<td>13,04</td>
</tr>
<tr>
<td>Área, Amostra 1</td>
<td>549,58</td>
<td>9</td>
<td>13</td>
<td>2,37</td>
<td>1,70</td>
<td>1,17</td>
<td>5,24</td>
</tr>
<tr>
<td>Área, Amostra 2</td>
<td>497,32</td>
<td>9</td>
<td>12</td>
<td>2,11</td>
<td>1,34</td>
<td>1,21</td>
<td>4,66</td>
</tr>
<tr>
<td>Pêntadas</td>
<td>Método</td>
<td>Penman (M_1)</td>
<td>Tanque Classe A (M_2)</td>
<td>Radiação (M_3)</td>
<td>Linacre (M_4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/02 - 26/02</td>
<td>5,4</td>
<td>5,4</td>
<td>4,8</td>
<td>4,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27/02 - 03/03</td>
<td>5,4</td>
<td>5,3</td>
<td>4,5</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/03 - 08/03</td>
<td>5,3</td>
<td>5,0</td>
<td>5,2</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09/03 - 13/03</td>
<td>4,0</td>
<td>3,9</td>
<td>3,5</td>
<td>3,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/03 - 18/03</td>
<td>4,8</td>
<td>4,9</td>
<td>4,4</td>
<td>3,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19/03 - 23/03</td>
<td>4,7</td>
<td>4,9</td>
<td>4,5</td>
<td>3,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24/03 - 28/03</td>
<td>4,2</td>
<td>4,2</td>
<td>3,6</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29/03 - 02/04</td>
<td>3,9</td>
<td>4,9</td>
<td>3,9</td>
<td>3,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/04 - 07/04</td>
<td>3,2</td>
<td>3,3</td>
<td>2,7</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/04 - 12/04</td>
<td>3,6</td>
<td>4,2</td>
<td>3,7</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/04 - 17/04</td>
<td>3,7</td>
<td>3,8</td>
<td>3,6</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18/04 - 22/04</td>
<td>3,4</td>
<td>3,7</td>
<td>3,6</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23/04 - 27/04</td>
<td>3,6</td>
<td>4,1</td>
<td>3,7</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penteadas</td>
<td>Métodos</td>
<td>Medido (M_0)</td>
<td>Penman (M_1)</td>
<td>Tanque Classe A (M_2)</td>
<td>Radiação (M_3)</td>
<td>Linacre (M_4)</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>22/02 - 26/02</td>
<td>3,8</td>
<td>3,2</td>
<td>3,2</td>
<td>2,9</td>
<td>2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27/02 - 03/03</td>
<td>4,0</td>
<td>3,3</td>
<td>3,2</td>
<td>2,7</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/03 - 08/03</td>
<td>4,6</td>
<td>3,4</td>
<td>3,3</td>
<td>3,4</td>
<td>2,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09/03 - 13/03</td>
<td>3,3</td>
<td>2,8</td>
<td>2,7</td>
<td>2,4</td>
<td>2,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/03 - 18/03</td>
<td>4,5</td>
<td>3,4</td>
<td>3,6</td>
<td>3,2</td>
<td>2,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19/03 - 23/03</td>
<td>4,8</td>
<td>3,7</td>
<td>3,8</td>
<td>3,5</td>
<td>3,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24/03 - 28/03</td>
<td>5,7</td>
<td>3,7</td>
<td>3,7</td>
<td>3,2</td>
<td>3,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29/03 - 02/04</td>
<td>5,5</td>
<td>3,8</td>
<td>4,8</td>
<td>3,8</td>
<td>3,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/04 - 07/04</td>
<td>4,2</td>
<td>3,3</td>
<td>3,4</td>
<td>2,8</td>
<td>3,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/04 - 12/04</td>
<td>4,3</td>
<td>3,3</td>
<td>3,9</td>
<td>3,4</td>
<td>3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/04 - 17/04</td>
<td>4,5</td>
<td>3,1</td>
<td>3,2</td>
<td>3,0</td>
<td>3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18/04 - 22/04</td>
<td>3,8</td>
<td>2,5</td>
<td>2,7</td>
<td>2,6</td>
<td>2,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23/04 - 27/04</td>
<td>3,8</td>
<td>2,3</td>
<td>2,7</td>
<td>2,4</td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 4 - Valores de Kc, sugeridos pela FAO (1979), e estimados através dos diversos métodos

<table>
<thead>
<tr>
<th>Método</th>
<th>Sugerido (Kc)</th>
<th>Penman (Kc1)</th>
<th>Tanque Classe A (Kc2)</th>
<th>Radiação (Kc3)</th>
<th>Linacre (Kc4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/02 - 26/02</td>
<td>0,60</td>
<td>0,70</td>
<td>0,71</td>
<td>0,79</td>
<td>0,90</td>
</tr>
<tr>
<td>27/02 - 03/03</td>
<td>0,61</td>
<td>0,74</td>
<td>0,76</td>
<td>0,89</td>
<td>1,01</td>
</tr>
<tr>
<td>04/03 - 08/03</td>
<td>0,65</td>
<td>0,87</td>
<td>0,92</td>
<td>0,88</td>
<td>1,06</td>
</tr>
<tr>
<td>09/03 - 13/03</td>
<td>0,68</td>
<td>0,82</td>
<td>0,84</td>
<td>0,94</td>
<td>0,87</td>
</tr>
<tr>
<td>14/03 - 18/03</td>
<td>0,72</td>
<td>0,94</td>
<td>0,91</td>
<td>1,02</td>
<td>1,17</td>
</tr>
<tr>
<td>19/03 - 23/03</td>
<td>0,78</td>
<td>1,20</td>
<td>0,97</td>
<td>1,07</td>
<td>1,25</td>
</tr>
<tr>
<td>24/03 - 28/03</td>
<td>0,88</td>
<td>1,32</td>
<td>1,37</td>
<td>1,58</td>
<td>1,65</td>
</tr>
<tr>
<td>29/03 - 02/04</td>
<td>0,98</td>
<td>1,41</td>
<td>1,12</td>
<td>1,41</td>
<td>1,41</td>
</tr>
<tr>
<td>03/04 - 07/04</td>
<td>1,02</td>
<td>1,31</td>
<td>1,26</td>
<td>1,56</td>
<td>1,22</td>
</tr>
<tr>
<td>08/04 - 12/04</td>
<td>0,93</td>
<td>1,21</td>
<td>1,03</td>
<td>1,16</td>
<td>1,23</td>
</tr>
<tr>
<td>13/04 - 17/04</td>
<td>0,83</td>
<td>1,21</td>
<td>1,18</td>
<td>1,25</td>
<td>1,14</td>
</tr>
<tr>
<td>18/04 - 22/04</td>
<td>0,73</td>
<td>1,12</td>
<td>1,02</td>
<td>1,06</td>
<td>1,08</td>
</tr>
<tr>
<td>23/04 - 27/04</td>
<td>0,65</td>
<td>0,93</td>
<td>0,81</td>
<td>0,89</td>
<td>1,03</td>
</tr>
</tbody>
</table>
Figura 4 - Confronto entre os valores de Kc estimados pelos métodos estudados e pelo sugerido pela FAO, ao longo do ciclo do feijoeiro.
Figura 3 - Valores acumulados de ETm ao longo do ciclo, obtidos pelos diferentes métodos estudados.
6. DISCUSSÃO

6.1. Dos Resultados Relativos ao Manuseio dos Evapotranspirômetros

As principais dificuldades para a utilização deste instrumento foram:

6.1.1. Obstrução pela Argila na Entrada do Tanque

Foi minimizada com o colocação de cascalho e areia grossa.

6.1.2. A Fixação das Coberturas de Plástico

Devido a altos valores de velocidade do vento, por ocasião das chuvas, as coberturas de plástico eram arrastadas. Esse problema foi sanado através da colocação, nessas ocasiões, de chavetas móveis, feitas de ferro, que fixavam as coberturas às hastes.

6.1.3. Penetração de Água da Chuva

Por ocasião de chuvas repentinas, quando não havia tempo...
de colocar a cobertura, ou por vazamentos nestas, houve penetração de água da chuva no interior dos lisímetros. Nesse caso, foi necessário uma interrupção do fornecimento de água, até que a situação se normalizasse, ou seja, quando a água que penetrou foi evapotranspirada. Aí então, o fornecimento retornava ao normal.

6.1.4. Utilização de Fertilizantes

Estas substâncias vão atacar a chapa do tanque, promovendo vazamentos. Estes efeitos podem ser minimizados com a aplicação de tintas anticorrosivas nas paredes do tanque.

6.2. Dos Resultados Relativos aos Métodos da Estimativa de ET₀

Para a análise estatística dos resultados obtidos por cada um dos métodos utilizados (M₁, M₂, M₃, M₄), conforme a Tabela 2, foi utilizado o delineamento de blocos casualizados, considerando o valor médio de evapotranspiração de cada período como um bloco. Esta análise nos revelou os seguintes resultados:

<table>
<thead>
<tr>
<th></th>
<th>CV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Períodos</td>
<td>12</td>
<td>15,7</td>
<td>1,308</td>
<td>13,91</td>
<td></td>
</tr>
<tr>
<td>Métodos</td>
<td>3</td>
<td>3,4</td>
<td>1,133</td>
<td>12,05</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>36</td>
<td>3,4</td>
<td>0,094</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>22,5</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Médias:

\[
\begin{align*}
M_1 &= 4,25 & M_3 &= 3,95 \\
M_2 &= 4,43 & M_4 &= 3,77
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>NS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M_3</td>
<td>S</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>M_4</td>
<td>S</td>
<td>S</td>
<td>NS</td>
</tr>
</tbody>
</table>

Pela análise, vê-se que não houve diferença significativa entre \(M_1 \) e \(M_2 \), nem entre \(M_3 \) e \(M_4 \), diferindo, entretanto, \(M_1 \) e \(M_2 \) de \(M_3 \) e \(M_4 \). Considerando que \(M_1 \) (Método de Penman) foi desenvolvido tendo como modelo pequenos reservatórios de água, era de se esperar que as estimativas \(M_1 \) (Método de Penman) e \(M_2 \) (Classe A) não diferissem. Os métodos \(M_3 \) (Radiação) e \(M_4 \) (Línacre), baseados em aproximações mais simplistas do balanço de energia, concordaram apenas entre si, com valores obtidos sempre menores.

6.3. Dos Resultados Relativos às Determinações de \(Kc \), \(Kc_1 \), \(Kc_2 \), \(Kc_3 \), \(Kc_4 \)

Os valores médios obtidos e os sugeridos como padrão pela FAO (\(Kc \)) - Tabela 4 - foram da mesma forma analisados estatisticamente, conforme os quadros a seguir.
<table>
<thead>
<tr>
<th></th>
<th>CV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Períodos</td>
<td>12</td>
<td>2,371</td>
<td>0,1980</td>
<td>23,86***</td>
<td></td>
</tr>
<tr>
<td>Métodos</td>
<td>4</td>
<td>1,159</td>
<td>0,2900</td>
<td>34,94***</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>48</td>
<td>0,400</td>
<td>0,0083</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>3,930</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Médias:

\[
M_0 = 0,77 \\
M_1 = 1,06 \\
M_2 = 0,99 \\
M_3 = 1,12 \\
M_4 = 1,16 \\
\Delta = 0,10
\]

Confronto entre médias, utilizando-se o método de TUKEY ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th></th>
<th>M₀</th>
<th>M₁</th>
<th>M₂</th>
<th>M₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M₂</td>
<td>S</td>
<td>NS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M₃</td>
<td>S</td>
<td>NS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M₄</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NS</td>
</tr>
</tbody>
</table>

Através desses resultados, foi demonstrado não existir diferença significativa entre dois grupos, de forma que:

Kc(sugerido) e Kc₂(Classe A), não diferiram significativamente entre si. Kc₁(Penman), Kc₃(Radiação) e Kc₄(Linacre), não diferiram entre si. Na Figu
ra 4 são visualizadas estas diferenças durante as diferentes fases características do ciclo. Kc e Kc2 diferem estatisticamente de Kc1, Kc3 e Kc4.

Pelo exposto, vê-se que a estimativa de Kc, através do Tanque Classe A, foi a única a não diferir estatisticamente do padrão recomendado.

6.4. Dos Resultados Relativos aos Valores de ETm Medido e Estimado

Na análise estatística desses valores (Tabela 1), também foi empregado o delineamento de blocos casualizados, considerando cada período como um bloco. Dessa análise, resultaram os quadros abaixo.

<table>
<thead>
<tr>
<th>CV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Períodos</td>
<td>12</td>
<td>13,640</td>
<td>1,137</td>
<td>14,39***</td>
</tr>
<tr>
<td>Métodos</td>
<td>4</td>
<td>17,504</td>
<td>4,376</td>
<td>55,39***</td>
</tr>
<tr>
<td>Resíduo</td>
<td>48</td>
<td>3,796</td>
<td>0,079</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>34,940</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Médias:

\[M_0 = 4,37 \quad M_3 = 3,02 \]
\[M_1 = 3,22 \quad M_4 = 2,90 \quad \Delta = 0,31 \]
\[M_2 = 3,40 \]
Confronto entre médias, utilizando-se o método de TUKEY ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th></th>
<th>M₀</th>
<th>M₁</th>
<th>M₂</th>
<th>M₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M₂</td>
<td>S</td>
<td>NS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M₃</td>
<td>S</td>
<td>NS</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>M₄</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NS</td>
</tr>
</tbody>
</table>

Os resultados obtidos através desta análise nos permitem concluir que, em relação às estimativas obtidas pelos diferentes métodos:

M₂ (Classe A) e M₁ (Penman) não diferente entre si.
M₃ (Radiação), M₄ (Linacre) e M₁ (Penman) não diferem entre si.
M₀ (medido) difere de todos os métodos empregados, acusando sempre valores superiores.

Esse fato pode ser atribuído aos efeitos de advecção local que determinaram em todo o período uma elevação nos valores de ETm. Isso vem confirmar que, na prática, quando se tem plotes irrigados, normalmente circundados por área onde a irrigação não é realizada, com a bordadura adequada, há um considerável aumento na perda de água por evapotranspiração, o que torna inviável a utilização da estimativa de ETm pelos métodos propostos sem utilização de devidas correções, visando minimizar esses efeitos. A Figura 3 nos permite visualizar estas diferenças relativas aos valores acumulados durante o ciclo.
7. CONCLUSÕES

O evapotranspirômetro a lençol freático fixo, tal como foi elaborado, mostrou-se ser bastante viável para as determinações de consumo hídrico ideal (demanda ideal) de culturas, pela simplicidade operacional e pelos resultados condizentes que apresentou.

Em face ao ótimo desenvolvimento das plantas dentro dos evapotranspirômetros, pode-se dizer que em todo período do experimento a demanda evaporativa ideal (ETm) tenha sido atendida. Utilizando-se estes dados para estimar os valores do coeficiente de cultura (Kc = ETm/ET0) ao longo do ciclo, verificou-se que a estimativa de ET0 através do Tanque Classe A, entre outros modelos estudados, forneceu os valores de Kc mais próximos a aqueles sugeridos pela FAO (1979), podendo-se admitir que os desvios observados (valores sempre maiores de Kc) podem ser atribuídos ao problema de advecção local que determinou valores mais elevados de ETm em todo período.
Confrontando-se o desenvolvimento global da cultura dentro dos evapotranspirômetros (produção por pé e matéria seca elaborada) em relação ao meio externo que não sofreu déficits de água (irrigações complementares), é nos sugerido que o evapotranspirômetro, tal como foi construído, simula uma condição de otimização de água, pois durante todo o desenvolvimento observou-se um mínimo potencial de água no solo, aliado a um máximo de aeração (água capilar). É evidente que outros experimentos deverão ser conduzidos para verificar tal hipótese, que, uma vez provada, deverá simplificar bastante os experimentos atuais de otimização de água.
8. SUMMARY

The objective of the present work was the development of an evapotranspirometer with constant water table level, which allows the measurement of the water consumption by bean crops, under optimization conditions, at low cost.

Evapotranspiration was also estimated by the Penman method, Radiation and Class A pan, as recommended by FAO (1979), and by the method proposed by LINACRE (1977). The results were compared statistically and no significant differences were observed between Penman \((M_1)\) and Class A pan \((M_2)\), and the Radiation method \((M_3)\) and Linacre \((M_4)\). There were, however, statistical differences between \((M_1) - (M_2)\) and \((M_3) - (M_4)\).

Crop coefficient values \((Kc)\) were determined for each method and compared. A statistical analysis showed that the \(Kc\) determination by Class A pan was the only one which did not significantly
differ from the recommended standard.

Observations of leaf area and dry matter production showed better conditions for crop development inside the evapotranspirometer. The project and operation of the evapotranspirometer are described.
9. LITERATURA CITADA

MILLAR, A.A.; E.N. CHOUDHURY e T.A. dos S. ABREU - 1978. Determinação

PRUITT, W.O. e J. DOORENBOS - 1977. Empirical calibration a requisite for evapotranspiration formulas based on daily or longer mean climatic

VAREJÃO SILVA, M.A. - 19?? Evapotranspiração em cultura irrigada no semi-árido sub-médio São Francisco. São José dos Campos, INPE, 97p. (Dissertação de Mestrado).

10. APÉNDICE
<table>
<thead>
<tr>
<th>t</th>
<th>(\Delta/\gamma)</th>
<th>t</th>
<th>(\Delta/\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,6</td>
<td>21</td>
<td>2,2</td>
</tr>
<tr>
<td>2</td>
<td>0,8</td>
<td>22</td>
<td>2,6</td>
</tr>
<tr>
<td>3</td>
<td>0,8</td>
<td>23</td>
<td>2,6</td>
</tr>
<tr>
<td>4</td>
<td>0,8</td>
<td>24</td>
<td>2,6</td>
</tr>
<tr>
<td>5</td>
<td>1,0</td>
<td>25</td>
<td>2,8</td>
</tr>
<tr>
<td>6</td>
<td>1,0</td>
<td>26</td>
<td>3,0</td>
</tr>
<tr>
<td>7</td>
<td>1,2</td>
<td>27</td>
<td>3,0</td>
</tr>
<tr>
<td>8</td>
<td>1,2</td>
<td>28</td>
<td>3,2</td>
</tr>
<tr>
<td>9</td>
<td>1,2</td>
<td>29</td>
<td>3,6</td>
</tr>
<tr>
<td>10</td>
<td>1,2</td>
<td>30</td>
<td>3,8</td>
</tr>
<tr>
<td>11</td>
<td>1,4</td>
<td>31</td>
<td>4,0</td>
</tr>
<tr>
<td>12</td>
<td>1,4</td>
<td>32</td>
<td>4,2</td>
</tr>
<tr>
<td>13</td>
<td>1,6</td>
<td>33</td>
<td>4,2</td>
</tr>
<tr>
<td>14</td>
<td>1,6</td>
<td>34</td>
<td>4,4</td>
</tr>
<tr>
<td>15</td>
<td>1,6</td>
<td>35</td>
<td>4,6</td>
</tr>
<tr>
<td>16</td>
<td>1,8</td>
<td>36</td>
<td>5,2</td>
</tr>
<tr>
<td>17</td>
<td>1,8</td>
<td>37</td>
<td>5,2</td>
</tr>
<tr>
<td>18</td>
<td>2,0</td>
<td>38</td>
<td>5,4</td>
</tr>
<tr>
<td>19</td>
<td>2,0</td>
<td>39</td>
<td>5,6</td>
</tr>
<tr>
<td>20</td>
<td>2,0</td>
<td>40</td>
<td>5,8</td>
</tr>
</tbody>
</table>

Transcrito de VILLA NOVA (1967) "A estimativa da evapotranspiração potencial no Estado de São Paulo" (Tese de Doutoramento) - ESALQ/USP
Tabela A2 - Radiação solar recebida no limite mais externo da atmosfera no 15º dia de cada mês, entre as latitudes 10º N - Equador e 40º S (Valores de Q₀, em cal/cm².dia)

<table>
<thead>
<tr>
<th>Latitude</th>
<th>JAN</th>
<th>FEV</th>
<th>MAR</th>
<th>ABR</th>
<th>MAI</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SET</th>
<th>OUT</th>
<th>NOV</th>
<th>DEZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10º N</td>
<td>761</td>
<td>814</td>
<td>873</td>
<td>885</td>
<td>873</td>
<td>867</td>
<td>873</td>
<td>879</td>
<td>867</td>
<td>826</td>
<td>767</td>
<td>732</td>
</tr>
<tr>
<td>6º N</td>
<td>779</td>
<td>832</td>
<td>879</td>
<td>879</td>
<td>861</td>
<td>856</td>
<td>861</td>
<td>873</td>
<td>873</td>
<td>838</td>
<td>785</td>
<td>749</td>
</tr>
<tr>
<td>2º N</td>
<td>797</td>
<td>844</td>
<td>879</td>
<td>873</td>
<td>850</td>
<td>838</td>
<td>850</td>
<td>861</td>
<td>873</td>
<td>850</td>
<td>802</td>
<td>773</td>
</tr>
<tr>
<td>Equador</td>
<td>832</td>
<td>867</td>
<td>885</td>
<td>861</td>
<td>826</td>
<td>802</td>
<td>814</td>
<td>844</td>
<td>873</td>
<td>867</td>
<td>838</td>
<td>814</td>
</tr>
<tr>
<td>2º S</td>
<td>850</td>
<td>879</td>
<td>885</td>
<td>856</td>
<td>808</td>
<td>785</td>
<td>797</td>
<td>832</td>
<td>867</td>
<td>873</td>
<td>856</td>
<td>832</td>
</tr>
<tr>
<td>4º S</td>
<td>861</td>
<td>885</td>
<td>885</td>
<td>850</td>
<td>791</td>
<td>767</td>
<td>779</td>
<td>820</td>
<td>867</td>
<td>879</td>
<td>873</td>
<td>850</td>
</tr>
<tr>
<td>6º S</td>
<td>879</td>
<td>903</td>
<td>885</td>
<td>826</td>
<td>755</td>
<td>732</td>
<td>743</td>
<td>797</td>
<td>861</td>
<td>897</td>
<td>897</td>
<td>890</td>
</tr>
<tr>
<td>8º S</td>
<td>897</td>
<td>909</td>
<td>879</td>
<td>814</td>
<td>738</td>
<td>708</td>
<td>720</td>
<td>779</td>
<td>856</td>
<td>897</td>
<td>909</td>
<td>903</td>
</tr>
<tr>
<td>10º S</td>
<td>909</td>
<td>909</td>
<td>879</td>
<td>814</td>
<td>738</td>
<td>708</td>
<td>720</td>
<td>779</td>
<td>856</td>
<td>897</td>
<td>915</td>
<td>920</td>
</tr>
<tr>
<td>12º S</td>
<td>920</td>
<td>920</td>
<td>873</td>
<td>802</td>
<td>720</td>
<td>684</td>
<td>702</td>
<td>767</td>
<td>850</td>
<td>897</td>
<td>926</td>
<td>932</td>
</tr>
<tr>
<td>14º S</td>
<td>938</td>
<td>920</td>
<td>867</td>
<td>791</td>
<td>696</td>
<td>661</td>
<td>684</td>
<td>755</td>
<td>838</td>
<td>897</td>
<td>926</td>
<td>932</td>
</tr>
<tr>
<td>16º S</td>
<td>950</td>
<td>926</td>
<td>861</td>
<td>773</td>
<td>679</td>
<td>637</td>
<td>661</td>
<td>738</td>
<td>838</td>
<td>903</td>
<td>938</td>
<td>944</td>
</tr>
<tr>
<td>18º S</td>
<td>956</td>
<td>932</td>
<td>856</td>
<td>755</td>
<td>661</td>
<td>614</td>
<td>637</td>
<td>720</td>
<td>826</td>
<td>903</td>
<td>944</td>
<td>956</td>
</tr>
<tr>
<td>20º S</td>
<td>968</td>
<td>932</td>
<td>850</td>
<td>743</td>
<td>637</td>
<td>590</td>
<td>620</td>
<td>702</td>
<td>814</td>
<td>903</td>
<td>956</td>
<td>974</td>
</tr>
<tr>
<td>22º S</td>
<td>979</td>
<td>932</td>
<td>838</td>
<td>720</td>
<td>614</td>
<td>566</td>
<td>596</td>
<td>684</td>
<td>802</td>
<td>897</td>
<td>962</td>
<td>985</td>
</tr>
<tr>
<td>24º S</td>
<td>991</td>
<td>932</td>
<td>826</td>
<td>702</td>
<td>590</td>
<td>543</td>
<td>572</td>
<td>661</td>
<td>791</td>
<td>897</td>
<td>968</td>
<td>991</td>
</tr>
<tr>
<td>26º S</td>
<td>997</td>
<td>932</td>
<td>814</td>
<td>684</td>
<td>566</td>
<td>519</td>
<td>549</td>
<td>643</td>
<td>779</td>
<td>897</td>
<td>968</td>
<td>1003</td>
</tr>
<tr>
<td>28º S</td>
<td>1003</td>
<td>926</td>
<td>802</td>
<td>661</td>
<td>543</td>
<td>496</td>
<td>519</td>
<td>625</td>
<td>761</td>
<td>891</td>
<td>974</td>
<td>1015</td>
</tr>
<tr>
<td>30º S</td>
<td>1003</td>
<td>920</td>
<td>791</td>
<td>643</td>
<td>519</td>
<td>460</td>
<td>496</td>
<td>602</td>
<td>743</td>
<td>885</td>
<td>979</td>
<td>1021</td>
</tr>
<tr>
<td>32º S</td>
<td>1009</td>
<td>909</td>
<td>767</td>
<td>637</td>
<td>566</td>
<td>472</td>
<td>464</td>
<td>555</td>
<td>714</td>
<td>867</td>
<td>979</td>
<td>1033</td>
</tr>
<tr>
<td>34º S</td>
<td>1009</td>
<td>903</td>
<td>743</td>
<td>578</td>
<td>448</td>
<td>378</td>
<td>378</td>
<td>531</td>
<td>696</td>
<td>861</td>
<td>979</td>
<td>1038</td>
</tr>
<tr>
<td>36º S</td>
<td>1009</td>
<td>897</td>
<td>732</td>
<td>555</td>
<td>419</td>
<td>354</td>
<td>389</td>
<td>507</td>
<td>673</td>
<td>850</td>
<td>979</td>
<td>1038</td>
</tr>
<tr>
<td>38º S</td>
<td>1008</td>
<td>885</td>
<td>714</td>
<td>531</td>
<td>389</td>
<td>330</td>
<td>366</td>
<td>484</td>
<td>649</td>
<td>838</td>
<td>974</td>
<td>1044</td>
</tr>
<tr>
<td>40º S</td>
<td>1003</td>
<td>879</td>
<td>690</td>
<td>507</td>
<td>360</td>
<td>295</td>
<td>336</td>
<td>460</td>
<td>631</td>
<td>826</td>
<td>968</td>
<td>1044</td>
</tr>
</tbody>
</table>

Tabela A3 - Valores do fator de ajuste (W) para estimativa de \(ETo^{(*)} \) em relação à temperatura e altitude.

Temperatura \(^{\circ} C\)	02	04	06	08	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	
Altitude (m)																					
0	0.43	0.46	0.49	0.52	0.55	0.58	0.61	0.64	0.66	0.69	0.71	0.73	0.75	0.77*	0.78	0.80	0.82	0.84	0.85		
500	0.45	0.48	0.51	0.54	0.57	0.60	0.62	0.65	0.67	0.70	0.72	0.74	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.86	
1.000	0.46	0.49	0.52	0.55	0.58	0.61	0.64	0.66	0.69	0.71	0.73	0.75	0.77	0.79	0.80	0.82	0.83	0.85	0.86	0.87	
2.000	0.49	0.52	0.55	0.58	0.61	0.64	0.66	0.69	0.71	0.73	0.75	0.77	0.79	0.81	0.82	0.84	0.85	0.86	0.87	0.88	
3.000	0.52	0.55	0.58	0.61	0.64	0.66	0.69	0.71	0.73	0.75	0.77	0.79	0.81	0.82	0.84	0.85	0.86	0.88	0.88	0.89	

Transcrito de "Yield Response to Water, FAO (1979)"
Tabela A4 - Coeficiente angular de ajuste para estimativa de ET_0 em relação à velocidade do vento (u) e umidade relativa (UR). Transcrito de "Yield Response to Water", FAO (1979).
Tabela A5 - Valores do coeficiente de conversão do Tanque "Classe A" (Kp), para estimativa da evapotranspiração potencial (ETP)

<table>
<thead>
<tr>
<th>Exposição A:</th>
<th>Exposição B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanque circundado por grama</td>
<td>Tanque circundado por solo nu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UR % (média)</th>
<th>Baixa</th>
<th>Média</th>
<th>Alta</th>
<th>Baixa</th>
<th>Média</th>
<th>Alta</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 40%</td>
<td>0,55</td>
<td>0,65</td>
<td>0,75</td>
<td>0,70</td>
<td>0,75</td>
<td>0,85</td>
</tr>
<tr>
<td>40-70%</td>
<td></td>
<td></td>
<td></td>
<td>0,60</td>
<td>0,70</td>
<td>0,80</td>
</tr>
<tr>
<td>> 70%</td>
<td></td>
<td></td>
<td></td>
<td>0,55</td>
<td>0,65</td>
<td>0,75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vento (Km/dia)</th>
<th>Posição do Tanque (m)*</th>
<th>Posição do Tanque (m)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leve < 175</td>
<td>0,65 0,75 0,85</td>
<td>0,60 0,70 0,85</td>
</tr>
<tr>
<td></td>
<td>0,70 0,80 0,85</td>
<td>0,55 0,65 0,75</td>
</tr>
<tr>
<td></td>
<td>0,75 0,85 0,85</td>
<td>0,50 0,60 0,70</td>
</tr>
<tr>
<td>Moderado 175-425</td>
<td>0,50 0,60 0,65</td>
<td>0,65 0,75 0,80</td>
</tr>
<tr>
<td></td>
<td>0,60 0,70 0,75</td>
<td>0,55 0,65 0,70</td>
</tr>
<tr>
<td></td>
<td>0,65 0,75 0,80</td>
<td>0,50 0,60 0,65</td>
</tr>
<tr>
<td></td>
<td>0,70 0,80 0,80</td>
<td>0,45 0,55 0,60</td>
</tr>
<tr>
<td>Forte 425-700</td>
<td>0,45 0,50 0,60</td>
<td>0,60 0,65 0,70</td>
</tr>
<tr>
<td></td>
<td>0,55 0,60 0,65</td>
<td>0,50 0,55 0,75</td>
</tr>
<tr>
<td></td>
<td>0,60 0,65 0,75</td>
<td>0,45 0,50 0,60</td>
</tr>
<tr>
<td></td>
<td>0,65 0,70 0,75</td>
<td>0,40 0,45 0,55</td>
</tr>
<tr>
<td>Muito Forte > 700</td>
<td>0,40 0,45 0,50</td>
<td>0,50 0,60 0,65</td>
</tr>
<tr>
<td></td>
<td>0,45 0,55 0,60</td>
<td>0,45 0,50 0,55</td>
</tr>
<tr>
<td></td>
<td>0,50 0,60 0,65</td>
<td>0,40 0,45 0,50</td>
</tr>
<tr>
<td></td>
<td>0,55 0,60 0,65</td>
<td>0,35 0,40 0,45</td>
</tr>
</tbody>
</table>

Nota: Para extensas áreas de solo nu, reduzir os valores de Kp de 20% em condições de alta temperatura e vento forte, e de 10 a 5%, em condições de moderada temperatura, vento e umidade.

* Por d entende-se, como a menor distância (expressa em metros), do centro do tanque ao limite da bordadura (grama ou solo nu)
Tabela A₆ - Duração máxima da insolação diária em horas, nos vários meses do ano e latitudes de 10 graus norte e 40 graus sul. Os valores correspondem ao 15° dia de cada mês

<table>
<thead>
<tr>
<th>Latitude</th>
<th>JAN</th>
<th>FEV</th>
<th>MAR</th>
<th>ABR</th>
<th>MAI</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SET</th>
<th>OUT</th>
<th>NOV</th>
<th>DEZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10º N</td>
<td>11,6</td>
<td>11,8</td>
<td>12,1</td>
<td>12,4</td>
<td>12,6</td>
<td>12,7</td>
<td>12,6</td>
<td>12,4</td>
<td>12,2</td>
<td>11,9</td>
<td>11,7</td>
<td>11,5</td>
</tr>
<tr>
<td>8º N</td>
<td>11,7</td>
<td>11,9</td>
<td>12,1</td>
<td>12,3</td>
<td>12,5</td>
<td>12,6</td>
<td>12,5</td>
<td>12,4</td>
<td>12,2</td>
<td>12,0</td>
<td>11,8</td>
<td>11,6</td>
</tr>
<tr>
<td>6º N</td>
<td>11,8</td>
<td>11,9</td>
<td>12,1</td>
<td>12,3</td>
<td>12,4</td>
<td>12,5</td>
<td>12,4</td>
<td>12,3</td>
<td>12,2</td>
<td>12,0</td>
<td>11,9</td>
<td>11,7</td>
</tr>
<tr>
<td>4º N</td>
<td>11,9</td>
<td>12,0</td>
<td>12,1</td>
<td>12,2</td>
<td>12,3</td>
<td>12,4</td>
<td>12,3</td>
<td>12,2</td>
<td>12,1</td>
<td>12,0</td>
<td>11,9</td>
<td>11,9</td>
</tr>
<tr>
<td>2º N</td>
<td>12,0</td>
<td>12,0</td>
<td>12,1</td>
<td>12,2</td>
<td>12,2</td>
<td>12,2</td>
<td>12,2</td>
<td>12,1</td>
<td>12,1</td>
<td>12,0</td>
<td>12,0</td>
<td>12,0</td>
</tr>
<tr>
<td>Equador</td>
<td>12,1</td>
</tr>
<tr>
<td>2º S</td>
<td>12,2</td>
<td>12,2</td>
<td>12,1</td>
<td>12,1</td>
<td>12,0</td>
<td>12,0</td>
<td>12,0</td>
<td>12,0</td>
<td>12,1</td>
<td>12,1</td>
<td>12,2</td>
<td>12,2</td>
</tr>
<tr>
<td>4º S</td>
<td>12,3</td>
<td>12,2</td>
<td>12,1</td>
<td>12,0</td>
<td>11,9</td>
<td>11,8</td>
<td>11,9</td>
<td>12,0</td>
<td>12,1</td>
<td>12,2</td>
<td>12,3</td>
<td>12,4</td>
</tr>
<tr>
<td>6º S</td>
<td>12,4</td>
<td>12,3</td>
<td>12,1</td>
<td>12,0</td>
<td>11,9</td>
<td>11,7</td>
<td>11,8</td>
<td>11,9</td>
<td>12,1</td>
<td>12,2</td>
<td>12,4</td>
<td>12,5</td>
</tr>
<tr>
<td>8º S</td>
<td>12,5</td>
<td>12,4</td>
<td>12,1</td>
<td>11,9</td>
<td>11,7</td>
<td>11,6</td>
<td>11,7</td>
<td>11,9</td>
<td>12,1</td>
<td>12,3</td>
<td>12,5</td>
<td>12,6</td>
</tr>
<tr>
<td>10º S</td>
<td>12,6</td>
<td>12,4</td>
<td>12,1</td>
<td>11,9</td>
<td>11,7</td>
<td>11,5</td>
<td>11,6</td>
<td>11,8</td>
<td>12,0</td>
<td>12,3</td>
<td>12,6</td>
<td>12,7</td>
</tr>
<tr>
<td>12º S</td>
<td>12,7</td>
<td>12,5</td>
<td>12,2</td>
<td>11,8</td>
<td>11,6</td>
<td>11,4</td>
<td>11,5</td>
<td>11,7</td>
<td>12,0</td>
<td>12,4</td>
<td>12,7</td>
<td>12,8</td>
</tr>
<tr>
<td>14º S</td>
<td>12,8</td>
<td>12,6</td>
<td>12,2</td>
<td>11,8</td>
<td>11,5</td>
<td>11,3</td>
<td>11,4</td>
<td>11,6</td>
<td>12,0</td>
<td>12,4</td>
<td>12,8</td>
<td>12,9</td>
</tr>
<tr>
<td>16º S</td>
<td>13,0</td>
<td>12,7</td>
<td>12,2</td>
<td>11,7</td>
<td>11,4</td>
<td>11,2</td>
<td>11,2</td>
<td>11,6</td>
<td>12,0</td>
<td>12,4</td>
<td>12,9</td>
<td>13,1</td>
</tr>
<tr>
<td>18º S</td>
<td>13,1</td>
<td>12,7</td>
<td>12,2</td>
<td>11,7</td>
<td>11,3</td>
<td>11,1</td>
<td>11,1</td>
<td>11,5</td>
<td>12,0</td>
<td>12,5</td>
<td>13,0</td>
<td>13,2</td>
</tr>
<tr>
<td>20º S</td>
<td>13,2</td>
<td>12,8</td>
<td>12,2</td>
<td>11,6</td>
<td>11,2</td>
<td>10,9</td>
<td>11,0</td>
<td>11,4</td>
<td>12,0</td>
<td>12,5</td>
<td>13,2</td>
<td>13,3</td>
</tr>
<tr>
<td>22º S</td>
<td>13,4</td>
<td>12,8</td>
<td>12,2</td>
<td>11,6</td>
<td>11,1</td>
<td>10,8</td>
<td>10,9</td>
<td>11,3</td>
<td>12,0</td>
<td>12,6</td>
<td>13,2</td>
<td>13,5</td>
</tr>
<tr>
<td>24º S</td>
<td>13,5</td>
<td>12,9</td>
<td>12,3</td>
<td>11,5</td>
<td>10,9</td>
<td>10,7</td>
<td>10,8</td>
<td>11,2</td>
<td>11,9</td>
<td>12,6</td>
<td>13,3</td>
<td>13,6</td>
</tr>
<tr>
<td>26º S</td>
<td>13,6</td>
<td>12,9</td>
<td>12,3</td>
<td>11,5</td>
<td>10,8</td>
<td>10,5</td>
<td>10,7</td>
<td>11,2</td>
<td>11,9</td>
<td>12,7</td>
<td>13,4</td>
<td>13,8</td>
</tr>
<tr>
<td>28º S</td>
<td>13,7</td>
<td>13,0</td>
<td>12,3</td>
<td>11,4</td>
<td>10,7</td>
<td>10,4</td>
<td>10,6</td>
<td>11,1</td>
<td>11,9</td>
<td>12,8</td>
<td>13,5</td>
<td>13,9</td>
</tr>
<tr>
<td>30º S</td>
<td>13,9</td>
<td>13,1</td>
<td>12,3</td>
<td>11,4</td>
<td>10,6</td>
<td>10,2</td>
<td>10,4</td>
<td>11,0</td>
<td>11,9</td>
<td>12,8</td>
<td>13,6</td>
<td>14,1</td>
</tr>
<tr>
<td>32º S</td>
<td>14,0</td>
<td>13,2</td>
<td>12,3</td>
<td>11,3</td>
<td>10,5</td>
<td>10,0</td>
<td>10,3</td>
<td>10,9</td>
<td>11,9</td>
<td>12,9</td>
<td>13,7</td>
<td>14,2</td>
</tr>
<tr>
<td>34º S</td>
<td>14,2</td>
<td>13,3</td>
<td>12,3</td>
<td>11,3</td>
<td>10,3</td>
<td>9,8</td>
<td>10,1</td>
<td>10,9</td>
<td>11,9</td>
<td>12,9</td>
<td>13,9</td>
<td>14,4</td>
</tr>
<tr>
<td>36º S</td>
<td>14,3</td>
<td>13,4</td>
<td>12,4</td>
<td>11,2</td>
<td>10,2</td>
<td>9,7</td>
<td>10,0</td>
<td>10,7</td>
<td>11,9</td>
<td>13,0</td>
<td>14,0</td>
<td>14,6</td>
</tr>
<tr>
<td>38º S</td>
<td>14,5</td>
<td>13,5</td>
<td>12,4</td>
<td>11,1</td>
<td>10,1</td>
<td>9,5</td>
<td>9,8</td>
<td>10,6</td>
<td>11,8</td>
<td>13,1</td>
<td>14,2</td>
<td>14,8</td>
</tr>
<tr>
<td>40º S</td>
<td>14,7</td>
<td>13,6</td>
<td>12,4</td>
<td>11,1</td>
<td>9,9</td>
<td>9,3</td>
<td>9,6</td>
<td>10,5</td>
<td>11,8</td>
<td>13,1</td>
<td>14,3</td>
<td>15,0</td>
</tr>
</tbody>
</table>

Transcrito de CAMARGO (1966) "Contribuição para determinação da evapotranspiração potencial no Estado de São Paulo" - IAC, Campinas.