ELOAH MARIA PACHECO DE OLIVEIRA ENGENHEIRA - AGRONOMA

DISTRIBUIÇÃO GEOGRÁFICA E TAXONOMIA DO CAPIM GORDURA [Melinis minutiflora Beauv.].

Orientador: Prof. Dr. Almiro Blumenscheln

Dissertação apresentada à Escola Superior de Agricultura "Luiz de Queiroz" da Universidade de São Paulo, para obtenção do título de Mestre.

PIRACICABA Estado de São Paulo 1974

A meus pais

AGRADECIMENTOS

Agradeço a todos que contribuiram para a realização des te trabalho, e em especial, às seguintes pessoas e instituições:

- Professor Almiro Blumenshein, pela orien^tação e facilidades concedidas:
- Professor Gerhard Bandel, pelas sugestões e estímulo;
- Professores Cyro Paulino da Cos^ta e Evôneo Berti Filho, pelo au⊷ xílio na versão do resumo e conclusões;
- Professor Paulo Sodero Martins, pela orientação inicial, pelo es tímulo e pela amizade;
- Professores Roland Vencovsky e Natal A. Vello, pelo auxilio na <u>a</u> nálise estatís^tica;
- Professora Sarah de Araújo Martins Bonilha, pela revisão do texto;
- Sra. Sônia Correa da Rocha, pela revisão das citações bibliográficas;
- Sr. Walter Antonio Cocco, pelos serviços de datilografia;
- a todos os funcionários do Departamento de Genética, pela colabo ração e boa von^tade demons^tradas;
- Conselho Nacional de Pesquisas (CNPq) e Fundação de Amparo à Pesquisa do Es^tado de São Paulo (FAPESP), pela concessão de bolsas de estudo.

INDICE GERAL

				página
1.	INTR	ODUÇÃO		1
2.	REVI	SÃO DA	LITERATURA	3
	2.1.	Origem		3
	2.2.	Dis ^t ri	buição geografica	4
		2.2.1.	Dis ^t ribuição na África	5
		2.2.2.	Distribuição na América do Nor ^t e	6
		2.2.3.	Dis ^t ribuição na América Central	7
		2.2.4.	Dis ^t ribuição na América do Sul	7
		2.2.5.	Dis ^t ribuição na Ásia	9
		2.2.6.	Dis ^t ribuição na Oceania	10
	2.3.	Iden ^t i	ficação e carac ^t erização ^t axonômica de variedades e	
		ecotip	OS	10,
		2.3.1.	Descrição da espécie	10
		2.3.2.	Classificação	14
		2.3.3.	Iden ^t ificação das variedades e eco ^t ipos	17
		2.3.4.	Es ^t udos ci ^t ológicos	19
3.	MATE	RIALE	MÉTODOS	20
	3.1.	Ma ^t erio	al'	20
	3.2.	Mé ^t odo:	S •••••••	23
		3.2.1.	Es ^t abelecimen ^t o da área de dis ^t ribuição geográfica.	23
		3.2.2.	Iden ^t ificação e ca rac ^t erização ^t axonômica de varie—	
			dades e eco ^t ipos	23
			3.2.2.1. De ^t erminação do número somá ^t ico de cromos—	
			SOMOS	23
			3.2.2.2. Mensurações efe ^t uad a s	24
			3.2.2.3. Me ^t odologia es ^t a ^t is ^t ica	27
			3.2.2.4. De ^t erminação da época de florescimen ^t o	29
			3.2.2.5. Observação de ou ^t ros carac ^t eres	29

4.	RESULTADOS	30
	4.1. Es ^t abelecimen ^t o da área de dis ^t ribuição geográfica	30
	4.2. Iden ^t ificação e carac ^t erização ^t axonômica de variedades	
	e eco ^t ipos	33
	4.2.1. De ^t erminação do número somá ^t ico de cromossomos	33
	4.2.2. Mensurações efe ^t uadas e análise es ^{tat} ís ^t ica	34
	4.2.3. De ^t ermiração da época de florescimen ^t o	3 9
	4.2.4. Observação de ou ^t ros carac ^t eres	43
5.	DISCUSSÃO	50
	5.1. Origem e dis ^t ribuição geográfica	50
	5.2. Iden ^t ificação e carac ^t erização ^t axonômica de variedades	
	e ecotipos	52 ,
	5.2.1. De ^t erminação do número de cromossomos	52
	5.2.2. Carac ^t eres medidos e analisados es ^t a ^t is ^t icamen ^t e.	52
	5.2.3. De ^t erminação da época de florescimen ^t o	53
	5.2.4. Observação de ou ^t ros carac ^t eres	54
	5.2.5. Variedades e eco ^t ipos de capim gordura	55
6.	RESUMO E CONCLUSÕES	58
7.	SUMMARY AND CONCLUSIONS	61
8.	BIBLIOGRAFIA	63
a	APÊNDICE	77

ÎNDICE DAS TABELAS

abela	na na kata na kata na Ufulo kata na kata	
1	Melinis minutiflora: número somático de cromossomos, em	
	pon ^t as de raizes	33
2	Melinis minu ^t iflora: médias encon ^t radas para ll carac ^t e	
	res fenotipicos medidos, em plantas provenientes de 3 -	
	regiões	35
3	Melinis minu ^t iflora: significância dos valores de F ob-	
	tidos para as diversas fon ^t es de variação, considerando—	
	se os 11 carac ^t eres es ^t udados	38
4	Melinis minutiflora: classificação das plantas estuda-	
	das, segundo a quan ^t idade de aris ^t as presen ^t es nas in-	
	florescências	47
5	Melinis minutiflora: classificação das plantas estuda-	
	das, de acordo com o aspec ^t o apresen ^t ado pelas ^t oucei-	
		49
	ÍNDICE DOS QUADROS	
quedro	título	página
1	Melinis minu ^t iflora: classificações propos ^t as por diver	
	sos au ^t ores	15
2	Fsoueme da análise da variância	20

ÍNDICE DAS FIGURAS

f i gu re	titulo	página
1	<u>Melinis minu^tiflora:</u> esquema de uma pan i cula no início	
	do florescimen ^t o, e de uma panícula comple ^t amen ^t e abe <u>r</u>	
	^t a, com suas par ^t es cons ^{tit} uin ^t es em de ^t alhe	13
2	Melinis minutiflora: regiões de coleta, durante os me-	
	ses de fevereiro e março de 1972	21
3	Melinis minutiflora: aspecto da área de campo do Depar	
	tamento de Genética, destinada às plantes forrageiras.	2 2
4	Melinis minutiflora: panícula herterizada e esquema -	
	mos ^t rando as mensurações efe ^t uadas	25
5	Melinis minu ^t iflara: dis ^t ribuição mundial	31
6	Melinis minu ^t iflora: dis ^t ribuição no Brasil	32
7	Melinis minu ^t iflora: dis ^t ribuição no Es ^t ado de São Pau	
	lo	3 2a
8	Melinis minutiflora: metafase mitotica em pontas de -	
	raizes	34
9	Melinis minu ^t iflora: época de florescimen ^t o, em Piraci	
	caba, no mes de maio, nos anos de 1972 e 1973, de plan	
	^t as provenien ^t es da região sul de Minas Gerais	40
10,	<u>Melinis minu^tiflora:</u> época de florescimen ^t o, em Piraci	
	caba, no mes de maio, nos anos de 1972 e 1973, de plan	
	^t as provenien ^t es da região do Vale do Paraíba	41
11,	Melinis minu ^t iflora: época de florescimen ^t o, em Piraci	
	caba, no mes de maio, nos anos de 1972 e 1973, de plan	
	^t as provenien ^t es da região de Franca	42
12	<u>Melinis minu^tiflora:</u> panículas desprovidas de aris ^t as.	44
13	Melinis minutiflore: panículas com poucas aristas	45

figura	titulo	página
14	Melinis minutiflora: panículas com muitas aristas	46
15	Melinis minutiflora: planta apresentando muitas inflores	
	cências e folhas miúdas (tipo "A")	48
16	Melinis minutiflora: planta com apenas l inflorescência,	
	folhas maiores, e apresen ^t ando ramos decumben ^t es (tipo -	
	¹¹ B ¹¹)	48
17	Melinis minu ^t iflora: diferença observada no aspec ^t o das	
	touceiras, tipo "A" (dir.) e tipo "B" (esq.),antes do -	
	florescimento	49

A melhoria do nível de vida é em parte traduzida por uma dieta alimentar mais exigente, onde os produtos pecuários ocupam lugar de primazia. Na realidade, à medida que se processa o desenvolvimento econômico de um país, aumenta a procura de proteínas de origem animal.

Uma das maneiras de aumentar a produção animal envolve o estabelecimento de uma agricultura forrageira intensiva, onde os animais encontrem os alimentos de qualidade de que necessitam.

Consequentemente, o melhoramento de plantas forrageiras é meta essencial no aumento da produtividade animal, a qual é, em sentido lato, resultante da interação forragem—animal—solo.

Segundo VOLIO (1952), os dois problemas básicos na pecuária da América Tropical são:

- a) Como aumentar a produção/unidade, isto é, por cabeça de gado e por unidade de pasto;
- b) Como aumentar a qualidade do produto, tanto animal como vegetal.

A maioria das gramíneas tropicais, entre as quais se incluem as brasileiras, tem alta porcentagem de caule, baixo teor de nitrogênio e baixo valor nutritivo, sendo, porém, possível selecionar variedades e melhorá-las geneticamente, de modo a torná-las tão boas quanto as de clima temperado.

De acordo com JOVIANO & COSTA (1965) no Brasil em 1960, havia uma área de pastagens estimada em 123 milhões de hectares, dos quais cerca de 30 milhões eram utilizados para gado leiteiro. Entretanto, apesar de possuirmos um dos maiores rebanhos do mundo, o melhoramento de plantas forrageiras em nosso país ainda é bastante incipiente.

A maioria de nossas pastagens é constituída pelos chamados <u>pastos naturais</u> (devido a sua duração, adaptação ambiental e multipl<u>i</u> cação natural de suas gramíneas). Entre estas, principalmente na pecuária

do Brasil Central, Minas Gerais e São Paulo, destaca—se o capim gordura (Melinis minutiflora Beauv.) por sua importância econômica. Apesar desta importância, há falta de informações básicas relativas ao modo de reprodução, taxonomia, resistência às condições do meio e às doenças e pragas, etc.

Segundo HANSON & CARNAHAN (1956), investigações citológicas e genéticas têm importância fundamental no melhoramento de forrageiras, pois através da elucidação de sua taxonomia e filogenia, podem — ser adquiridas informações fundamentais, a serem aplicadas no melhoramento dessas plantas.

Visando a contribuir para um melhor conhecimento do capim gordura, e obter assim subsídios para estudos de seu melhoramento ge
nético, e mesmo manejo, o presente trabalho tem os seguintes objetivos:

- l. Estabelecimento da área de distribuição geográfica do capim gordura, levando em consideração as áreas fitogeográficas e ecológicas onde ocorre, através do mundo todo, e, de maneira especial, no Brasil.
- 2. Identificação e caracterização taxonômica de varieda des e ecotipos.

2.1. Origem

FOURY (1950) considerou o <u>Melinis minutiflora</u> uma grand nea originária dos países tropicais do hemisfério sul, notadamente da África e talvez do Brasil.

para OTERO (1961) o capim gordura seria uma espécie indigena brasileira, crescendo espon^taneamen^te nos Es^tados do Brasil Central.

CHIPPINDALL (1955) e HAVARD-DUCLOS (1967) também consideraram uma origem comum, africana e americana, para esta graminea.

VOLIO (1952), JORDÁN LEÓN (1955), BOR (1960), WHY^TE & − ou^tros (1962), MOORE (1970), consideraram→no originário da África ^Tropi− cal e Madagascar.

BOGDAN (1966) constatou que cultivares de vários países pareciam ser quase idênticos, talvez tendo—se originado do mesmo centro. O material selvagem africano mostrou grande variabilidade. Em Quênia, — duas variedades selecionadas formaram stands mais uniformes que o material cultivado, e mostraram resistência ao vírus "small—leaf". Entretanto, a produção de sementes foi menor.

O mesmo autor considerou que o capim gordura tem sua origem no leste da África, onde ocorrem inúmeras variedades e ecotipos.
Esta região constitui o principal centro tropical de várias gramíneas e
se estende para o sul em direção à Rodésia, Transvaal e territórios vizinhos.

WALTON (1969) afirmou que "nenhuma das gramíneas u^tilizadas pelo homem, em suas pastagens, derivou do con^tinen^te americano", a poiando a ^teoria de ser a África o cen^tro de origem do capim gordura.

2.2. Distribuição geográfica

Neste item serão levadas em consideração não apenas as áreas onde o <u>Melinis minutiflora</u> ocorre naturalmente, mas também aquelas regiões onde esta forrageira foi introduzida, incidental ou deliberadamente, pelo homem.

O capim gordura pode ser encontrado em regiões tropicais ou sub-tropicais, com chuvas em quantidade moderada a alta. Distribui-se numa faixa ao norte e ao sul do Equador, compreendendo vários países da África, Américas, Ásia e Oceania (WHYTE & outros, 1962; BARNARD, 1969).

É conhecido pelas seguintes denominações vulgares:

- América Central: zacate gordura;
- Antilhas: yerba de melado;
- Argentina: pasto gordura;
- Brasil: capim gordura, capim catingueiro, capim meloso ou melado;
- ~ Colômbia: pasto gordura e, erradamente, yaragua;
- Cos^ta Rica: calinguero;
- Porto Rico: também erradamente yaraguá;
- Em países de língua inglesa: molasses grass, ben^t grass, Efwataka grass, wynne grass, honey grass, gordura grass, s^tink grass, million dollar grass;
- No Havaí e Austrália: molasses grass, Brazilian stink grass;
- Em países de lingua francesa (Marrocos): herbe à miel, herbe de mélas se, herbe du Brésil;
- No Congo (litoral): Lekamboma e Sala;
- No Congo (in^terior): Efwa^takala;
- Em Madasgascar: Horombavy;
- No Kibolo (África): Ngonosch tutubia.

 (FOURY, 1950; JIMENEZ, 1952; SENARATNA, 1955; OTERO, 1961; HAVARD-DU-CLOS, 1967).

2.2.1. Dis^tribuição na África

FOURY (1950) relatou a ocorrência de <u>Melinis minutiflo</u>ra em Angola, Moçambique, Congo, Guiné, Sudão e Serra Leoa, sendo também encontrado em Madagascar, de acordo com BIRIE—HABAS (1959).

Em Angola, a alta produção, poder adaptativo e resistên cia à seca e ao frio tornaram o capim gordura uma das melhores gramineas a serem utilizadas no planalto de Benguela (BORGES, 1950).

No Congo, RATTRAY (1960) cons^ta^tou sua presença formando savanas, a uma al^titude de 1200 a 1800 me^tros, com chuvas de 1000 a – 1300 milime^tros ou mais, dis^tribuídas em 10 a 11 meses duran^te o ano.

Em testes sobre produção, capacidade de cobertura, pala tabilidade, e em estudos de consorciação com leguminosas, o capim gordura mostrou-se uma espécie bastante promissora (CONGO BELGA, 1949, 1950, 1952; CAVALAN, 1962).

Ainda no Congo, em zonas de florestas, o capim gordura mostrou ser uma das melhores espécies para pastagens permanentes ou temporárias, embora em outras regiões pudesse desaparecer rapidamente sob pastoreio normal (GERMAIN, 1954).

TROCHAIN (1965) citou <u>Melinis minutiflora</u> como uma esp<u>é</u> cie local, na região sul do Congo.

Em Marrocos, ensaios conduzidos a partir de sementes — provenientes do Estado de São Paulo (Brasil) não mostraram resultados — muito promissores, de acordo com FOURY (1950). Todavia, o mesmo autor — destacou a boa germinação das sementes obtidas, e enfatizou seu emprego no controle de plantas invasoras.

Na Nigéria, em regiões de baixa fer^tilidade, onde savanas subs^tituíram a flores^ta primi^tiva, o capim gordura foi empregado no
comba^te à erosão (GROVE, 1949), sendo considerado uma das melhores gram<u>í</u>
neas, quanto à produção e à pala^tabilidade (NIGÉRIA, 1949).

No Quênia, <u>Melinis minutiflora</u> foi recomendado para pastagens (STRANGE, 1954; EDWARDS, 1954), e o ecotipo Chania River mostrou-

se bastante promissor (QUÊNIA, 1950).

Em Saint-Denis, (Réunion) <u>Melinis minutiflora</u> apresentou resultados promissores em experimentos visando adaptação e produtividade (RÉUNION, 1966).

Em Tenzania, as florestas foram substituídas por pastagens, nas regiões com altitudes em torno de 1200 metros, com chuvas anuais de 760 milímetros, de dezembro a junho, sendo o capim gordura um componente importante desses pastos (RATTRAY, 1960).

Em Uganda, onde também às pastagens encontram—se em á—
reas anteriormente ocupadas por florestas, o capim gordura pode ser encontrado em altitudes de 1400 a 1800 metros, com precipitações anuais de
1000 milímetros, tendo as chuvas uma distribuição bimodal (RATTRAY, 1960);
mostrou—se uma forrageira bastante promissora (UGANDA, 1950).

Em trabalhos de melhoramento de pastagens realizados em Zanzibar, o capim gordura destacou—se por produzir vegetação luxuriante, e reter a suculência na estação seca (ZANZIBAR, 1956).

2.2.2. Dis^tribuição na América do Nor^te

HITCHCOCK (1922) ressaltou que a tribo Melinideae, à - qual pertence a espécie M. <u>minutiflora</u>, não é encontrada nos Estados Unidos.

Entretanto, foram feitas tentativas de introdução desta forrageira na Flórida, e RITCHEY & STOKES (1947, 1949) citaram duas linhagens que sobreviveram a quatro estações de inverno, considerando possível o emprego de tais linhagens resistentes ao frio em pastagens no extremo sul da Flórida.

No México, o capim gordura foi considerado uma gramínea promissora em regiões quen^tes, por NAVARRETE (1945) e TAPIA & BULLER (1957).

2.2.3. Dis^tribuição na América Cen^tral

O capim gordura apresenta—se bem adaptado na América — Central, podendo ser encontrado na Guatemala (WORK, 1945), em Costa Rica (JIMENEZ, 1952; MONTERO, 1961) em El Salvador (WATKINS & VIAUD, 1948), — na Jamaica (LECKY, 1952), em Porto Rico (GARCIA—MÓLINARI, 1950) e na República Dominicana (COZZI, 1959).

Entre as vantagens de sua utilização nos países da América Central, foram citadas: bom desenvolvimento em solos relativamente pobres; boa adaptação e altitudes desde o nível do mar até 970 metros; palatabilidade; valor nutritivo e conservação do solo (VOLIO, 1952; FLORES & OLIVE, 1952; ARRILAGA, 1952).

Entre as desvantagens, foram consideradas a falta de resistência ao fogo (VOLIO, 1952) e não proporcionar boa cobertura ao solo (LECKY, 1952).

2.2.4. Dis^tribuição na América do Sul

No Brasil, em 1817, SAINT HILAIRE (1946) cons^ta^tou a o-corrência do capim gordura em Minas Gerais, de Vila Rica a Vila do Prín-cipe.

Segundo muitos autores, como ROSEVEARE (1948) o capim — gordura foi introduzido em nosso país, vindo da África, por intermédio — dos navios negreiros. Aqui se adaptou, constituindo grande parte das pagtagens de Minas Gerais, Rio de Janeiro, São Paulo e Espírito Santo. ROSE VEARE relatou que em 1936, ensaios de variedades realizados sob supervisão do Instituto Federal de Biologia Animal procuraram selecionar variedades mais resistentes ao frio, capazes de crescer a 1000 metros de altitude. O mesmo autor citou um trabalho de DOMINGUES (apud ROSEVEARE, 1948) onde foi mencionada sua ocorrência no Ceará.

OTERO (1961) e GROSSMAN & ou^tros (1965) consideraram—no uma plan^ta cul^tivada nos Es^tados do nordes^te, embora sem especificar —

quais Estados.

Em Goiás e Ma^to Grosso, a ocorrência do capim gordura — foi rela^tada por WAIBEL (1948) e por ANDRADE (1952).

Nos Estados do sul, o frio torna—se um fator limitante ao seu cultivo, a partir do sul do Estado do Paraná. (ARAUJO, 1949; 00—MINGJES, 1951; 6000, 1974).

HAVARD-DUCLOS (1967) constatou que no Brasil o capim - gordura encontra-se em regiões de clima quente, temperado e úmido, com temperaturas não inferiores a -5°C, e precipitações entre 1200 e 1400 mi límetros.

SANTIACO (1970) comentou a ocorrência do capim gordura em solos mais secos, subindo pelas encostas de morros, e constituindo a única gramínea a revestir o solo onde foram destruídas as matas ou erradicados os cafezais no Vale do Paraíba e na zona da Mata (M.G.).

No Estado de São Paulo, KOK (1943, a e b) considerou o capim gordura uma das forrageiras mais utilizadas, principalmente em regiões mais altas e secas.

ANDRADE (1944) dividiu o Estado de São Paulo em zonas <u>a</u> grostológicas, e constatou a ocorrência do capim gordura nas seguintes:

Serrana, Vale, Central, Campos de Itapetininga e Terra Roxa.

ROCHA & MARTINELLI (1960) relataram a presença do capim gordura em São Paulo, no Vale do Paraíba, regiões limítrofes com Minas — Gerais, e na área centro—sul, com tendência para sudeste, numa distribuição que coincidia com aquela de Andrade, citada anteriormente. Os mesmos autores, baseados num levantamento efetuado em 1953/54, pela Divisão de Economia Rural, da Secretaria da Agricultura do Estado de São Paulo (atual Instituto de Economia Agrícola), mostrando a distribuição das forma geiras dentro da utilização geral de terras, em São Paulo, mencionaram — que os pastos formados por capim gordura abrangiam uma área de 3.097.600 hectares, ocupando 13,54% da área do Estado, sem incluir o litoral.

Em ou^tros países da América do Sul, BRAUN (1960) ci^tou a ocorrência de Melinis minu^tiflora na Bolívia; na Colômbia, foi conside

rada uma forrageira ideal em experimentos de consorciação com leguminosas (ROSEVEARE, 1948; VASQUES, 1957). O mesmo ocorreu no Surinam, onde esta graminea foi introduzida em 1953 (SURINAM, 1957), no Peru (MARASSI, 1951), e na Guiana (STEVENSON, 1949).

No Uruguai, o capim gordura foi incapaz de supor^tar o — inverno, e não se conseguiu ob^ter semen^tes maduras; a possibilidade de — selecão de variedades resis^ten^tes ao frio foi sugerida por ROSENGURTI — (1946).

Do Brasil, o capim gordura foi levado para a Venezuela, em 1860, ^tendo se adap^ta do mui^to bem às áreas de savanas, com chuvas médias anuais de 1700 milime^tros e ^tempera^tura média anual de 28 °C. Nesse país, o capim gordura pode ser encon^trado, nos Andes, a quase 2000 metros de al^{ti}tude (ROSEVEARE, 1948; MIHELFFY, 1949; RAMIA, 1959).

2.2.5. Dis^tribuição na Ásia

PAUL (1948) considerou o capim gordura, introduzido no Ceilão, um material bastante promissor a ser utilizado em trabalhos de — seleção de variedades, sendo a viabilidade das sementes e o crescimento vigoroso algumas das características que recomendavam o seu emprego. Em regiões secas, a consorciação Melinis minutiflora/Stylosanthes gracilis mostrou—se bastante favorável (CEILÃO, 1951). Segundo SENARATNA (1956) o capim gordura foi introduzido no Ceilão a partir de sementes provenientes do Departamento de Agricultura dos Estados Unidos, e aí cultivado — desde 1907.

MASON (1970) relatou a introdução recente de diversas — espécies forrageiras em <u>Hong-Kong</u>, entre elas <u>M</u>. <u>minutiflora</u>.

Na <u>Índia</u>, o capim gordura foi considerado de grande u^t<u>i</u> lidade na conservação do solo (CHATERJEE & DAYAL, 1964).

WHYTE e ou^tros (1962) e BARNARD (1969) mencionaram a in trodução de <u>Melinis minutiflora</u> nas <u>Filipinas</u>.

Na <u>Malásia</u> es^ta espécie foi uma das únicas gramíneas — que puderam ser estabelecidas a partir de sementes, mostrando resultados promissores (MALÁSIA, 1965).

2.2.6. Dis^tribuição na Oceania

Segundo BARNARD (1969) e MOORE (1970) o capim gordura — foi levado da América do Sul para a Aus^trália, no início des^te século, sendo agora cul^tivado na região de Queensland, em locais úmidos a noroes te, e em menor grau a sudoes^te; mui^tas vezes é u^tilizado em consorciação com leguminosas (S^TRAUGHAN, 1947; GRAHAM, 1951).

Em Fiji, o capim gordura foi in^troduzido, e mos^trou⊸se promissor em ensaios de produção (YELF, 1957).

No Havaí, é considerado uma importante gramínea tropical, com boa cobertura do solo e persistência sob pisoteio de animais — (HOSAKA, 1952; HOSAKA & RIPPERTON, 1953).

2.3. Identificação e caracterização taxonômica de variedades e ecoti<u>p</u>os

2.3.1. <u>Descrição da espécie</u>

O capim gordura (Melinis minutiflora Beauv.) é uma graminea perene, forma touceiras com colmos que podem ser eretos, mais ou menos decumbentes, ou geniculadamente ascendentes, muitas vezes enraizan do a partir dos nós inferiores. O porte é baixo, embora possa haver variações de acordo com a variedade considerada; em geral a altura está en tre 0,80 e 1,00 metro. (ANDRADE, 1944; ROSEVEARE, 1948; FOURY, 1950; — MOORE, 1970).

Os colmos são delgados, verdes ou avermelhados com nós pilosos a vilosos; seu comprimento varia de 0,50 a 2,00 metros — (SENARATNA, 1956).

As folhas são verdes, al^termas, planas, lineares, afina<u>n</u>

do em direção ao ápice, que pode ser purpureo ou marrom avermelhado. A lâmina ^tem bordos ciliados, e seu comprimen^to varia en^tre 5 a 20 cen^tíme tros de comprimento, por 5 a 10 milimetros de largura (ANDRADE, 1944; -SENARATNA, 1956; HAVARD-DUCLOS, 1967). Tanto as lâminas como a bainha, que abraça o colmo, são aveludadas, recobertas por pelos glandulares macios e finos, que segregam uma substância óleo-resinosa de cheiro adocicado, semelhante ao do melaço. Na literatura, encontram-se muitas referências a uma possível ação repelente e inseticida devido ao odor desse óleo, contra moscas, como as tse-tse africanas, e também contra carrapatos (ANDRADE, 1944; FLORES e OLIVE, 1952; CHIPPINDALL, 1955; JORDÁN LEÓN, 1955; BOR, 1960). CHASE não aceita esta teoria, pois o capim gordura não cresce nos locais úmidos onde há mosquitos, e segundo esse autor os carrapatos ficariam impossibilitados de transferir-se para o gado plesmente por ficarem presos na folhagem aveludada e viscosa (apud ROSE-VEARE, 1948). A ligula está reduzida a uma fileira de cílios curtos com l a 1,5 milimetros de comprimento; esta redução da ligula é caracteristi ca de plantas de regiões tropicais e sub-tropicais (FOURY, 1950; BARNARD, 1969).

A inflorescência é terminal, consistindo numa panícula arroxeada, estreita e oval, que se abre na antese e posteriormente torna a fechar; seu comprimento varia entre 10 e 30 centímetros (ANDRADE, 1944; CHIPPINDALL, 1955; SENARATNA, 1956; HAVARD-DUCLOS, 1967; BARNARD, 1969; — MOORE, 1970).

O eixo da panícula consis^te num ramo mais delgado, ereto ou geniculadamente ascendente, com nos pilosos a vilosos (BARNARD,
1969).

As espiguetas são pequenas, com 1,8 a 2,4 milímetros de comprimento, mais ou menos cilíndricas, compressas dorsalmente, verdeclaro ou purpúreas, sustentadas por delgados pedicelos; a desarticulação da ráquila ocorre abaixo das glumas. Possui 2 flósculos, o inferior reduzido a uma lema, o superior, fértil, com cerca de 1,5 milímetros de com-

primento. (CHIPPINDALL, 1955; SENARATNA, 1956; BARNARD, 1969; MOORE, --

As glumas são mais rígidas que a lema e a pálea. A gluma inferior é muito pequena, consistindo numa escama curta com cerca de 0,3 milímetros de largura. A superior se iguala à lema inferior, é membranosa, bilobada no ápice, mucronada entre os lobos, apresentando nervuras.

Lema superior e pálea esbranquiçadas, a pálea um pouco mais curta que sua lema, sub-hialinas em direção ao ápice. A lema inferior é estéril, bilobada, com uma arista estreita e delicada com 6-15 mi limetros de comprimento. Uma forma sem arista é conhecida: variedade — inermis Hack. (CHIPPINDALL, 1955; SENARATNA, 1956; ROSHEWI^TZ, 1969; — BARNARD, 1969).

A cariopse tem 1,2 a 1,4 milimetros de comprimento; é - fusiforme ou elitica, levemente compressa. A "semente" comercial em geral é usada sob a forma de espiguetas. (BARNARD, 1969). Segundo MOORE - (1970), há cerca de 13-15 milhões de sementes por quilograma.

Na figura l, acham—se esquema tizadas uma panícula no início do florescimento, uma panícula completamente aberta, e as diversas
partes constituintes da inflorescência do capim gordura.

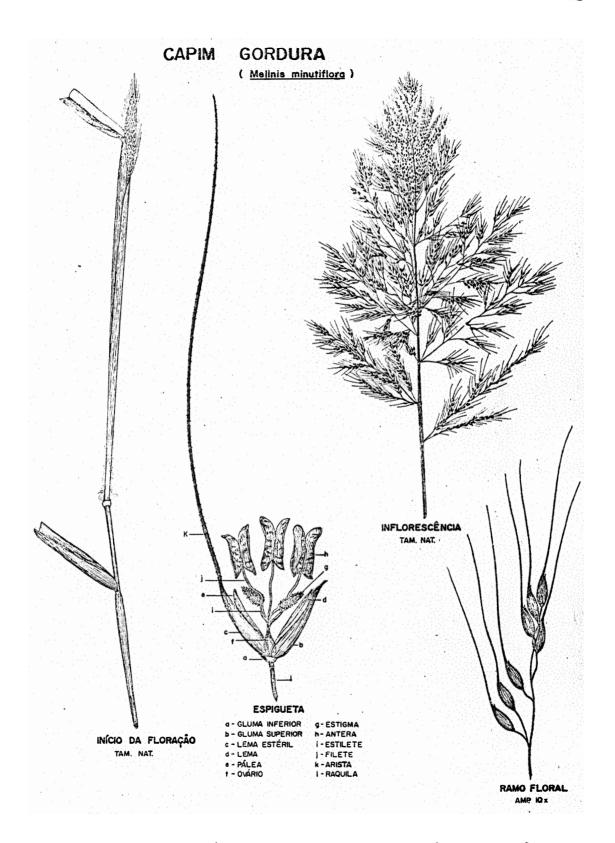


FIG. 1 - Melinis minutiflora: esquema de uma panícula no início do florescimento, e de uma panícula completamente aberta, com suas partes constituintes em detalhe (ROCHA, 1974, não publicado).

2.3.2. Classificação

De acordo com CHIPPINDALL (1955) exis^tem 3 sis^temas - principais de classificação de gramíneas.

O mais comum é o sis^tema na^tural, baseado no princípio de que plan^tas relacionadas ^tem muitas es^tru^turas em comum, não necessariamen ^te visíveis.

Ou^tra maneira é agrupá—las num sis^tema filogené^tico, de acordo com sua supos^ta ordem na evolução. Es^tes dois sis^temas, hipo^té^ti—cos, podem ser relacionados em alguma ex^tensão.

Um terceiro método é posto em prática por meio de um sistema artificial, pelo qual gramíneas com um único caráter em comum são agrupadas, embora difiram em todas as outras estruturas. Sua ventagem prática é simplificar o uso de chaves analíticas, por serem os carac
teres usados em geral vistos e medioos facilmente.

No entanto, tais estruturas visíveis são em geral super ficiais; em gramineas, a classificação em gêneros e tribos baseou—se principalmente na estrutura e arranjamento das espiguetas, método deficiente se comparado com os modernos grupamentos genéricos, baseados em anatomia, citologia, química e esplogia.

No quadro l, encon^tram—se alguns dados da li^tera^tura, — referen^tes a diversas classificações ^taxonômicas propos^tas para o capim gordura.

QUADRO 1 - Melinis minutiflora: classificações propostas por diversos autores,

Classifi- cação	HITCHCOCK (1950)	DEDECA (1954)	HARTLEY (1958)	PRAT (1960)	BOOT (1964)	DEDECA (e.d.)	HAVARD_DU- CLOS(1967)	ROSHEWITZ (1969)	косна (1972а)
Divisão		•		•			•		Spermatophyta
Sub divisão				•				•	Anglosperma
Славве									Monocotiledoneas
Ordem	•								Graminales
Família	Graminese	Gramineas	Gramineae	Gramineae	Gramineae	Graminese	Granineae	Gramineae	Gramineae
Sub-família	Panicoideae	Sacchariferae	Panicoideae	Panicoideae	Panicoideae	Panicoideae	Panicoideae	Panicoideas	Panicoideae
Tribo	Melinidese	Melinideae	Malinidese	Melinideas	Melinideae	Melinideae	Melinideas	Melinideae	Melinidese
Gênero	Melinia	Melinis	Melinis	Melinia	Melinis	Melinis	Melinis	Melinis	Melinis

Verifica—se certa divergência entre os autores, relativamente aos níveis de sub—família e tribo. Este fato decorre, em parte, do desmembramento da tribo Paniceae, feito pelos autores mais modernos, elevando ao status de tribos certos grupos relacionados de gêneros, que até então eram tratados como sub—tribos dentro de Paniceae, ou seja, —três gêneros, compreendendo 64 espécies, anteriormente incluidos em Paniceae, passaram a constituir uma tribo independente, Melinideae — (HARTLEY, 1958).

A ^tendência a ^tual dos ^taxonomis^tas é seguir a nova esco la de Engler, de 1954, por ser aquela que es^tabelece a maior uniformida de em seus cri^térios de classificação (ENGLER, 1964), Seria a seguin^te:

Divisão - Angiospermas

Classe - Monocotyledoneae

Ordem - Graminales (Poales, Glumiflorae)

Familia - Gramineae (Poaceae)

Sub-familia - Penicoideae

Tribo - Melinideae

Gênero - Melinis

Quan^to à classificação ao nível de espécie, a primeira foi a de Paliso[†] de Beauvois, em 1812, como <u>Melinis minu[†]iflora</u> (do grego meline, painço, ou do i[†]aliano <u>mel</u>, aludindo nes[†]e caso, possivelmente ao aroma delicado e for de das plan[†]as (MYRE, 1960).

No entanto, devido principalmente à falta de divulgação dos trabalhos realizados na época, e à falta de regras uniformes de clas sificação e nomenclatura, outras tentativas foram feitas.

CAMINHOÁ (1877) acei^tou a denominação <u>Panicum melinis</u> —
Trinium, e ofereceu os seguin^tes sinônimos: <u>Agros^tis glu^tinosa</u> Fisher; —
<u>Tris^tegis glu^tinosa</u> Nees d'Esenb.; <u>Suardia pic^ta</u> Schrank; <u>Agros^tis poly</u>—
<u>pogon</u> e <u>Agros^tis polygonoides</u> Salzman; <u>Mulenbergia brasiliensis</u> S^teudel.

FOURY (1950) considerou valida a denominação Melinis — minutiflora P.B., citando os sinônimos: Penicum minutiflorum P.B.; Pani—

<u>cum</u> <u>melinis</u> Trin; <u>Tris^tegis g</u>lu^tinosa Nees.

JORDÁN LEÓN (1955) considerou correto denominá-lo <u>Meli-</u>nis <u>minutiflora</u> Kunth.

Entretanto, BOR (1960), OTERO (1961), HAVARD-DUCLOS — (1967) concordaram com a classificação <u>Melinis minutiflora</u> P. Beauv. BOR citou os seguintes sinônimos, com as respectivas datas de sua adoção: — <u>Suardia picta</u> Schrank (1819); <u>Tristegis glutinosa</u> Nees (1820); <u>Panicum — minutiflorum</u> (P. Beauv.) (1825); <u>Panicum melinis</u> Trin. (1834); <u>Muelenbergia brasiliensis</u> Steud (1854).

Atualmente, aceita-se a denominação específica Melinis

minutiflora Beauv., adotada, entre outros autores, por CHIPPINDALL

(1955), SENARATNA (1956), WHY^TE e outros (1962), BARNARD (1969).

2.3.3. <u>Iden^tificação</u> das variedades e ecoti<u>po</u>s

Segundo ANDRADE (1944) exis^tem as seguin^tes variedades de capim gordura:

- Roxo: mais comum e cul^tivado. Forma ^touceiras grandes e al^tas, possui folhas verde-escuras, e inflorescências arroxeadas, com 17 cen^time^tros de comprimen^to por 6 cen^time^tros de diâme^tro. Possui aris^tas longas.
- Cabelo de Negro: também comum. Folhas curtas e estreitas, verde-escuras, muito pubescentes, entre-nós mais curtos, formando touceiras densas. Inflorescências sem aristas (inermes). Mais adaptado ao pastoreio.
- Branco: semelhante ao roxo, folhas mais claras, colmos mais robustos e eretos, menos pelos nas folhas e nós, e inflorescências claras. Inferior, menos resistente à seca e ao frio. Em solos férteis supera os ou tros em produção.

Uma variedade sem aris^ta, conhecida como variedade — inermis Hack foi ci^tada por CHIPPINDALL (1955).

BOGDAN (1960) relatou uma seleção de 12 variedades de <u>Melinis minu</u>tiflora, em Quênia. Estas variedades mos traram—se muito seme — lhantes entre si, exceto uma oriunda da Nigéria, que se mostrou distinta das demais. Dois ecotipos selvagens locais, Chania River e Mbooni Hills, mostraram—se promissores. Um trabalho posterior de BARNARD (1969) nova—mente enfatizou a importância desses dois ecotipos por apresentarem resistência a doenças, embora fosse pequena a produção de sementes.

Segundo OTERO (1961) as variedades mais conhecidas são:

- Roxo: é o mais recomendado na formação de pas^tagens. Tem por ^te menor, folhas menores e en ^tre-nos cur^tos. Mui^to resis^ten ^te ao piso^teio;
- Bramco: folhagem verde-clara, inflorescências mais pálidas, e pelos curtos nas regiões dos nos do colmo, enquanto que as outras variedades têm folhas mais longas e verde-escuras, e pelos longos nos nos. É mais sensível ao frio, e de composição química inferior às outras;
- Francano ou franqueiro: é mais vigoroso e desenvolvido; inflorescências maiores e espículas providas de aris^tas mais longas que as ou^tras variedades. É recomendado para cor^te, pelo seu grande rendimen^to;
- Capim gordura roxo var. inerme: é semelhan^te ao roxo, porém desprovido de aris^tas em suas espículas;
- Cabelo de Negro: também com um tipo de inflorescência menor, roxa, e espículas sem aristas.

WHYTE & ou^tros (1962) ressal^taram a não exis^tência de linhagens melhoradas, mas ci^taram as seguin^tes variedades reconhecidas no Brasil:

- Roxo: mais dis^tribuido e cul^tivado;
- Cabelo de Negro: menor, mais resis^ten^te ao pas^toreio, mais recomendado para pas^tagens;
- Francano: semelhan^te ao Roxo, mais vigoroso, recomendado para cober^tura do solo;
- Branco: folhas longas, verde-claras; mais pobre que as ou^tras varieda des.

CLAYTON (1967) ci^tou uma nova variedade descri^ta, <u>Meli</u>nis minu^tiflora var. se^tigera, em ^Tanzania.

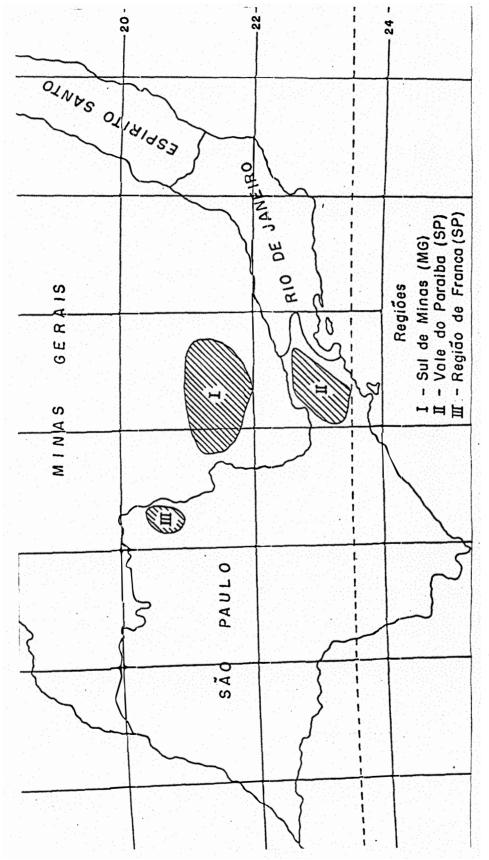
Segun**do** ESTÉVE, exis^tiriam as seguin^tes variedades — (apud HAVARD-DUCLOS, 1967):

- Roxo: variedade mais dis^tribuída, carac^terizada por apresen^tar pelos roxos em ^todas as folhas, e uma secreção resinosa mui^to abundan^te.
- Branco: mais claro, pelos pálidos e secreção resinosa menos abundan^te.
- Cabelo de Negro: has^tes delgadas e ere^tas, com pelos coloridos mais cur^tos.
- Francano: variedade cuja existência não estaria ainda perfeitamente es tabelecida.

2.3.4. Es^tudos citológicos

Quanto ao número cromossômico de <u>Melinis minutiflora</u>, — HUNTER (1934) concordou com as primeiras inves^tigações ci^tológicas real<u>i</u> zadas por AVDULOV (apud HUNTER, 1934) sendo que ambos encon^traram 2n = 36 cromossomos.

Estes resultados iniciais foram confirmados por PIENAAR (1955), BOR (1960), TATEOKA (1965) e MANARA (1973).


3.1. Material

Na execução do presente trabalho foram utilizadas plantas de capim gordura (Melinis minutiflora Beauv.) provenientes de 3 regiões onde ele é particularmente abundante, e ocupa papel importante na pecuária leiteira: sul do Estado de Minas Gerais, Vale do Paraíba (S.P.) e Franca (S.P.) A posição sistemática ocupada pela espécie, e a descrição da mesma, de suas variedades e ecotipos, já foram abordadas nos subitens 2.3.1., 2.3.2. e 2.3.3.

Os espécimes foram obtidos em viagens de coleta realiza das por professores e funcionários do Departamento de Genética, nos meses de fevereiro e março de 1972. Os locais de coleta foram os seguintes:

- Região sul de Minas Gerais: municípios de Lavras, Nepomuceno, Ijaci, Perdões, Varginha, Alfenas, Mon^te Belo, Muzambinho e Guaxupé.
- Região do Vale do Paraíba: Caçapava, São José dos Campos, Mon^teiro Loba^to, San^to An^tônio do Pinhal, ^Tauba^té, Redenção da Serra, São Luiz do Parai^tinga, Pindamonhangaba, Aparecida e Guara^tingue^tá.
- Região de Franca: Res^tinga, Franca, São Jósé da Bela Vis^ta, Guará, Pa^trocínio Paulis^ta, Cris^tais Paulis^ta, Pedregulho e Rifaina.

Na figura 2 es^tão discriminadas as áreas de cole^ta de — ma^terial, em fevereiro e março de 1972.

2 - Melinis minutiflora: regiões de coleta, durante os meses de fevereiro e março de 1972. FIG.

O material coletado consistiu em touceiras, amostradas ao acaso, procurando—se tomar uma amostra representativa de cada região e de seus respectivos pastos. Na coleta consideraram—se apenas pastos—que estavam sendo utilizados com animais no momento da coleta, e cuja—idade de estabelecimento era superior a 15 anos.

Em cada uma das 3 regiões percorreram—se 23 pas^tos, em cada um dos quais cole^taram—se 5 amos^tras ou ^touceiras, perfazendo um ^to de 345 amos^tras.

Os espécimes ob^ticos foram plan^tados na área de campo do Depar^tamen^to de Gené^tica des^tinada às plan^tas forrageiras, para es^tudos pos^teriores. A figura 3 mos^tra um aspec^to das plan^tas já es^tabelecidas no campo.

FIG. 3 — <u>Melinis minutiflora</u>: aspec^to da área de campo do Departamento de Genética, destinada às plantas — forrageiras.

3.2.1. Estabelecimento da área de distribuição geográfica

Com relação à área de dis^tribuição geográfica, a revisão da li^tera^tura permi^tiu—nos es^tabelecer a sua expansão a^través do mun do, e mais par^ticularmen^te, no Brasil. De posse desses dados, foi possível a confecção de mapas mos^trando a dis^tribuição da espécie, os quais serão apresen^tados em Resul^tados, no sub-í^tem 4.1.

3.2.2. <u>Iden^tificação e caracterização taxonômica de variedades e eco^tipos</u>

3.2.2.1. De^terminação do número somático de cromossomos

Foi realizado um ^trabalho prévio, para se es^tabelecer a melhor ^técnica ci^tológica a ser u^tilizada.

Foram coletadas pontas de raizes de plantas adultas e - de plantas obtidas por semeadura em canteiros, tomadas 33, 61 e 70 dias após a semeadura. Testaram-se 3 horários de coleta de raizes: 10 horas, - 14 horas e 16 horas.

A fim de se ob^ter cromossomos mais condensados e separados, na me^táfase, u^tilizou-se 8-hidroxiquinoleina a 0,002 mol, por 6 a - 7 horas, à ^temperatura ambien^te.

para a fixação, empregou-se e^tanol acé^tico (3:1) por 24 horas. O ma^terial foi conservado em álcool 70%, em geladeira, a^té sua u-tilização.

A preparação das lâminas foi fei^ta pelo mé^todo "smear", ^tendo sido ^tes^tadas 3 ^técnicas de coloração: orceina acé^tica, viole^ta de genciana (BUCHERL, 1962) e Feulgen (DARLINGTON & LA COUR, 1969).

Os melhores resul^tados foram ob^tidos quando a cole^ta - era realizada em ^torno das 10 horas, u^tilizando-se plan^tas adul^tas; 8-hi droxiguinoleina 0,002 mol como pré-^tra^tamen^to por 6-7 horas; e^tanol acé-

tico (3:1) como fixador, durante 24 horas. O material fixado foi conservado em álcool 70% em geladeira, até a sua utilização.

A melhor coloração foi obtida pela técnica de Feulgen.

Para eliminar pequenas partículas de areia das raizes, as quais dificultavam a confecção das lâminas, quebrando as laminulas, — procurou—se forçar a formação de raizes em ramos mantidos em vidros com áqua tendo—se obtido bons resultados.

Foram cole^tadas pon^tas de raízes de plan^tas provenien-^tes das 3 regiões, procurando-se aquelas que apresen^tassem maiores diferenças morfológicas en^tre si.

3.2.2.2. Mensurações efe^tuadas

para avaliar a variação apresentada pelos espécimes em estudo, foram medidos os seguintes caracteres, correspondentes à parte — floral e à vegetativa:

- a comprimento do eixo central da panícula
- b comprimento da panícula
- c comprimento dos eixos laterais da panícula (forma da panícula)
- d altura da planta
- e diâme^tro da ^touceira (área basal)
- f comprimento do remo
- g comprimento dos entre-nós dos ramos
- h comprimento da 5º folha do ramo
- i largura da 5ª folha do ramo
- j comprimen^to da folha bandeira ("flag-leaf")
- l largura da folha bandeira ("flag-leaf").

Sempre que possível, procurou-se cole^tar 3 inflorescências por plan^ta; após herbarizá-las, foram fei^tas as medições rela^tivas à par^te floral, conforme se acha esquema^tizado na figura 4.

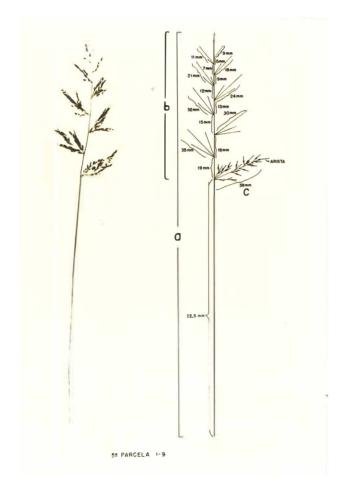


FIG. 4 - Melinis minutiflora: panícula herbariza da, e esquema mostrando as mensurações efetuadas:

- a— comprimen^to do eixo central da paní cula
- b- comprimento da panícula
- c- comprimen^to dos eixos laterais da p<u>a</u> nícula

Com as medidas do ítem c (comprimento dos eixos laterais da panícula) foi estabelecido um índice, de acordo com sugestão apresentada por VENCOVSKY (1973, informação pessoal):

duas úl^timas medidas

$$I = \frac{2^{2} + 3^{2}}{1}$$
 medidas

Ou seja, no exemplo da figura 5:

$$Y = \frac{11 + 9}{35 + 30} = \frac{20}{65} = 0,307 \text{ mm}$$

Dessa forma, ^tem—se idéia da forma da panícula, nes^te — caso mais ou menos cônica, com a base vol^tada para baixo. Quan^to mais o indice se aproximasse de l, mais a panícula ^tenderia a uma forma re^tangular. Índices maiores que l indicariam uma forma cônica, com a base vol^ta da para cima.

No indice foram usadas a 2º e 3º medidas, abandonando—
se a medida do 1º eixo la teral porque se verificou que, mesmo en tre paní
culas da mesma touceira, seu comprimento variava bastante, muitas vezes
sendo menor do que os ramos seguintes, e não permitindo, desta forma, —
que se tivesse uma idéia exata da forma da inflorescência.

Com relação à parte vegetativa, as medidas também foram feitas na época do florescimento, quando as plantas apresentavam seu estado de máximo desenvolvimento.

A al^tura da plan^ta e a área basal (í^tens d, e) foram me didas de acordo com o mé^todo de ROCHA (1972b).

Ainda na parte vegetativa, procurou-se sempre que possivel, medir 3 ramos por planta, para verificar a variação dentro de plantas. (item f).

No item g (comprimento dos entre-nós dos ramos) foi cal culado o comprimento médio dos entre-nós de cada ramo. Foi u^tilizada a 5ª folha para as mensurações (ítens h, i) por ser aquela que apresen^tava, na época, as melhores condições de — pleno desenvolvimen^to.

As medidas foram ^tomadas com auxílio de uma escala mil<u>i</u> me^trada, e sempre no pon^to de maior dimensão.

3.2.2.3. Me^todologia estatís^tica

A a**nális**e da variância foi fei^ta segundo um delineamento do ^tipo classificação hierárquica.

Em cada uma das 3 regiões foram estudados 23 pastos, e 5 plantas por pasto. Sempre que possível, foram feitas 3 medições por planta. Devido a morte de plantas, atraso ou não ocorrência de florescimento, o número de plantas por pasto variou de 1 a 5, e o número de medições por planta variou de 1 a 3.

As análises da variância foram fei^tas de acordo com esquema apresen^tado por ANDERSON & BANCROFT (1952), conforme se vê no quadro 2.

QUADRO 2 - Esquema da análise da variância (ANDERSON & BANCROFT, 1952)

			E (QI	n)	
CV	GL	2 d	C ₂	€ 6	G a ²
Regiões	a_l	1	≤≝ ^{n²} ijk ijk	f	≤n² i fi i
Pas ^t os/SM	b <mark></mark> l				
Pastos/VP	b 1				
Pas ^t os / F	b _i -1				
Pas ^t os/Região	≤ ba i i	1	ŹŹ Ź n² ijk	f ≦≦n jk ij ij	2 ij i j
Plantas/Pasto/SM	c ij(sM) ^{-b} i				
Plantas/Pasto/VP	c _{ij(VP)} -b _i				
Plantas/Pastos/F	c _{ij(F)} -b _i				
Plantas/P/A	عِج د ij c _{ij} - غ	b _i l	<i>≦≦</i> ∑ n² ijk	? ijk ^f ijk	
Den ^t ro	n = 22 c i j i,	j 1			

a = nº de regiões
 n = nº de amostras por região
 b = nº de pastos por região

n_{ij} = nº de amos^tras por pasto c_{ij} = nº de plantas por pas^to n_{ijk}= nº de amos^tras por planta Os quadrados médios foram recalculados para se ob^ter valores válidos de F, e ão cálculo do número de graus de liberdade dos novos quadrados médios foi fei^to de acordo com SATTERIHWAITE (1946).

Todos os cálculos foram realizados pela unidade de computação IBM 1130 do Departamento de Matemática e Estatística da ESALQ.

3.2.2.4. De^terminação da época de florescimento

Foi fei^ta anotando—se o número de plantas que floresciam por dia, considerando—se florescimen^to a aber^tura da primeira inflores—cência da ^touceira. As observações são rela^tivas a dados ob^tidos em 2 anos consecu^tivos, para verificar possíveis in^terações com anos.

3.2.2.5. Observação de outros caracteres

Observou—se a presença ou não de aristas, cor da folha—gem, quantidade de inflorescências.

Com estes dados foi possível agrupar o material em "ti pos" bem definidos, conforme será vis^to no ítem 4.2.4.

4.1. Estabelecimen^to da área de distribuição geográfica

Utilizando—se os dados obtidos na literatura, sobre a o—corrência do <u>Melinis minutiflora</u>, foi possível a elaboração de mapas mostrando a distribuição geográfica do mesmo através do mundo todo, e, mais particularmente, no Brasil.

No mapa rela^tivo à dis^tribuição mundial do capim gordura (figura 5) no^ta-se sua ocorrência predominan^temen^te ^tropical e sub-^tropical, dis^tribuindo-se numa faixa compreendida en^tre 30⁰ de la^ti^tudes nor^te e sul.

No mapa relativo à distribuição no Brasil (figura 6), acham—se assinalados apenas os Estados em que a presença do capim gordura foi constatada através da revisão da literatura: Ceará, Espírito Santo, — Goiás, Mato Grosso, Paraná, Rio de Janeiro e São Paulo. No entanto, há in formações sobre sua ocorrência em outros Estados do nordeste, por OTERO — (1961) e GROSSMAN & outros (1965) sem que tenha havido, porém, discriminação de quais seriam esses Estados. Ultimamente foi observada sua ocorrência no litoral de Santa Catarina (MANARA, 1974, informação pessoal).

Assimala—se a ocorrência des^ta gramínea em São Paulo, ba seada em ROCHA & MARTINELLI (1960), cujos resul^tados coincidiram com aque les encon^trados nes^te ^trabalho (figura 7).

No Estado de São Paulo, o capim gordura é encontrado nas zonas de criação de gado leiteiro, onde seu emprego ainda predomina, apesar das recentes introduções de novas espécies forrageiras. Bem ao sul do Estado e na zona noroeste, a predominância é de capim Jaraguá (Hyparrhenia rufa) e capim colonião (Panicum maximum). No Vale do Paraíba, onde o capim gordura é bastante utilizado, sua ocorrência estende-se desde terre nos de topografia plana, às vezes alagadiços, até as encostas de morros, já nos contrafortes da Serra da Mantiqueira, Apenas nas regiões mais altas, de inverno rigoroso, como Campos do Jordão, o capim gordura é substituido por espécies forrageiras de zonas temperadas.

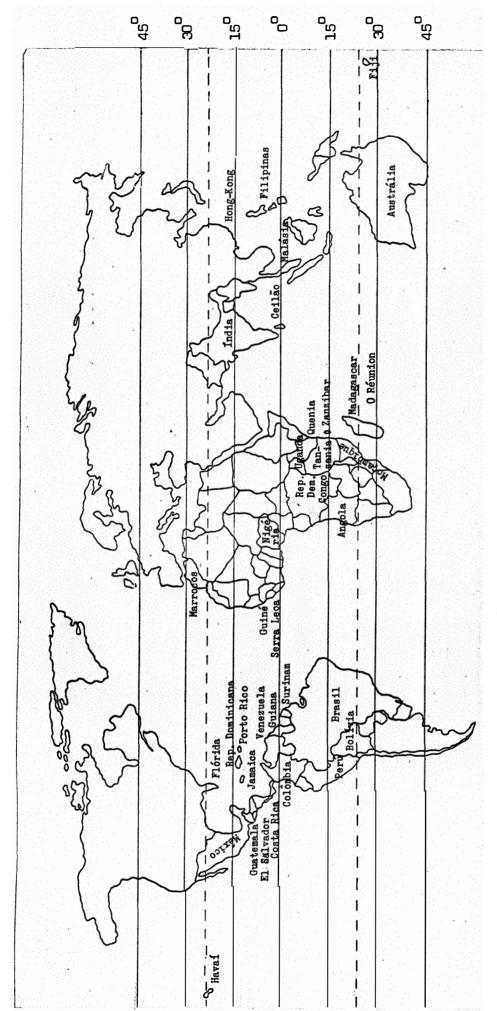


FIG. 5 - Melinis minutiflora: distribuição mundial, (de acordo com os dados encontrados na literatura).

FIG. 6 — <u>Melinis minutiflore:</u> dis^tribuição no Brasil (de acordo com os dados encontrados na li^teratura).

FIG. 7 — <u>Melinis minutiflora:</u> distribuição no Es^tado de São Paulo (ROCHA & MARTINELLI, 1960).

4.2. Identificação e caracterização taxonômica de variedades e ecotipos

4.2.1. De^terminação do número somático de cromossomos

Nem sempre foi possível a ob^tenção de lâminas que permitissem a observação de boas me^táfases mitóticas de pontas de raízes para a contagem do nº somático de cromossomos.

No entanto, nas plantas das 3 regiões em estudo, sempre que foi possível a contagem do número de cromossomos, observou—se 2n=36, não havendo variações morfológicas nos cromossomos que pudessem ser nota das, como foi confirmado por MANARA (1973). Os dados obtidos encontramase na tabela 1.

TABELA 1 - Melinis minutiflora: número somático de cromossomos, em pontas de raízes.

Região	№ de plan ^t as es ^t udadas	2n
Sul de Minas Geraïs	10	36
Vale do Paraíba	10	3 6
França	10	3 6

A figura 8 apresen^ta uma me^táfase mi^tótica, onde pode – ser observado o número cromossômico 2n=36.

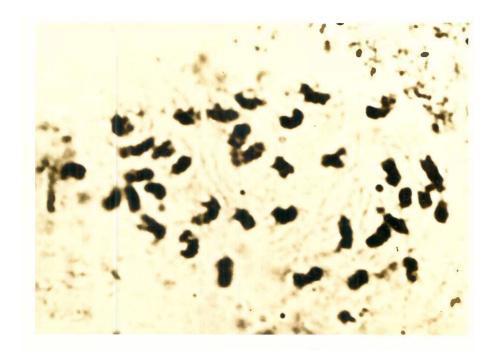


FIG. 8 - Melinis minutiflora: metáfase mitótica em pontas de raízes, sendo 2n=36 (MANARA, 1973).

4.2.2. Mensurações efetuadas e análise estatística

Para avaliar—se a variação apresentada pelo material, — caracteres florais e vegetativos foram medidos e analisados estatistica—mente. Os resultados da análise da variância para cada caráter estudado encontram—se no APÊNOICE (tabelas I a XI).

Na ^tabela 2 encon^tram—se as médias calculadas para os — carac^teres es^tudados, em plan^tas provenien^tes das 3 regiões consideradas.

TABELA 2 - Melinis minutiflora: médias encon^tradas para 11 carac^teres fe notípicos medidos, em plantas provenien^tes de 3 regiões. (Sul de Minas Gerais, Vale do Paraíba e Franca).

		REGIÕES			
	Caréter	Sul de Minas Gerais	Vale do Pa raíba	Franca	
a)	Comprimen ^t o do eixo cen ^t ral da panícula (cm)	36, 0810	32 , 6640	35,3560	
b)	Comprimen ^t o da panícula (cm)	14,5880	12,1060	14,3210	
c)	Comprimento dos eixos laterais da panícula (indices)	0,200	0,154	0,192	
d)	Al ^t ura das plan ^t as (cm)	41,1460	36,6436	46,0235	
e)	Área basal (m²)	0,1680	0,1906	0,2659	
f)	Comprimento do ramo (cm)	50 , 9338	48,4454	47,5277	
g)	Comprimento dos entre-nos (cm)	4,8514	5, 2038	5,4308	
h)	Comprimen ^t o da 5ª folha (mm)	115,4084	108,7662	114,6707	
i)	Largura da 5ª folha (mm)	8 ,9583	9,1948	9,5903	
j)	Comprimento da flag-leaf (mm)	62,8985	64,5844	67,1084	
1)	Largura da flag-leaf(mm)	6,0000	4 , 3766	4,6867	

Para melhor compreensão da ^tabela, agruparemos os carac ^teres medidos conforme sejam referen^tes a inflorescência, a aspec^to geral da ^touceira, a ramos, e a folhas.

- Caracteres relativos a inflorescências:

Com relação ao tamanho das inflorescências (comprimento do eixo central da panícula e comprimento da panícula), verifica-se que, em média, as - panículas de plantas provenientes do sul de Minas Gerais foram maiores (36,0810 cm e 14,5880 cm, respectivamente), seguindo-se, em ordem decrescente de tamanho, plantas originárias da região de Franca (35,3560)

cm e 14,3210 cm, respectivamente) e do Vale do Paraíba (32,6640 cm e 12,1060 cm, respectivamente). Quanto à forma da inflorescência, indica da pelos índices, observa—se a mesma ordem decrescente: sul de Minas—Gerais (0,2000), Franca (0,1920) e Vale do Paraíba (0,1640), ou seja, as panículas da região sul de Minas Gerais apresentariam a menor diferença entre os comprimentos dos ramos laterais basais e apicais, e tenderiam a uma forma mais "retangular"; as panículas de plantas provenientes do Vale do Paraíba possuiriam forma mais cônica, e as da região de Franca seriam intermediárias.

- Caracteres relativos ao aspecto geral da touceira:

 As plantas provenientes da região de Franca apresentaram a maior altura (46,0235 cm) e a maior área basal (0,2659 m²); plantas provenientes do sul de Minas Gerais mostraram—se mais altas (41,1460 cm) mas com me nor área basal (0,1680 m²), quando comparadas com os valores médios obtidos por plantas provenientes do Vale do Paraíba (altura, 36,6436 cm; área basal 0,1906 m²).
- Caracteres relativos aos ramos:

 Embora plantas provenientes da região de Franca apresentassem os ramos mais curtos (47,5277 cm), os entre-nós eram os mais longos (5,4308 cm);

 Com as plantas originárias do sul de Minas Gereis, ocorria o inverso;

 ramos mais longos (50,9338 cm) mas entre-nós mais curtos (4,8514 cm).—

 As plantas originárias do Vale do Paraíba mostraram tamanhos médios de ramos e entre-nós com valores intermediários entre as outras 2 regiões (48,4454 cm e 5,2038 cm, respectivamente).
- Carac^teres rela^tivos às folhas:

 Com relação a comprimen^to e largura da 5º folha, plan^tas provenien^tes

 do sul de Minas Gerais apresen^taram, em média, folhas mais longas e
 mais es^trei^tas (115,4084 mm x 8,9583 mm). Plan^tas provenien^tes do Vale

 do Paraíba mos^traram folhas mais cur^tas, com largura in^termediária
 (108,7662 mm x 9,1948 mm), e plan^tas provenien^tes de Franca apresen^ta-

ram folhas com comprimen^to in^termediário, e mais largas (114,6707 mm × 9,5903 mm).

Quanto à folha—bandeira, a maior média de comprimento — foi encon^trada em plan^tas originárias da região de Franca, embora com — largura in^termediária (67,1084 mm × 4,6867 mm); plan^tas provenien^tes do Vale do Paraíba apresen^taram valores in^termediários de comprimen^to, embora ra fossem as mais es^trei^tas (64,5844 mm × 4,3766 mm) e plan^tas provenien^tes do sul de Minas Gerais foram as que apresen^taram folhas—bandeiras — mais curtas e mais largas (62,8985 mm × 6,0000 mm).

A tabela 3 apresenta a significância dos valores de F — obtidos para as diversas fontes de variação, considerando—se os literando—se os litera

Observa—se que para as 3 fontes de variação considera—
das (Regiões; Pastos/Regiões; Plantas/Pastos/Regiões), as diferenças mais significativas foram encontradas naqueles caracteres relacionados com a parte floral (comprimento do eixo central da panícula e comprimento da — panícula) embora a forma da panícula (índices) não diferisse significativamente entre pastos.

Quanto aos caracteres relativos ao aspecto da touceira (altura e área basal), houve diferenças significativas entre regiões e - entre pastos/regiões, mas não entre plantas/pastos/regiões.

Nos carac^teres relacionados com ramos e folhas, (comprimen^to de ramos e en^tre-nos; comprimen^to e largura da 5º folha; comprimen^to e largura da folha bandeira) em geral as diferenças significa^tivas so ocorreram en^tre pas^tos, den^tro de regiões.

TABELA 3 - Melinis minutiflora: significância dos valores de F obtidos para as diversas fontes de variação, considerando-se os 11 caracteres estudados.

F. V.	Comprimento do Eixo Central - da Panícula	Comprimento da Panfcula	Forma da Panfcula (fndices)	Altura da planta	Area basal da touceira	Comprimento do remo	Comprimento do Comprimento da Forma da Altura da Área basal da Comprimento do Comprimento do Comprimento da Largura da f <u>o</u> Eixo Central - Panfoula Panfoula planta touceira ramo entre-nós do - 5º folha folha folha-bandeira lha bandeira da Panfoula (indices)	Comprimento da 5ª folha	Largura da 5ª folha	Comprimento da Largura da f <u>e</u> folha-bandeira lha bandeira	Largura da f <u>o</u> lha bandeira
Regiões	***************************************					n,8,8	n,8	n.8.	n.8.	п. В.	
Pastos/SM			П • 8	•							р. В.
Pastos/VT	***************************************	*	n se	•	.	*				*	
Pastos/F	‡	*	n.e.	•		*	•	*	*	*	n.8.
Plantas/Pastos/SM	** из/		.	n.s.	n.8.		n.8.	n.B.	n. 8.	n.B.	
Plantas/Pastos/VP	/VP **	**************************************	п •8•	n.8.	n.ee.	n.8.	n°8°	п.в.	й В	n.8	ង
Plantas/Pastos/F	/F		•	n.8.		n.8.	n.e.e.	n.e.	n.B.	n.B.	n.B.

n.s. = não significativo

* = significativo ao nível de 5%

** = significativo ao nível de 1%

SM = Sul de Minas Gerais

VP = Vale do Paraíba

F = Franca

4.2.3. Determinação da época de florescimento

Nas plan^tas das 3 regiões es^tudadas, o florescimen^to ocorreu na segunda quinzena de maio, como se esperava pelos dados da li^te ra^tura.

Os resul^tados encon^trados para as 3 regiões podem ser — obs**ervado**s nos diagramas seguin^tes (figuras 9, 10 e 11).

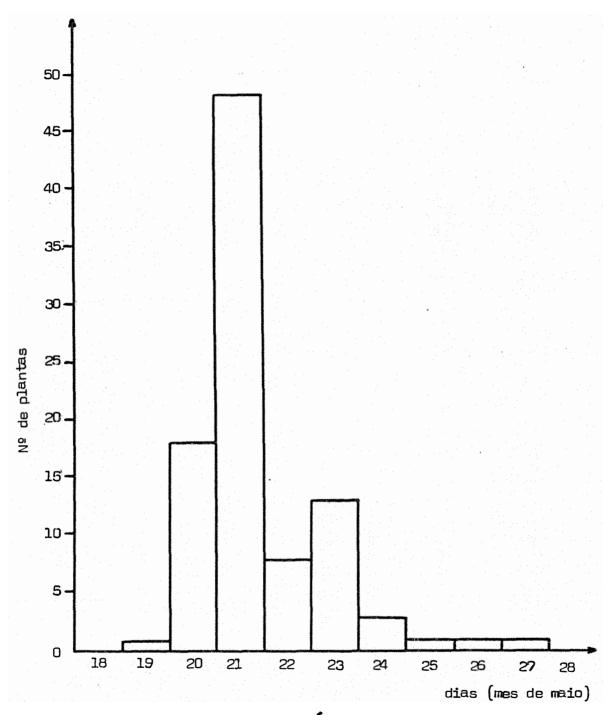


FIG. 9 — <u>Melinis minutiflora:</u> época de florescimento, em Piracicaba, no mes de maio, nos anos de 1972 e 1973, de plantas provenientes da região sul de Minas Gerais.

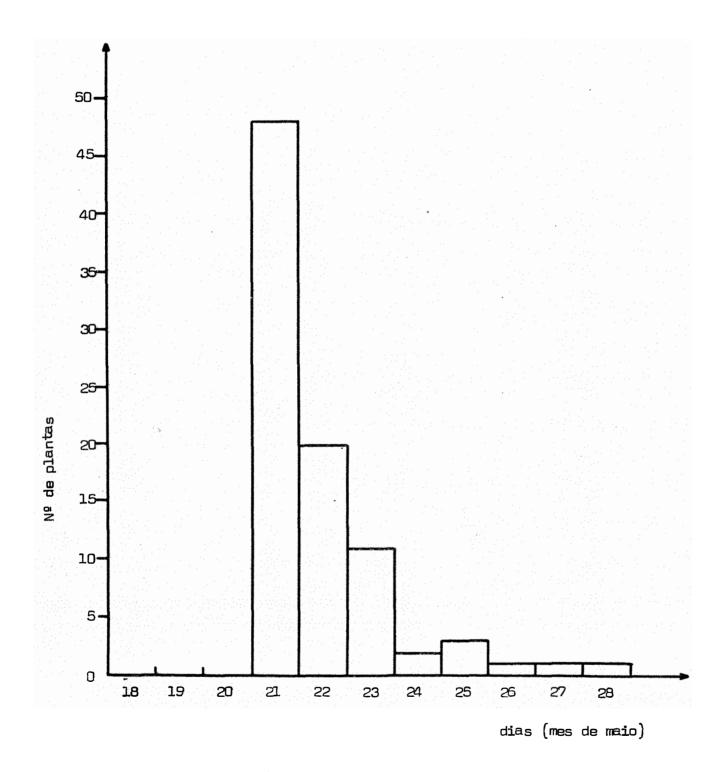


FIG. 10 — <u>Melinis minu^tiflora:</u> época de florescimen^to, em Piracicaba, no mes de maio, nos anos de 1972 e 1973, de plan^tas proven<u>i</u> en^tes da região do Vale do Paraíba.

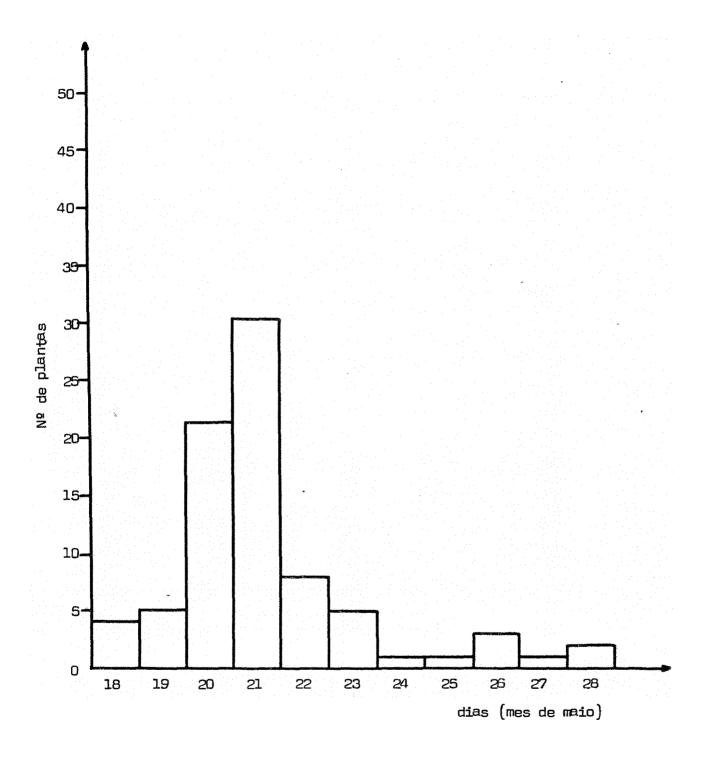


FIG. 11 — <u>Melinis minu^tiflora:</u> época de florescimen^to, em Piraci—caba, no mes de maio, nos anos de 1972 e 1973, de plan—^tas provenien^tes da região de Franca.

Pode—se observar que o maior número de plan^tas iniciou o florescimen^to no dia 21 de maio, para as 3 regiões consideradas.

Nas 94 plantas provenientes do sul de Minas Gerais (figura 9), o florescimento iniciou—se no dia 19, atingiu o pico no dia 21, e depois diminuiu progressivamente, até o dia 27, portanto, num espaço de 9 dias.

Nas 87 plantas provenientes do Vale do Paraíba (figura 1D), houve um início abrupto do florescimento no dia 21, notando—se, de pois, um decréscimo gradativo, tendo a última planta iniciado o florescimento no dia 28 de maio; portanto, todas floresceram num espaço de 8 dias.

Nas 81 plantas provenientes da região de Franca (figura 11) o comportamento foi semelhante ao daquelas do sul de Minas Gerais, só que o espaço de tempo abrangido pelo início do florescimento — foi maior, compreendendo do dia 18 ao dia 28, ou seja, 11 dias.

Observou-se que em cada touceira a antese é quase simultânea, ou seja, há um espaço de poucos dias entre a abertura da primeira e da última inflorescência. Estas permanecem abertas por cerca de 3 dias, e depois se fecham, assim permanecendo até o amadurecimento e queda das sementes que se formaram.

4.2.4. Observação de outros caracteres

Quan^to à presença ou não de aris^tas, pudemos classificar ^tres ^tipos de plan^tas: desprovidas de aris^tas, com poucas aris^tas, e com aris^tas abundan^tes. As figuras 12, 13 e 14 mos^tram, respec^tivamen ^te, uma panícula sem aris^tas, uma com poucas e ou^tra com mui^tas aris^tas, permi^tindo que se ^tenha uma idéia da diferença na quan^tidade das mesmas.

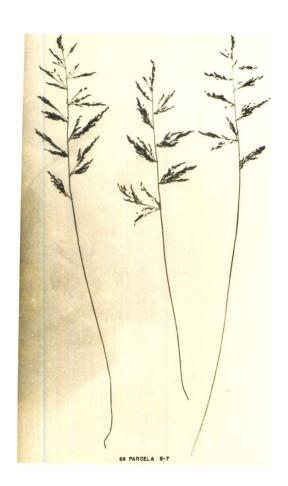


FIG. 12 — <u>Melinis minu^tiflora</u>: panículas desprevidas de aris^tas.

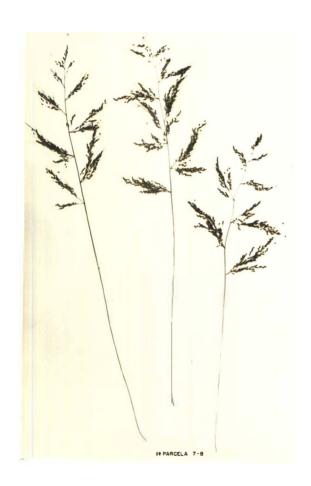



FIG. 13 — <u>Melinis minu^tiflora:</u> paniculas com poucas aris^tas.

19 PARCELA 7-1

FIG. 14 - Melinis minutiflora: panículas com muitas aristas.

Na ^tabela 4 encon^tram—se classificados os esp**éc**imes e<u>s</u> ^tudados, nos 3 ^tipos acima mencionados.

TABELA 4 — <u>Melinis minutiflora</u>: classificação das plantas estudadas, se gundo a quantidade de aristas presentes nas inflorescências.

REGIÃO	mui ^t as aris ^t as	poucas ar i s ^t as	sem aris ^t as	TOTAL
sul de Mina s Gerais	60	34		94
Vale do Paraíba	61	25	1	87
Franca	67	14		81 262

Quan^to ao aspecto da touceira, conforme pode ser visto nas figuras 15, 16 e 17, 2 "tipos" mostram—se bem eviden^tes:

Tipo A - mui^tas inflorescências, folhas miúdas, de coloração verde-escura, formando ^touceiras bem carac^terís^ticas. As folhas veludosas re^tém o orvalho, e, duran^te as primeiras horas da manhã, a plan^ta adquire uma coloração verde-acinzen^tada.

Tipo B - poucas inflorescências, mui^tas vezes não havendo emissão de uma só panícula; folhas maiores, verde-claras. Há uma
cer^ta ^tendência ao hábi^to pros^trado, e os ramos decumben^tes enraizam com facilidade.

FIG. 15 — <u>Melinis minu^tiflora</u>: planta apresentando muitas inflores cências, folhas miudas, formando uma touceira bem característica (tipo "A").

FIG. 16 - Melinis minutiflora: planta com apenas l'inflorescência, folhas maiores, e apresen^tando ramos decumbentes, ^tenden do a se enraizarem (tipo "B").



FIG. 17 - <u>Melinis minutiflora</u>: diferença observada no aspecto das touceiras, tipo"A"(dir.) e tipo"B"(esq.), an^tes do florescimento.

Foram examinadas 262 plan^tes, no total, quan^to ao aspec^to da ^touceira. Os resul^tados encon^trados acham-se na ^tabela 5.

TABELA 5 - <u>Melinis minutiflora:</u> classificação das plan^tas es^tudadas, de acordo com o aspec^to apresen^tado pelas ^touceiras.

Região	T _{ipo A}	Tipo B	TOTAL
sul de Minas Gerais	34	60	94
Vale do Paraíba	27	60	87
Franca	11	70	81 262

Pode—se observar a predominância de plan^tas do ^tipo B nas 3 regiões. Principalmen^te na região de Franca no^ta—se ^tal fa^to, pois de 8l plan^tas examinadas, apenas ll eram do ^tipo A.

5.1. Origem e distribuição geográfica

Em relação ao cen^tro de origem do capim gordura, verifica-se, a^través da literatura consul^tada, que a região les^te da África, — onde se constata a maior ocorrência de <u>Melinis minu^tiflora</u>, é ^também a á rea onde se encon^tra a maior quan^tidade de "^tipos" selvagens des^ta espécie (QUÊNIA, 1950; TROCHAIN, 1965; BOGDAN, 1966; BARNARD, 1969).

CHIPPINDALL (1955), embora ^tivesse considerado a hipó^te se de uma origem comum, africana e americana, para o capim gordura, rela ^tou ser es^ta a única espécie do gênero <u>Melinis</u> encon^trada fora do con^tinen^te africano.

HARTLEY (1958) mos^trou que a ^tribo Melinideae ^tem ocorrência generalizada no hemisfério orien^tal; os poucos gêneros per^tencentes a es^ta ^tribo, encon^trados no con^tinen^te americano, não incluiriam ne nhum que pudesse ser considerado como forma morfologicamen^te primi^tiva; não haveria, por^tan^to, evidência ^taxonômica para a hipó^tese de que a ^tribo ^tivesse uma origem americana.

Considerando—se as denominações vulgares dadas ao Melinis minutiflora, verifica—se que a maioria delas faz referência à secreção resinosa e de cheiro adocicado das folhas e caules. Apenas em regiões da África tropical há referências em dialetos nativos a esta graminea. As denominações "herbe du Brésil" (em Marrocos) e "Brazilian stink grass" (na Austrália) são encontradas em locais onde se sabe, pela literatura que o capim gordura foi introduzido a partir de sementes provenientes de nosso país. (FOURY, 1950; BARNARD, 1969; MOORE, 1970).

Na Venezuela o capim gordura também foi levado do Brasil (ROSEVEARE, 1948), e, no Ceilão, de semen^tes provenien^tes dos Es^tados Unidos, em 1906 (SENARATNA, 1956).

Todos es^tes fa^tos parecem reforçar a idéia de que o ce<u>n</u>

tro de origem do capim gordura seja o les^te da África, de onde foi leva—
do para ou^tras regiões e ou^tros con^tinen^tes. A América seria um cen^tro —
secundário de desenvolvimen^to evolu^tivo da espécie.

Observando—se a dis^tribuição do capim gordura no Brasil, pode—se pensar que a principal limitação para seu cultivo seja o frio, — em certas regiões de Santa Catarina, no Rio Grande do Sul, ou outras á—reas de inverno rigoroso, como Campos do Jordão (S.P.). No entanto, pelos dados encontrados na literatura, observa—se que há certa controvér—sia entre os autores quanto à resistência ao frio apresentada por esta—graminea; há mesmo referências a seu emprego na Venezuela até quase—2.000 metros de altitude (ROSEVEARE, 1948).

Quan^to à resis^tência à seca, embora em nossas condições de inverno sem chuva, o capim gordura perca ^{tot}almen^te o verdor, em cer^tos países seu emprego é recomendado em regiões com escassez de água – (FLORES e OLIVE, 1952; CEILÃO, 1951).

Es^tes fa^tos sugerem que haja, em <u>Melinis minu^tiflora</u>, — uma grande variabilidade quan^to à resis^tência à seca e ao frio, possibi— li^tando a seleção de variedades possuidoras dessas duas carac^terís^ticas bas^tan^te desejáveis.

Parece haver concordância geral dos autores com relação à falta de resistência ao fogo, em virtude do sistema radicular pouco — profundo. (VOLIO, 1952). Este é outro aspecto que poderia ser levado em conta, em programas de melhoramento. Quanto à resistência ao pisoteio de animais, se levarmos em conta que o material utilizado na execução deste trabalho é proveniente de pastos com pelo menos 15 anos de utilização, — pode—se pensar que tais pastos são constituídos por clones que já apre—sentam certa seleção para esta característica.

5.2. Identificação e caracterização taxonômica de variedades e ecotipos

5.2.1. Determinação do número de cromossomos

Os resul^tados da ^tabela l mos^tram que não houve diferenças en^tre o número de cromossomos, considerando—se plan^tas das 3 regiões.

O ^tamanho dos cromossomos ^também não apresen^tou diferença.

Es^tes resul^tados correspondem ao que se esperava, de acordo com a li^tera^tura consul^tada (PIENAAR, 1955; BOR, 1960; TA^TEOKA, --1965; MANARA, 1973).

Aparentemente, de acordo com MANARA (1973) as caracterís ticas morfológicas que diferenciam variedades (presença ou não de aristas, pigmentação da parte vegetativa, hábito de crescimento), são mais de natureza genética do que citológicas, e, apesar da baixa frequência de mutações encontrada na natureza, estas devem ter desempenhado um papel importante na diferenciação de variedades em Melinis minutiflora.

5.2.2. Caracteres medidos e analisados estatis^ticamente

Se, na tabela 2, compararmos as médias encon^tradas para ^todos os carac^teres analisados, verifica—se que os valores encon^trados para plan^tas provenien^tes da região de Franca são sempre maiores, quando comparados com aqueles encon^trados para plan^tas originárias do Vale do — paraíba.

No en^tan^to, comparando—se plan^tas provenien^tes de Franca com plan^tas provenien^tes do sul de Minas Gerais, observa—se que es^tas úl^timas possuem inflorescências maiores, maior comprimen^to do ramo e da 5º folha, e maior largura da folha—bandeira.

Assim sendo, embora as plan^tas da regiao de Franca, for mem ^touceiras maiores (mais al^tas e com maior área basal), es^te maior vi gor não ocorre em suas inflorescências, ao con^trário do que se esperava pela descrição do capim gordura francano (OTERO, 1961), o qual apresen^ta

ria inflorescência maiores que as ou^tras variedades descri^tas des^ta forrageira.

Por outro lado, verifica-se, na tabela 3, que para as 3 fontes de variação consideradas (regiões; pastos dentro de regiões; plantas, dentro de pastos, dentro de regiões), os caracteres relacionados com o tamanho da panícula (comprimento do eixo central da panícula e comprimento da panícula) apresentaram diferenças altamente significativas. Pode-se excluir a hipótese de que estas diferenças tivessem tido qualquer influência na coleta aleatória dos espécimes, já que estes foram obtidos nos meses de fevereiro e março (ítem 3.1.) quando o capim gordura ainda não apresentava florescimento.

quanto aos outros caracteres considerados, em geral não apresentaram diferenças significativas entre plantas dentro de pastos, — mas houve diferenças altamente significativas entre pastos, dentro de regiões. Disto pode—se concluir que as plantas apresentam—se bastante uniformes dentro de um mesmo pasto; tal fato poderá ser levado em conta, em futuros trabalhos de melhoramento que venham a ser realizados, procurando—se obter material básico para a seleção, de diversas procedências, a fim de se conseguir obter a maior variabilidade possível.

5.2.3. <u>De^terminação da época de florescimento</u>

Apesar das pequenas diferenças observadas en^tre o início do florescimen^to, comparando—se plan^tas das 3 regiões (í^tem 4.2.3.) podemos considerar que es^te ocorre na mesma época para ^todas as plan^tas, independen^temen^te da sua origem.

O florescimen^to na mesma época é de grande impor^tância, pois permi^te que o pólen seja facilmen^te levado para inflorescências de ou^tras plan^tas, pelo ven^to, o agen^te polinizador a ^tuan^te em M. minu^tiflora.

O modo de reprodução do capim gordura não está ainda -

bem de^terminado, havendo dúvidas quan^to a ser apomixia ou alogamia. MAR—TINS & OLIVEIRA (1971) em es^tudos preliminares sobre o modo de reprodução des^ta gramínea, encon^traram as seguin^tes porcen^tagens de formação de semen^tes puras: em condições de campo, 32,48%; plan^tas isoladas, 12,25%; plan^tas com panículas pro^tegidas, 9,02%. Por es^tes resul^tados, pode—se — supor que é necessária a presença de pólen es^tranho, para que ocorra a — formação de semen^tes.

A uniformidade observada na época do florescimento, em condições de campo, torna—se assim de extrema importância, pois assegura troca de polen entre plantas diferentes, necessária para que haja uma — produção satisfatória de sementes.

5.2.4. Observação de outros caracteres

Quan^to à presença ou ausência de aris^tas, pelos resul^ta dos encon^trados, no^ta—se que há predominância de plan^tas com mui^tas aris tas nas 3 regiões.

É interessante notar que no total de 262 plantas foi en contrada apenas l com total ausência de aristas (tabela 4). Tal planta poderia constituir a forma mútica, ou variedade <u>inermis</u>, Hack, citada — por CHIPPINDALL (1955).

A variação na quantidade de aristas parece indicar tratar—se de um caráter governado por vários genes; a natureza genética des te caráter já fora considerada por MANARA (1973), como pode ser visto no ítem 5.2.1. Pode mostrar, também, a ocorrência de cruzamentos entre variedades com aristas e variedades desprovidas de aristas, resultando em progênies nas quais varia a quantidade de aristas encontradas.

Quan^to ao aspec^to das ^touceiras, na ^tabela 5 encon^trase a classificação dos espécimes es^tudados, de acordo com es^te cará^ter.

Comparando—se es^tes dados com aqueles da ^tabela 4, rela tiva à presença ou ausência de aris^tas, pode—se no^tar que há uma grande aproximação en^tre o número de plan^tas com mui^tas aris^tas e o número de —

touceiras ^tipo B, e plan^tas com poucas aris^tas (ou sem aris^tas) e o número de touceiras ^tipo A.

Embora haja uma pequena diferença en^tre os valores, provavelmen^te devido a erros na classificação subje^tiva quan^to às aris^tas, pode-se considerar que plan^tas per^tencen^tes ao ^tipo A apresen^tam inflores
cências com poucas aris^tas (podendo ser incluída nes^te caso a plan^ta da região do Vale do Paraíba, com ausência comple^ta de aris^tas), e plan^tas
per^tencen^tes ao ^tipo B apresen^tam inflorescências com mui^tas aris^tas.

5.2.5. Variedades e ecotipos de capim gordura

Verificou—se, no í^tem 4.2.1., que ^todos os espécimes es-^tudados apresen^tavam o mesmo número somá^tico de cromossomos (2n=36) os quais não apresen^tavam quaisquer variações morfológicas no ^táveis.

Previamen^te observou—se que, em condições de campo, o — cruzamen^to ocorre livremen^te no capim gordura, não havendo nenhuma barrei ra reprodu^tiva que impeça a ^troca de polen en^tre plan^tas (MARTINS E OLI—VEIRA, 1971).

Por^tan^to, ^todos os espécimes es^tudados podem ser conside rados como per^tencen^tes à espécie <u>Melinis minu^tiflora</u> Beauv., cujas carac ^terís^ticas já foram de^talhadas no í^tem 2.3.1.

Considerando—se as diferenças morfológicas encon^tradas — en^tre as plan^tas es^tudadas e comparando—se es^tes resul^tados com as variedades descri^tas na li^tera^tura, pode—se classificar os espécimes u^tiliza—dos nes^te es^tudo como per^tencen^tes às seguin^tes variedades:

- Capim gordura Cabelo de Negro: touceiras de forma bastante característica, porte menor, ramos e entre-nós mais curtos; folhas miúdas, verde es curas, muito pubescentes: Florescimento abundante, panículas menores, com poucas aristas. Um único espécime completamente sem aristas foi encontrado, e provavelmente seria o tipo descrito na literatura como variedade inermis Hack (CHIPPINDALL, 1955).

- Capim gordura Roxo: touceiras maiores, muitas vezes com ramos longos, - decumbentes, que enraizam facilmente. As folhas são maiores, verde-claras, e menos pubescentes do que na variedade anterior. O florescimento também é menor, sendo que em muitas touceiras havia apenas uma, ou mesmo nenhuma panícula. Estas são maiores, de coloração roxa mais escura, - e apresentam abundância de aristas.

O capim gordura Francano seria semelhan^te ao Roxo, só — que consis^tindo num eco^tipo mais vigoroso, adap^tado à região de Franca. — Em geral, embora não ^tenha um florescimen^to ^tão grande quan^to o Cabelo de Negro, apresen^ta maior quan^tidade de inflorescências do que no Roxo.

Carac^teres de ou^tras variedades, ci^tadas por diversos au ^tores, não foram cons^ta tadas no ma ^terial es ^tudado.

Observando—se as ^tabelas 4 e 5, verifica—se que a varie—dade Cabelo de Negro es ^tá represen ^tada en ^tre as plan ^tas das 3 regiões. Na região sul de Minas Gerais e no Vale do Paraíba, cons^ti ^tui cerca de 2/3 das plan ^tas es ^tudadas; no en ^tan ^to, na região de Franca, sua ocorrência é bem menor.

Seria lícito supor-se que a menor ocorrência desta varie dade na região de Franca seja devido ao fato de estar melhor adaptado às condições locais o ecotipo Francano, com plantas maiores, mais vigorosas e inflorescências bastante aristadas, constituindo a maior parte das pastagens dessa área.

Outro aspecto que poderia ser considerado é aquele que diz respeito ao florescimento mais abundante nos espécimes pertencentes à variedade Cabelo de Negro, e menos intenso na variedade Roxo, podendo ser considerado intermediário no ecotipo Francano. Nestes dois últimos casos, nota-se uma tendência de enraizamento dos ramos decumbentes, a qual não ocorre na variedade Cabelo de Negro. Poderíamos considerar, então, que possivelmente haveria maior formação de sementes no Cabelo de Negro, e a menor produção de sementes na variedade Roxo seria, de certo modo, compensada pela tendência desta variedade a se propagar vegetativamente.

Es^tudos realizados por MANARA (1973), rela^tivos à fer^tilidade do pólen e à segregação na meiose mos^traram que a variedade Cabelo
de Negro apresen^tou maior fer^tilidade de pólen e segregação mais normal —
do que a variedade Roxo, ^tendo o Francano mos^trado valores in^termediários.
Es^tes dados parecem confirmar as observações an^teriores.

Considerando—se a grande importância de plantas forra—geiras para a pecuária, visando—se ao aumento da produtividade animal, e a falta de conhecimentos básicos ainda existente sobre as principais for rageiras utilizadas no Brasil, entre as quais o capim gordura (Melinis — minutiflora Beauv.), foi desenvolvido o presente trabalho, com os seguiras objetivos:

- 1. Es^tabelecimen^to da área de dis^tribuição geográfica do capim gordura, levando—se em consideração as áreas fi^togeográficas e ecológicas onde ocorre, a^través do mundo ^todo e, mais par ^ticularmen ^te, no Brasil.
- 2. Iden^tificação e carac^terização ^taxonômica de variedades e eco^tipos.

 Os principais resul^tados e conclusões ob^tidos foram os seguin^tes:
- 6.1. A^través da revisão da li^tera^tura, es^tabeleceu—se a área de dis^tribuição geográfica do capim gordura (figura 5). Ocorre em regiões tropicais e sub—^tropicais, en^tre 30[°] de la^ti^tudes nor^te e sul. A les^te da África apresen^ta—se a maior concen^tração de variedades e formas selvagens e provavelmen^te é nessa área que se encon^tra o cen^tro de origem de Melinis minu^tiflora.
- 6.2. O Brasil seria um cen^tro secundário de dispersão da espécie, a par tir do qual <u>Melinis minutiflora</u> foi in^troduzido em ou^tros países <u>a</u> mericanos, em Marrocos e na Aus^trália.
- 6.3. No Brasil a principal limi^tação ao cul^tivo do capim gordura seria o frio, a par^tir do sul do Es^tado do Paraná, San^ta Ca^tarina e Rio Grande do Sul. Ou^tros fa^tores limi^tan^tes seriam excessiva fal^ta de água e o uso do fogo, mas o ma^terial parece apresen^tar variabilidade suficiente para que se consiga seleção de variedades resis^ten^tes a esses fa^to res.

- 6.4. Na identificação e caracterização taxonômica de variedades e ecotipos, foram estudadas plantas provenientes de coletas realizadas em 3 regiões: sul de Minas Gerais, Vale do Paraíba e Franca. A análise cito lógica do material mostrou em todas as plantas examinadas o número cromossômico 2n=36, o que seria esperado, de acordo com a literatura consultada. Não houve, também, diferenças quanto ao tamanho dos cromossomos.
- 6.5. Comparando—se plantas oriundas das 3 regiões quanto a 11 caracteres medidos, verificou—se que o material possui grande variabilidade fe notípica, principalmente comparando—se plantas entre pastos e entre regiões.
- 6.6. Plantas dentro de um mesmo pasto apresentaram relativa uniformidade fenotípica, o que parece ser uma indicação da necessidade de se coletar plantas de diversas procedências, ao ser iniciado um programa de melhoramento, a fim de se garantir uma boa fonte de variabilidade.
- 6.7. Nas plantas provenientes das 3 regiões, o florescimento ocorreu praticamente na mesma época, abrangendo a 2ª quinzena do mes de maio, e a lª quinzena do mes de junho. O florescimento simultâneo dos diferentes "tipos" de capim gordura é de grande importância, pois permite que a polinização, ou cruzamento, ocorram livremente entre plantas.
- 6.8. Os espécimes es^tudados puderam ser classificados como per^tencen^tes a duas variedades: Cabelo de Negro e Roxo, segundo suas carac^terísticas feno^típicas.
- 6.9. Nas 3 regiões consideradas, a variedade Cabelo de Negro ocorreu em proporção bem menor que a variedade Roxo.
- 6.10.0 capim gordura Francano, ao que ^tudo indica, cons^ti^tui um eco^tipo mais vigoroso da variedade Roxo, melhor adap^tado às condições ambi—en^tais da região de Franca.

6.11. Pelos resul^tados des^te es^tudo, verifica—se grande variabilidade e—
xis^ten^te em M. minu^tiflora, dando opor^tunidade a que fu^turos ^traba
lhos sejam realizados, visando ao melhoramen^to des^ta forrageira.

Due to the great importance of the forage improvement — for cattle feeding to increase animal productivity and the lack of basic knowledge concerning to the principal forage species employed in Brazil, among which the molasses grass (Melinis minutiflora Beauv.). this work — was done in order to achieve the following objectives:

- 1. To stablish the geographical distribution of molasses grass, considering its phytogeographical and ecological areas of occurence.
- 2. The identification and taxonomic characterization of varieties and ecotypes.

The main results and conclusions were:

- 7.1. The geographic dis^tribu^tion area of ^the molasses grass was considered in ^the ^tropical and sub-^tropical regions up ^to ^the la^{tit}udes 30° Nor^th and Sou^th. In ^the Eas^t Africa ^there is ^the grea^t concen^tra^tion of varie^ties and wild forms, and probably ^this area is ^the origin cen^ter of Melinis minu^tiflora.
- 7.2. Brazil would be a secondary species dispersion cen^ter from which o^ther American coun^tries, Morocco, and Aus^tralia in^troduced <u>Melinis</u> minu^tiflora.
- 7.3. The main limitation for the cultivation of molasses grass in Brazil is low temperature occurring from south Paraná, Santa Catarina, and Rio Grande do Sul States. Other limiting factors, would be drought and the use of fire, but the material seems to show sufficient variability in order to allow the selection of resistant varieties to those factors.
- 7.4. For the identification and taxonomic characterization of varieties and ecotypes, it were studied plants collected from 3 regions: South of Minas Gerais State, Paraiba Valley, and Franca. The citological

analysis of ^the ma^terial showed, in all plan^ts, a number of chromossomes 2n=36, which would be expec^ted according ^to ^the bibliography. ^There was no differences concerning ^to chromosome size.

- 7.5. By comparing plants collected from those 3 regions as for 11 —

 measured characters, it was observed the great phenotypical variation of the material, mainly when comparing plants among pastures and among a regions.
- 7.6. Plants from the same pasture showed a relative phenotypical uniformity which seems an indication of the necessity of collecting plants from several origins, when a breeding program is to be started, in order to provide a good variability source.
- 7.7. Plants collected from those 3 regions bloomed practically at the —
 same season, enclosing late May and early June. The simultaneous —
 blooming of different molasses grass "types" is of great importance, —
 because it allows the free pollination and the free crossing among plants.
- 7.8. The s^tudied ma^terials were classified as belonging ^to 2 varie^ties:

 "Cabelo de Negro" and "Roxo", according wi<sup>th their phenotypical —
 charac^teris^tics.</sup>
- 7.9. The variety "Cabelo de Negro" occurred in lesser proportion than the variety "Roxo". at the 3 regions.
- 7.10. The "Francano" molasses grass cons^ti^tu^tes a more vigorous eco^type —

 of ^{the} varie^ty "Roxo", and i^t is specifically adap^ted ^{to the} —

 environmen^tal condi^tions of ^{the} region of Franca.
- 7.11. The results of this work show the great variability existing in —

 Melinis minutiflora, giving thus the opportunity for the accomplishment of aditional works aimed to the breeding of this forage crop.

- ANDRADE, B.M. de 1944. <u>Principais forrageiras para o Es^tado de São Pau-</u>
 <u>lo.</u> São Paulo, Fed. Criadores. 36 p. (publicação nº 2).
- lo, Brazil. In: INTERNATIONAL GRASSLAND CONGRESS, 6., State College, Pa. Proceedings. State College, Pennsylvania St. College, 1952.
- ANDERSON, R.L. & BANCROFT, T.A. 1952. Statistical theory in research.

 New York, Mac Graw-Hill. 399 p.
- ARAUJO, A.A. de 1949. Os campos do Paraná e o seu melhoramen^to. Curi-
- ARRILAGA, C.G. 1952. Discussion of "Pasture problems and research in Puerto Rico as related to animal production" In: INTERNATIONAL GRAS—SLAND CONGRESS, 6., State College, Pa. <u>Proceedings.</u> State College Pennsylvania St. College, 1952. p. 1514—1519.
- BARNARD, C. 1969. Herbage plan^t species. Canberra, CSIRO, Division of Plan^t Indus^try. 154 p.
- BIRIE-HABAS, J. 1959. Experimentation sur les plantes fourragères à la Station Agronomique du Lac Alaotra. Bull. Inst. Rech. agron.,

 Madagascar (3): 68-74.
- BOGDAN, A.V. 1960. A molasses grass variety trial. E. Afr. agric. for.

 J. Kitale, 26(2): 132-133.
- In: DAVIES, W. & SKIDMORE, C.L., ed. Tropical pastures. London, Faber and Faber, . p. 84.
- BOOTH, W.E. 1964. Cy^tology and evolu^tion of ^the grasses. In: Agros^to-
- BOR, N.L. 1960. The grasses of Burma, Ceylon, India and Pakistan (excluding Bambu seae). New York, Pergamon press. 767 p.

- BORGES, J.F.B. 1950. Alguns aspec^tos do problema forrageiro de Angola.

 <u>Agronomia angol.</u>, Luanda, <u>3</u>: 39—44.
- BRAUN, O. 1960. Cul^tivo de pas^tos en el Al^to Beni. <u>B. exp. Min. Agric.</u> <u>Bolivia,</u> La Paz, nº 14, 13 p.
- BUCHERL, W. 1962. <u>Técnica microscópica</u>. São Paulo, Polígono. 126 p. CAMINHOÁ, J.M. 1877. <u>Elemen^tos de bo^tânica</u>. Rio de Janeiro. 3 v. 3167
- CAVALAN, P. 1962. Experimen^ts with herbage species a^{t t}he Station Agronomique de Loudima (République du Congo). Agron. ^trop., Paris, <u>17</u> (2/3): 158–165.
- CEILÃO. Department of Agriculture. 1951. Administrative report of the director of Agriculture for 1950. Colombo. 168 p.
- CHATERJEE, B.N. & DAYAL, B. 1964. Analysis of ^the grass and legume cover in and around Jalalgarh Farm of ^the Araria Plains in ^the Kosi area. J. Soil Wa^ter Conserv. India, Hazaribagh, 12(3/4): 39-46.
- CHIPPINDALL, L.K.A. 1955. A guide ^{to} iden^tifica^tion of grasses in Sou^th —

 Africa. In: MEREDI^TH, D., ed. <u>The grasses and pas^tures of South Africa</u>. Cape Town, Cape Time. p. 426—428.
- CLAYTON, W.D. 1967. S^tudies in ^the Gramineae: 14. Paniceae. 16. A remarkable new genus from Tanzania. <u>Kew Bull.</u>, <u>21(1)</u>: 99-127.
- CONGO BELGA. 1949. Institut National pour l'Étude Agronomique du Congo —
 Belge. Rapport annuel pour l'exercice 1948. Gembloux. p. 9-119, —
 155-200.
- 1950. Rappor^t annuel pour l'exercice 1949. Gembloux. p. 19-20.
- COZZI, P. 1959. L'allevamen^to del bes^tiami nella Republica Dominicana.

 <u>Riv. Agric. sub^trop. e ^trop.,</u> Firenze, <u>53</u> (7/9): 309–334.
- DARLING^TON, C.D. & LA COUR, L.F. 1969. The handling of chromosomes. 5. ed. London, George Allen. 272 p.
- DEDECA, D.M. 1954. Con^tribuição para o levan^tamen^to agros^tológico do mu nicípio de Campinas. <u>Bragan^tia</u>, Campinas, <u>13</u>(1):4.

- DEDECA, D.M. s.d. <u>Chave analitica da familia Gramineae</u>. Campinas, Instituto Agronômico de Campinas. 26 p.
- DOMINGUES, O. 1951. <u>A sub-região pas^toril de Lajes</u>. Rio de Janeiro. --SIA. 46 p. (publicação nº 11).
- EDWARDS, D.C. 1954. The impac^t of new grasses on agricul^tural developmen^t in Eas^t Africa. Trop. Agric. Trin., 31(3): 214-222.
- ENGLER, A. 1964. <u>Syllabus der Pflanzenfamilien:</u> Angiosperm. 12. ed. Berlin, Gebruder Born^traeger. v. 2, 666 p.
- FLORES, A.M. & OLIVE, F. 1952. Forage species of El Salvador. In: INTERNATIONAL GRASSLAND CONGRESS, 6., State College, Pa. Proceedings.
 State College, Pennsylvania State College, 1952. p. 1434-1439.
- FOURY, A. 1950. Le <u>Melinis minu^tiflora</u> P.B. <u>Cah. Rech. agron.</u> Raba^t, 331-335.
- GARCIA-MOLINARI, O. 1950. Alimen^to para ganado lechero: los pas^tos. R. Agric. Puer^to Rico, San Juan, 41: 91-123.
- GERMAIN, R. 1954. Considera tions agros tologiques relatives au Congo Belge et au Ruanda Urundi. <u>Bull. Inf. I.N.É.A.C.</u>, Bruxelles, 3(6): 347-366.
- GOOD, R. 1974. The geography of flowering plants. 4. ed. London, Longman. 557 p.
- GRAHAM, ^T.G. 1951. ^Tropical pas^ture inves^tiga^tion. <u>Qd. agric. J.,</u> -Brisbane, <u>73</u>: 311-326.
- GROSSMAN, J.; ARONOVICH, S.A.; CAMPELLO, E.C.B. 1965. Grassland of Brazil. In: INTERNATIONAL GRASSLAND CONGRESS, 9., São Paulo. Proceedings. São Paulo, Secr. Ágricul^tura, Dep^to. Produção Animal, 1966. v. 1,p. 39-47.
- GROVE, A.T. 1949. Farming sys^tems and erosion on some sandy soils in Sou^th-Eastern Nigeria. <u>Bull. agric. Congo Belge</u>, Bruxelles, 40:2150-2155.
- HANSON, A.A. & CARNAHAN, H.L. 1956. Breeding perennial forage grasses.

 Tech. Bull. U.S. Dep. Agric., Washington, (1145): 1-116.

- HAR^TLEY, W. 1958. S^tudies on ^the origin, evolu^tion and dis^tribu^tion of ^the Gramineae. II. ^{The t}ribe Paniceae. Aus^t. J. Bo^t. Melbourne, 6: 343-357.
- HAVARD-DUCLOS, B. 1967. <u>Les plan^tes fourragéres ^tropicales.</u> Paris, Maisonneuve & Larose. 397 p.
- HITCHCOCK, A.S. 1922. A text-book of grasses, with special reference to the economic species of the United States. New York, MacMillan 276 p.
- 1950. Manual of the grasses of the United States. 2. ed. Washing
- HOSAKA, E.J. 1952. Grass in ^the conservation program of Hawaii. In:

 INTERNATIONAL GRASSLAND CONGRESS, 6., State College, Pa, 1952. <u>Proceedings</u>. State College, Pennsylvania S^t. College. p. 1023-1027.
- & RIPPERTON, J.C. 1953. Molasses grass on hawaiian ranges. Ext.—
 Bull. Hawaii Univ. Agric. Exp. Stn., Hanolulu, n. 59. 9 p.
- HUNTER, A.W.S. 1934. A karyosys^tematic investigation in ^the Graminieae. Can. J. Res., Ottawa, 11: 213—241.
- JUMENEZ, M.G. 1952. Forage plants and problems in the highlands of Costa Rica. In: INTERNATIONAL GRASSLAND CONGRESS, 6., State College, Pa. Proceedings. State College, Pennsylvania St. College, 1952. p. 1427–1433.
- JORDÁN LEÓN, H. 1955. Forragicul^tura y pas^ticul^tura. Barcelona, Salva^t. 591 p.
- JOVIANO, R. & COS^TA, R.V. 1965. Milk produc^tion in Brazil. In: IN^TERNA

 TIONAL GRASSLAND CONGRESS, 9., São Paulo. <u>Proceedings</u>. São Paulo, —
 Secr. Agricul^tura, Dep. Produção Animal, 1966. v. 1, paper 7, p. —
 61—80.
- KOK, E.A. 1943a. Plan^tas forrageiras para pas^tos. <u>Bol. Ind. Anim.</u>, São Paulo, <u>6</u>(4): 203–204.
- ____. 1943b. Formação de pas^tagens. <u>Bol. Ind. Anim.</u>, São Paulo, <u>6</u>(4): 202–203.

- LECKY, ^T.P. 1952. Discussion of "Ca^{tt}le pas^tures of ^the ^Tropics". In:

 INTERNATIONAL GRASSLAND CONGRESS, 6., State College, Pa. <u>Proceedings</u>.

 State College, Pennsylvania State College, 1952. p. 1540–1543.
- MALAS^TA, 1965. Depar^tmen^t of Agricul^ture, Sabah. <u>Annual repor^t.</u> Jesselton, 1965. 108 p. Apud <u>Herb. Abs^tr.</u>, Farnham Royal, <u>38</u>(3): 265.
- MANARA, W. 1973. Aspectos práticos da citogenética do capim gordura Melinis minutiflora Beauv.). Piracicaba, 48 p. Diss. (Mestre) ESALQ .
- MARASSI, A. 1951. L'orien^t peruviano e la s^tazione sperimen^tale agraria di ^Trigo Maria. Riv. Agric. sub^trop e ^trop. Firenze, 45: 62-84,
 172-195.
- MARTINS, P.S. & OLIVEIRA, E.M. 1971. Es^tudo sobre o modo de reprodução do capim gordura (Melinis minu^tiflora Beauv.). Piracicaba, ESALQ, Dep. e Ins^t. Gené^tica, p. 100-103 (Rela^tório cien^tífico, 5).
- MASON, R.R. 1970. No^tes on in^troduced pas^ture grasses. Agric. Sci., Hong Kong, <u>1</u> (4): 175-177.
- MIHELFFY, A. 1949. La selección de forrajes como fac^tor principal en la cria equina. Agricul^ture venez., Caracas, 13(135): 46-47.
- MONTERO, G.J. 1961. Some aspects of the Costa Rican live-stock industry.

 R. Agric., San José, 33(8): 208-215.
- MDORE, R.M. 1970. Australian grasslands. Canberra, Australian National Univ. press, 455 p.
- MYRE, M. 1960. Os principais componen^tes das pas^tagens espon^taneas do sul da provincia de Moçambique. <u>Mems. Jta. Invest. Ultramar, 2. Série</u>, Lisboa (20): 63, 65, 158.
- NAVARRETE, J.P. 1945. La agricultura y los recursos vege^tales de Mexico In:

 Plants and plantscience in Latin America. Mexico. Verdoorn. p. 48-52.
- NIGERIA. 1949. Agricultural Department. Annual report of the Agricultural Department for the year 1947. Lagos, 1949. 83 p. Apud Herb.

 Abstr, Aberystwyth, 20(4): 225.
- O^TERO, J.R. 1961. <u>Informações sobre algumas plan^tas forrageiras</u>. 2. ed. Rio de Janeiro, SIA. 331 p. (Serviço de Informação Agricola. Série diditica, 11).

- PAUL, W.R.C. 1948. Progress in pas^ture work in ^the humid lowland region.

 Trop. Agric. Trin, <u>104</u>: 141-150.
- PIENAAR, R.V. 1955. The chromossome numbers of some indigenous Sou^th ...

 African and in^troduced Gramineae. In: MEREDI^TH, D., ed. The grasses

 and pas^tures of Sou^th Africa. Cape Town, Cape Time. p. 551-570.
- PRAT, H. 1960. Vera une classification naturelle des Graminées. <u>Bull</u>. <u>Soc. bot. Fr.</u>, Paris, <u>107</u>: 32-79, 1960.
- QUENIA, 1950. Department of Agriculture. Annual report 1947. Nairobi, 1949. 194 p. Apud Herb. Abstr., Aberystwyth, 20(4): 223.
- RAMIA, M. 1959. <u>Las sabanas de Apure.</u> Venezuela, Minis^t. Agric. y Cria, 134 p.
- RATTRAY, J.M. 1960. The grass cover of Africa. Roma, FAO. 168 p. (FAO Agricultural Studies).
- RÉUNION. 1966. Institut de Recherches Agronomiques Tropicales e^t des Cul^tures Vivrières. <u>Annual repor</u>t. Sain^t-Denis. 185 p.
- RITCHEY, G.E. & STOKES, W.E. 1947. Forage nursery plants adaptation studies: annual report for the fiscal year ending June 30, 1947. Tallahasse, Florida Univ. Agric. Exp. Stn. 43 p.
- for the fiscal year ending June 30, 1949. Tallahasse, Florida Univ.

 Agric. Exp. Stn. 44 p.
- ROCHA, G.L. 1972a. Aspec^tos essenciais da evolução da família das gram<u>í</u>
 neas. In:

 <u>Ecologia e in^trodução de plan^tas forrageiras</u>. Piracicaba, ESALQ. 10 p. (Curso de pós—graduação de nu^trição animal e pas^tagens).
- 1972 b. Levan^tamen^to de área vege^tada (^tema de aula prá^tica). In:

 <u>Ecologia e in^trodução de plan^tas forrageiras</u>. Piracicaba, —

 ESALQ. (Curso de pós—graduação de nu^trição animal e pas^tagens).
- © MARTINELLI, D.M. 1960. Levan^tamen^to sumario da cober^tura do solo nas pas^tagens do Es^tado de São Paulo. In: CONGRESSO NACIONAL DE CONSERVAÇÃO DO SOLO, 1., Campinas, 1960. <u>Anais</u>. São Paulo. p. 389.

- ROSENGURTT, B. 1946. Gramineas y leguminosas de Juan Jackson; compor^tam<u>i</u> en^to en el campo y en ensaios de cul^tivo. Es^tudios sobre <u>praderas na-</u>turales del Uruguay. p. 215-346.
- ROSEVEARE, G.M. 1948. The grasslands of Latin America. Bull. imp. Bur. Past. Fld. Crops, Aberystwyth, n. 36. 291 p.
- ROSHEWITZ, R.J. 1969. <u>Evolução e sis^temá^tica das gramíneas</u>. ^trad. Tatiana Sendulsky. São Paulo, Inst. Bo^tânica. 20 p. (Bole^tim 5).
- SAINT-HILAIRE, A. 1946. Esquisse de mes voyages au Brésil e^t Paraguay, considérés principalmen^t sous le rappor^t de la bo^tanique. <u>Chronica</u>
 <u>bo^t</u>., Leiden, <u>10</u>: 1-61.
- SANTIAGO, A.A. 1970. <u>Pecuária de cor^te no Brasil Cen^tral.</u> São Paulo, —
 Ins^t. Zoo^tecnia. 635 p.
- SATIENTHWAITE, F.E. 1946. An approximate distribution of estimates of variance components. Biometrics, Washington, 2: 110-114.
- SENARATNA, S.D.J.E. 1956. The grasses of Ceylon. Ceylon. Dep. Agriculture. 229 p. (Peradeniya manual, 8).
- STEVENSON, G.C. 1949. Notes on ^the grazing lands of Bri^tsh Guiana. ^Trop.

 Agric. ^Trin., 26: 103-106.
- STRANGE, R. 1954. Species for leys in medium altitude areas. Q.J.R. agric. Soc. Kenya, Nakuru, (2):13-20.
- STRAUGHAN, W.R. 1947. Problems of settlement on the Northern tablelands.

 Qd. agric. J., Brisbane, 64: 133-138.
- SURINAM. 1957. Depar^tmen^t of Agricul^ture, Animal Husbandry and Fisheries.

 <u>Repor^t for 1954.</u> Surinam. 124 p.
- TAPIA, C. & BULLER, R.E. 1957. Zaca^tes ^tropicales. Agricul^tura ^téc. Méx. México, <u>3</u>: 10-11, 36-37.
- TATEDKA, T. 1965. Chromosome numbers of some East African grasses. Am.

 J. Bot., Lancaster, 52(8): 864-869.
- TROCHAIN, J.L. 1965. As pas^tagens na^turais do Sul da República do Congo Brazaville e seu melhoramen^to. In: INTERNATIONAL GRASSLAND CONGRESS, 9., São Paulo, 1965. <u>Proceedings.</u> São Paulo, Secr. Agricul^tura, Dep^to. Produção Animal, 1966. v. 2, p. 1063—1068.

- UGANDA. 1950. Depar^tmen^t of Agricul^ture. <u>Annual repor^t for <sup>the period</u>

 1s^t. April, 1946 31st. March 1947. En^tebbe. 89 p.</u></sup>
- VÁSQUEZ, L.N. 1957. Pas^tos mejorados. <u>Agricul^tura ^trop.</u>, Bogo ^tá, <u>13</u>(6): 369–371.
- VOLIO, C.A. 1952. Problems in developmen^t of a grassland program in ^the American ^tropics. In: INTERNATIONAL GRASSLAND CONGRESS, 6., State College. Pa. <u>Proceedings.</u> State College, Pennsylvania S^t. College, 1952. p. 141—148.
- WAIBEL, L. 1948. Vegetation and land use in ^the Planal^to Cen^tral of Brazil. Geogr. Rev. 38: 529-554.
- WALTON, P.D. 1969. The origin and development of world forages crops. Econ. Bot., 25(3): 263-266.
- WATKINS, J.M. & VIAUD, A.C. 1948. Forraje para la es^tación seca em El Salvador. R. Ins^t. Def. Café C. Rica, San José, 19: 118-128.
- WHY TE, R.O.; MOIR, T.R.G.; COOPER, J.P. 1962. Grasses in agriculture. 2.ed. Roma, FAO, 417 p.
- WORK, S.H. 1945. Informe sobre la ganaderia en Gua^temala. R. agric., San José, <u>1</u>(8/9): 495-502.
- YELF, J.D. 1957. Effect of cutting times on pasture yields: report. Fiji, Dept. of Agriculture. 64 p. (Bulletin 34).
- ZANZIBAR. 1956. Department of Agriculture. Annual report, 1955. Zanzi-bar. p. 16-17.

9. APÊNDICE

TABELA I - Análise da variância do cará^ter <u>comprimento do eixo central</u> - <u>da panícula</u> em capim gordura, <u>(Melinis minutiflora Beauv.)</u>, - considerando-se plan^tas provenien^tes de 3 regiões: sul de Minas Gerais (S.M.), Vale do Paraíba (V.P.) e Franca (F.). Piracicaba, 1973.

Fon ^t es de Variação	G.L.	Q• M•	F
Regiões	2	84590 , 7574	8 , 23**
Pas ^t os/S.M.	22	9340,5357	1,73*
Pas ^t os/V•P•	22	11799,9744	2,79**
Pas ^t os/F.	22	8192,2217	1,96**
Pas ^t os/Região	₆₁ (1)	10 <i>2</i> 79 , 9803 ⁽²⁾	
Plan ^t as/Pas ^t os/S.M.	72 ⁽¹⁾	5407 , 6514 ⁽²⁾	2 , 09**
Plan ^t as/Pas ^t os/V•P•	62 ⁽¹⁾	4229 , 51.23 ⁽²⁾	1,63**
Plan ^t as/Pas ^t os/F.	₅₉ (1)	41 <i>7</i> 0 , 7321 ⁽²⁾	1,63**
Plan ^t as/Pas ^t os/Regiões	194	4625 , 4938	
Den ^t ro de Plan ^t as	508	2569,5407	
T _o t _{al}	770		

n.s. = não significativo

^{* =} significativo ao nível de 5%

^{** =} significativo ao nivel de 1%

^{(1) =} grau de liberdade balanceado

^{(2) =} quadrado médio recalculado para a ob^tenção de valores válidos de F.

TABELA II - Análise da variância do cará^ter <u>comprimen</u>^to da <u>panícula</u> em ca pim gordura (<u>Melinis minu^tiflora</u> Beauv.), considerando—se plan^tas provenien^tes de 3 regiões: sul de Minas Gerais (M.G.) Vale do Paraíba (V.P.) e Franca (F.). Piracicaba, 1973.

Fon ^t es de Variação	G.L.	Q. M.	F
Regiões	2	59600 , 0524	23,38**
Pas ^t os/S•M•	22	2166,1816	1,83**
Pas ^t os/V.P.	22	<i>2</i> 684 , 7593	3 , 92**
Pas ^t os/F.	22	2393,1464	1,86**
Pas ^t os/Reg i ão	62 ⁽¹⁾	2549 , 1124 ⁽²⁾	
Plantas/Pastos/S.M.	72 ⁽¹⁾	1186,4385 ⁽²⁾	3 , 13* *
Plan ^t as/Pas ^t os/V.P.	62 ⁽¹⁾	684 , 0865 ⁽²⁾	1,82 **
Plan ^t as/Pas ^t os/F.	₅₉ (1)	1283,7028 (2)	3,44**
Plan ^t as/Pas ^t os/Regiões	194	1043,5606	
Den ^t ro de Plan ^t as	508	373 , 81 <i>2</i> 7	
T _o t _{al}	770		

n.s. = não significativo

^{* =} significativo ao nivel de 5%

^{** =} significativo ao nivel de 1%

^{(1) =} grau de liberdade balanceado

^{(2) =} quadrado médio recalculado para a ob^tenção de valores **v**álidos de F.

TABELA III - Análise da variância do caráter <u>forme da panícula</u> (indices) em capim gordura (Melinis minutiflora Beauv.), considerandose plantas provenientes de 3 regiões: sul de Minas Gerais - (M.G.), Vale do Paraíba (V.P.) e Franca (F.). Piracicaba, 1973.

Fon ^t es de Va ri ação	G• L •	Q. M.	F
Regiões	2	0 , 1581	47 , 58**
Pas ^t os/S.M.	22	0,0049	1,39n.s.
Pas ^t es/V.P.	22	0,0020	0,57n.s.
Pas ^t os/F.	22	0,0030	0,86n.s.
Pas ^t os/Reg i ões	66 ⁽¹⁾	o , 0033 ⁽²⁾	
Plan ^t as/Pas ^t os/S•M• Plan ^t as/Pas ^t os/V•P• Plan ^t as/Pas ^t os/F	72 ⁽¹⁾ 64 ⁽¹⁾ 58 ⁽¹⁾	0,0038 ⁽²⁾ 0,0029 ⁽²⁾ 0,0038 ⁽²⁾	1,54** 1,15n.s. 1,52*
Plan ^t as/Pas ^t os/Reg iõ es	194	0,0025	
Den ^t ro de Pl an^ta s	505	0,0025	
T _o t _{al}	7 67		

n.s. = não significativo

^{* =} significativo ao nivel de 5%

^{** =} significativo ao nível de 1%

^{(1) =} grau de liberdade balanceado

^{(2) =} quadrado médio recalculado para a ob^tenção de valores válidos de F.

TABELA IV — Análise da variância do cará^ter <u>al^tura da plan^ta</u> em capim go<u>r</u> dura (<u>Melinis minu^tiflora</u> Beauv.), considerando—se plan^tas — provenien^tes de 3 regiões: sul de Minas Gerais (M.G.), Vale — do Paraíba (V.P.) e Franca (F.). Piracicaba, 1973.

Fon ^t es de Variação	G•L•	Q•M•	
Regiões	2	1891,8674	7,22**
Pas ^t os/S.M.	22	371,6780	4,66**
Pas ^t os/V.P.	22	237,1857	2,97**
Pas ^t os/F.	22	128,1364	1,60*
Pas ^t os/Reg i oes	62 ⁽¹⁾	261 , 9135 ⁽²⁾	
Plan ^t as/Pas ^t os/S.M.	66	80,1542	1,00n.s.
Plan ^t as/Pas ^t os/V•P•	64	93,7791	1,17n.s.
Plan ^t as/Pas ^t os/F.	62	64,7135	0,81n.s.
Plan ^t as/Pas ^t os/Regiões	192	79,7135	
Total	260		

n.s. = não significa^tivo

^{* =} significativo ao nivel de 5%

^{** =} significativo ao nível de 1%

^{(1) =} grau de liberdade balanceado

^{(2) =} quadrado médio recalculado para a ob^tenção de valores válidos de F.

TABELA V = Análise da variância do cará^ter <u>área basal da ^touceira</u>, em capim gordura (Melinis minu^tiflora Beauv.), considerando—se plan ^tas provenien ^tes de 3 regiões: sul de Minas Gerais (M.G.), Vale do Paraíba (V.P.) e Franca (F.). Piracicaba, 1973.

Fon ^t es de Variação	G•L•	Q • M•	F
Regiões	2	0,2266	6,10**
Pas ^t os/S•M•	22	0,01.69	2,35**
Pas ^t os/V.P.	22	0,0212	2 , 96**
Pas ^t os/F.	22	0,0649	9,03**
Pas ^t os/Região	₆₆ (1)	0 , 0371 ⁽²⁾	
Plan ^t as/Pas ^t os/S.M.	66	0,0035	0,48n.s.
Plan ^t as/Pas ^t os/V.P.	61	0,0067	0,94 n.s.
Plan ^t as/Pas ^t os/F.	62	0,0115	1,60*
Plan ^t as/Pas ^t os/Regiões	189	0,0071	
T _o t _{al}	257		

 $n_{\bullet S \bullet} = n\tilde{a}_{0} \text{ significative}$

^{* =} significativo ao nivel de 5%

^{** =} significativo ao nivel de 1%

^{(1) =} grau de liberdade balanceado

^{(2) =} quadrado médio recalculado para a ob^tenção de valores válidos de F.

TABELA VI - Análise da variância do cará^ter <u>comprimen^to do ramo</u> em capim gordura (<u>Melinis minu^tiflora</u> Beauv.), considerando—se plan^tas provenien^tes de 3 regiões: sul de Minas Gerais (M.G.), Vale do Paraíba (V.P. e Franca (F.). Piracicaba, 1973.

Fon ^t es de Variação	G.L.	Q• M•	F
Regiões	2	226,5021	1,79n.s.
Pas ^t os/S.M.	22	131,2109	3, 93**
Pas ^t os/V•P•	22	134,4157	4,02**
Pas ^t os/F.	22	80,3204	2 , 40**
Pas ^t os/Região	⁶⁰ (1)	126,1859 ⁽²⁾	
Plan ^t as/Pas ^t os/S.M.	45	51,3620	1,53*
Plan ^t as/Pas ^t os/V.P.	54	31,8234	0,95n.s.
Plan ^t as/Pas ^t os/F.	60	21,2949	0,63n.s.
Plan ^t as/Pas ^t os/Regiões	159	33 , 3802	
To ^t al	227		

n.s. = mão significativo

^{* =} significativo ao nivel de 5%

^{** =} significativo ao nivel de 1%

^{(1) =} grau de liberdade balanceado

^{(2) =} quadrado médio recalculado para a ob^tenção de valores válidos de F.

TABELA VII - Análise da variância do cará^ter <u>comprimen^to dos en^tre-nós</u> - <u>dos ramos</u>, em plan^tas de capim gordura (<u>Melinis minu^tiflora</u> Beauv.), considerando—se plan^tas provenien^tes de 3 regiões: sul de Minas Gerais (M.G.), Vale do Paraíba (V.P.) e Franca (F.). Piracicaba, 1973.

Fon ^t es de Va riaç ão	G.L.	Q•M•	F
Regiões	2	646,4084	2,54n.s.
Pas ^t os/S•M•	22	278,3859	3,09**
Pas ^t os/V.P.	22	257, 1825	2,86**
Pas ^t os/F.	22	167,0852	1,85**
Pas ^t os/Regiões	60 ⁽¹⁾	254 , 5800 ⁽²⁾	
Plan ^t as/Pas ^t os/S.M.	48	92,3759	1,02n.s.
Plan ^t as/Pas ^t os/V•P•	54	87,1718	0,96nese
Plan ^t as/Pas ^t os/F.	60	90,3969	1,00 n.s.
Plan ^t es/Pas ^t os/Regi o es	162	89,9079	
Total	230		

n.s. = não significa^tivo

^{* =} significa^tivo ao nivel de 5%

^{** =} significativo ao nível de 1%

^{(1) =} grau de liberdade balanceado

^{(2) =} quadrado médio recelculado para a ob^tenção de valores válidos de F.

TABELA VIII - Análise da variância do caráter comprimento da 5ª folha do ramo em capim gordura (Melinis minutiflora Beauv.), conside rando-se plantas provenientes de 3 regiões: sul de Minas Ge rais (M.G.), Vale do Paraíba (V.P.) e Franca (F.). Piracicaba, 1973.

Fon ^t es de Va ri ação	G.L.	Q. M.	
Regiões	2	1009,7656	2,34n.s.
Pas ^t os/S.M.	22	1074,9137	3 , 33**
Pas ^t os/V.P.	22	608,3162	1,88*
Pas ^t os/F.	22	708,9996	2 , 19**
Pas ^t os/Reg i ão	₆₀ (1)	861 ⁻ 4409 ⁽²⁾	
Plan ^t as/Pas ^t os/S.M.	48	395,1052	1,22n.s.
Plan ^t as/Pas ^t os/V.P.	54	295, 1635	0,91n.s.
Plan ^t as/Pas ^t os/F.	59	288,0698	0,89n.s.
Plan ^t as/Pas ^t os/Regiões	161	322,3602	
T _o t _{al}	229		

n.s. = não significativo

^{* =} significa^tivo ao nivel de 5%

^{** =} significativo ao nivel de 1%

^{(1) =} grau de liberdade balanceado

^{(2) =} quadrado médio recalculado para a ob^tenção de valores válidos de F.

TABELA IX — Análise da variância do cará^ter <u>largura da 5º folha do ramo</u> — em capim gordura (<u>Melinis minu^tiflora</u> Beauv.), considerando— se plan^tas provenien^tes de 3 regiões: sul de Minas Gerais, — (M.G.), Vale do Paraíba (V.P.) e Franca (F.). Piracicaba,1973.

Fon ^t es de Variação	G.L.	Q.M.	F
Reg iõ es	2	7 , 9679	0,86n.s.
Pas ^t os/S•M•	22	8,6852	2,31**
Pas ^t os/V.P.	22	9,0444	2,41**
Pas ^t os / F.	22	7 , 9805	2,12**
Pas ^t os/Regi ã o	50	9,2625	
Plan ^t as/Pas ^t os/S.M.	49	3, 2204	0,85n.s.
Plan ^t as/Pas ^t os/V•P•	54	5, 2055	1,38n.s.
Plan ^t as/Pas ^t os/F.	60	2 , 8750	0,76n.s.
Plan ^t as/Pas ^t os/Regiões	163	3, 7509	
T _o t _{al}	231		

n.s. = não significativo

^{* =} significativo ao nivel de 5%

^{** =} significativo ao nivel de 1%

^{(1) =} grau de liberdade balanceado

^{(2) =} quadrado médio recalculado para a ob^tenção de valores válidos de F.

TABELA X - Análise da variância do cará^ter <u>comprimen</u>^to da folha-bandeira em capim gordura (Melinis minu^tiflora Beauv.), considerando—se plan^tas provenien^tes de 3 regiões: sul de Minas Gerais (M.G.), Vale do Paraíba (V.P. e Franca (F.). Piracicaba, 1973.

Fon ^t es de Variação	G.L.	Q.M.	F
Regiões	2	343 , 4831	0,42n.s.
Pas ^t os/S•M•	22	857 , 716 9	3 , 29**
Pastos/V.P.	22	855,1864	3, 28 **
Pas ^t os/F.	22	561,3237	2 , 15**
Pas ^t os/Região	61 ⁽¹⁾	827 , 4099 ⁽²⁾	
Plan ^t as/Pas ^t os/S.M.	46	224,7503	0,86n.s.
Plan ^t as/Pas ^t os/V.P.	54	266,0481	1,02n.s.
Plan ^t as/Pas ^t os/F.	60	283,4483	1,08n.s.
Plan ^t as/Pas ^t os/Regiões	160	260 , 7001	
To ^t al	228		

n.s. = não significa^tivo

^{* =} significativo ao nivel de 5%

^{** =} significative ao nivel de 1%

^{(1) =} grau de liberdade balanceado

^{(2) =} quadrado médio recalculado para a ob^tenção de valores válidos de F.

TABELA XI - Análise da variância do cará^ter <u>largura da folha-bandeira</u> em capim gordura (<u>Melinis minu^tiflora</u> Beauv.), considerando-se - plan^tas provenien^tes de 3 regiões: sul de Minas Gerais (M.G.), Vale do Paraíba (V.P. e Franca (F.). Piracicaba, 1973.

Fon ^t es de Variação	G.L.	Q. M.	F (2) (2) (3)
Regiões	2	52 , 9543	20,98**
Pas ^t os/S.M.	22	2 , 2734	1,13n.s.
Pastos/V.P.	22	3 , 3656	1,67*
Pastos/F.	22	1,9320	D, 96n.s.
Pas ^t os/Região	66 ⁽¹⁾	2 , 5233 ⁽²⁾	
Plan ^t as/Pas ^t os/S.M.	45	3,6440	1,81**
Plan ^t as/Pas ^t os/V.P.	54	1,4450	0,71n.s.
Plan ^t as/Pas ^t os/F.	60	1,2891	0,64n.s.
Plan ^t as/Pas ^t os/Regiões	159	2 , 0085	
T _o t _{al}	227		

n.s. = não significativo

^{* =} significativo ao nivel de 5%

^{** =} significativo ao nível de 1%

^{(1) =} grau de liberdade balanceado

^{(2) =} quadrado médio recalculado para a ob^tenção de valores válidos de F.