DEMANDA DERIVADA POR FERTILIZANTES NA DIVISÃO REGIONAL AGRÍCOLA DE CAMPINAS

ANTONIO CARLOS ROESSING

Orientador: FERNANDO CURI PERES

Dissertação apresentada à Escola Superior de Agricultura "Luiz de Queiroz" da Universidade de São Paulo, para obtenção do título de Mestre em Economia Agrária.

PIRACICABA Estado de São Paulo, Brasil Setembro, 1978

A memoria de meu pai,
Eng? Agr? Carlos Roessing, pelas
lições de perseverança e honesti
dade

À minha mãe, irmãos, esposa e filha

AGRADECIMENTOS

- Ao Professor Fernando Curi Peres, pela inigualável orientação oferecida.
- Aos Professores Rodolfo Hoffmann e Zilda Paes de Barros Mattos, pela leitura das elaborações finais deste trabalho e por suas valiosas sugestões e comentários.
- Aos Colegas Antonio Celso Gemente, Luis Antonio Pinazza e Yuly Ivete Myazaki de Toledo, sem os quais seria impossível a realização deste trabalho.
- A Coordenadoria de Assistência Técnica Integral (CATI), pela colaboração fornecida pelos seus técnicos.
- A Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), por tornar possível a realização desta pesquisa.
- Ao Eng? Agr? Carlos Lorena, pela valiosa colaboração prestada.
- Ao Instituto Agronômico de Campinas, pela colaboração de seus técnicos.
- Ao Prof. Joaquim José de Camargo Engler, Chefe do Departamento de Economia e Sociologia Rural da E. S. A. "Luiz de Queiroz", pelo apoio e incentivo.
- A Fundação Ford, pelos recursos financeiros oferecidos.
- Ao Sr. Paulo José de Gáspari, pelos serviços datilográficos.

E a todos que de forma direta ou indiretamente colaboraram para a realização deste trabalho.

f N D I C E

			P á gina
LIST	A DAS TA	ABELAS	vi
LIST	A DAS F	IGURAS	xi
RESU	MO	••••••••••••••••	1
1 -		LEMA E SUA IMPORTÂNCIA, ESTUDOS ANTERIORES SO	
	BRE DE	MANDA POR FERTILIZANTES E OBJETIVOS	3
	1.1 -	Introdução	3
	1.2 -	A Situação Problemática	Ħ
	1.3 -	Estudos Realizados sobre Demanda por Fertilizantes	6
	1.4 -	Algumas Limitações dos Estudos Anteriormente	
		Citados	12
	1.5 -	Objetivos da Pesquisa	13
2 -	O MODE	LO CONCEITUAL	15
	2.1 -	A Programação Linear Dinâmica Recursiva	15
	2.2 -	As Curvas de Demanda e o Modelo Matemático	
		Escolhido	20
3 -	A ÁREA	DE ESTUDO, O MODELO EMPÍRICO E FONTE DOS DADOS	23
	3.1 -	Descrição da Área de Estudo	23
	3.2 -	Aspectos Agronômicos da Região, Nível Tecno- lógico e Assistência Técnica ao Agricultor	28
	3.3 -	Escolha das Atividades e Divisão em Estratos de área	30
	3.4 -		31

			Página
	3.5 -	Fonte dos Dados	31
	3.6 -	Exigência das Culturas Consideradas, Produti vidade Esperada e Tabela de Preços de Ferti-	
		lizantes	32
	3.7 -	Conclusão	35
4 -	- RESULI	ADOS E DISCUSSÕES PARA A DEMANDA DE NPK	36
	4.1 -	Resultados Obtidos do Modelo	37
	4.2 -	Curva de Demanda Esperada e Curva Obtida Empiricamente	42
	4.3 -	Resultados do Modelo após a Introdução das Variáveis Descritas no Apêndice 3	
	4.4 -	Cálculo dos Coeficientes de Elasticidade-pre ço da Demanda	52
	4.5 -	Análise dos Resultados	53
5 -		LO DAS ELASTICIDADES DA DEMANDA POR NITROGÊNIO,	
	75		62
	5.1 -	Demanda por Nitrogênio, Fósforo e Potássio , Considerados Separadamente, para o Ano Agrí-	
		cola 1974/75	63
	5.2 -	Cálculo das Elasticidades Cruzadas e Análise dos Resultados	72
	5.3 -	Conclusão	73
6 -	- RESULT	CADOS E DISCUSSÕES FINAIS	75
	6.1 -	0 Modelo Utilizado e suas Limitações	75
	6.2 -	Discussão dos Resultados	76

		Página
	6.3 - Discussão dos Aspectos Políticos	78
	6.4 - Sugestões para Novas Pesquisas	80
7 -	SUMMARY	81
8 -	BIBLIOGRAFIA	83
	APÊNDICE I	87
	APÊNDICE II	99
	APÊNDICE III	108
	APÊNDICE IV	112

LISTA DAS TABELAS

		Página
TABELA 1 -	Estimativas das elasticidades e coeficientes de ajustamento. Período 1949/71	9
	Estimativas das elasticidades e coeficientes de ajustamento. Sub-período 1949/71 (exclu sive 1961/65)	9
TABELA 3 -	Estimativas das elasticidades e coeficientes de ajustamento. Sub-período 1949/60	10
TABELA 4 -	Estimativas das elasticidades e coeficientes de ajustamento. Sub-período 1966/71	10
TABELA 5 -	Esquema da matriz tecnológica com os grupos de atividades e estrutura das restrições	18
TABELA 6 -	Fertilidade dos solos na DIRA de Campinas por sub-regiões	28
TABELA 7 -	Exigência de fertilizantes por hectare, produtividade esperada e fórmulas mais utilizadas. Em kg por hectare	32
TABELA 8 -	Preços de fertilizantes (elementos simples) em cruzeiros por tonelada. Período 70 a 76	34
TABELA 9 -	Quantidades em toneladas de nitrogênio, fós- foro e potássio utilizadas por extrato de á- rea e por ano na DIRA de Campinas durante o	
	período 70/76	38

TABELA 10 - Área em hectares dada pela solução do modelo, por estrato para as culturas anuais e perenes consideradas no modelo. Período 70/76			Pagina
do, por estrato de área	TABELA 10 -	lo, por estrato para as culturas anuais e perenes consideradas no modelo. Período	39
dutividades. Acréscimo dos elementos e da produtividade - Elasticidade de produção (kg/ha)	TABELA 11 -		41
cos considerados para os anos de 70/71, 74/75 e 76/77 (em toneladas). Pequenas pro priedades	TABELA 12 -	dutividades. Acréscimo dos elementos e da produtividade - Elasticidade de produção	цц
cos considerados para os anos de 70/71, 74/75 e 76/77 (em toneladas). Médias pro - priedades	TABELA 13 -	ços considerados para os anos de $70/71$, 74/75 e 76/77 (em toneladas). Pequenas pro	46
ços considerados para os anos de 70/71, 74/75 e 76/77 (em toneladas). Grandes pro- priedades	TABELA 14 -	ços considerados para os anos de 70/71 , 74/75 e 76/77 (em toneladas). Médias pro -	47
e potássio agregados, ponderados pelas quan tidades (em toneladas). Pequenas proprieda	TABELA 15 -	ços considerados para os anos de 70/71, 74/75 e 76/77 (em toneladas). Grandes pro-	48
	TABELA 16 -	e potássio agregados, ponderados pelas quan	49

				Página
TABELA	17		Preços em cruzeiros do nitrogênio, fósforo e potássio agregados, ponderados pelas quantidades (em toneladas). Médias propriedades	50
TABELA	18	-	Preços em cruzeiros do nitrogênio, fósforo e potássio agregados, ponderados pelas quan tidades (em toneladas). Grandes propriedades	51
TABELA	19		Coeficientes de elasticidade-preço da deman da a curto prazo por NPK, para os anos 70/71, 74/75 e 76/77, por estrato de área	52
TABELA	20	-	Elasticidades-preço das demandas por nitro- gênio, fósforo e potássio, considerados se- paradamente, para o ano agricola de 1974/75	67
TABELA	21	_	Acréscimo no consumo de fertilizantes, caso o subsídio de 40% tivesse sido dado a par - tir de janeiro de 1974 DIRA de Campinas. (em toneladas)	69
TABELA	22		Acréscimo em kg/ha devido ao subsídio de 40%. ~ DIRA de Campinas. Ano 74/75	71
TABELA	23	_	Elasticidades cruzadas de nitrogênio, fósforo e potássio. DIRA de Campinas. Ano 1974/75	72
TABELA	24	-	Quantidade aos diferentes preços para o cál culo do coeficiente de elasticidade - preço da demanda por nitrogênio. Estrato pequeno. Ano 74/75	88
			1110 17/10	00

				Página
TABELA	25	-	Quantidade aos diferentes preços para o cál culo do coeficiente de elasticidade - preço da demanda por nitrogênio. Estrato médio . Ano 74/75	88
TABELA	26		Quantidade aos diferentes preços para o cál culo do coeficiente de elasticidade - preço da demanda por nitrogênio. Estrato grande. Ano 74/75	89
TABELA	27	-	Quantidade aos diferentes preços para o cál culo do coeficiente de elasticidade - preço da demanda por fósforo. Estrato pequeno. Ano 74/75	89
TABELA	28	-	Quantidade aos diferentes preços para o cál culo do coeficiente de elasticidade - preço da demanda por fósforo. Estrato médio. A no 74/75	90
TABELA	29	-	Quantidade aos diferentes preços para o cálculo do coeficiente de elasticidade - preço da demanda por fósforo. Estrato grande. A no 74/75	90
TABELA	30	_	Quantidade aos diferentes preços para o cálculo do coeficiente de elasticidade - preço da demanda por potássio. Estrato pequeno. Ano 74/75	91
TABELA	31	-	Quantidade aos diferentes preços para o cál culo do coeficiente de elasticidade - preço da demanda por potássio. Estrato médio. A no 74/75	91
				J <u>1</u>

				Pagina
	TABELA	32	- Quantidade aos diferentes preços para o cál culo do coeficiente de elasticidade - preço da demanda por potássio. Estrato grande. Ano 74/75	92
	TABELA	33	- Superfícies das Sub-regiões ou Delegacias A grícolas Atendidas pela Rede de Assistência Técnica. Sub-região I	113
	TABELA	34	- Superfícies das Sub-regiões ou Delegacias A grícolas Atendidas pela Rede de Assistência Técnica. Sub-região II	114
÷	TABELA	35	- Superfícies das Sub-regiões ou Delegacias A grícolas Atendidas pela Rede de Assistência Técnica. Sub-região III	115
	TABELA	36	- Superfícies das Sub-regiões ou Delegacias <u>A</u> grícolas Atendidas pela Rede de Assistência Técnica. Sub-região IV	116
	TABELA	37	- Superfícies das Sub-regiões ou Delegacias <u>A</u> grícolas Atendidas pela Rede de Assistência Técnica. Sub-região V	117
	TABELA	38	- Superfícies das Sub-regiões ou Delegacias A grícolas Atendidas pela Rede de Assistência Técnica. Sub-região VI	118

LISTA DAS FIGURAS

		Página
FIGURA 1 -	Localização da DIRA de Campinas dentro do Estado de São Paulo	26
FIGURA 2 -	Mapa representando a DIRA de Campinas e seus respectivos municípios	27
FIGURA 3 -	Representação das curvas de oferta das tec nologias moderna e tradicional	56
FIGURA 4 -	Proporção da oferta dos agricultores moder nos e tradicionais a cada preço alternativo	57
FIGURA 5 -	Proporção de produtores em relação a ado- ção ou desadoção das tecnologias modernas ou tradicionais	58
FIGURA 6 -	Indicação da proporção de adoção ou desado ção com a variação da relação de preços	60
FIGURA 7 -	Demanda derivada de P ₂ 0 ₅ para pequenas propriedades	64
FIGURA 8 -	Demanda derivada de P ₂ 0 ₅ para médias propriedades	65
FIGURA 9 -	Demanda derivada de P ₂ 0 ₅ para grandes propriedades	66
FIGURA 10 -	Demanda derivada de N para pequenas proprie dades	93

				Página
FIGURA	11		Demanda derivada de N para médias propriedades	94
FIGURA	12		Demanda derivada de N para grandes proprie dades	95
FIGURA	13	-	Demanda derivada de K ₂ 0 para pequenas propriedades	96
FIGURA	14	-	Demanda derivada de K ₂ 0 para médias pro- priedades	97
FIGURA	15		Demanda derivada de K ₂ ⁰ para grandes pro-	9.8

RESUMO

A pesquisa aqui apresentada tem como principal objetivo, as estimativas dos coeficientes de elasticidades - preço das demandas por fertilizantes na Divisão Regional Agrícola (DIRA) de Campinas. O estudo difere dos anteriores que abordaram o mesmo tema, pelo modelo utilizado, denominado "Programação Linear Dinâmica Recursiva". Optou-se pela utilização desse modelo, pensando-se em eliminar algumas limitações comuns dos modelos economértricos tradicionais. A programação recursiva permitiu, com certa facilidade, a divisão das propriedades da região em estratos de área, cujo procedimento tornou possível a estimativa dos coeficientes de elasticidades - preço das demandas por grupo de propriedades. Assim foi possível a análise das diferenças nas elasticidades entre os estratos de área.

Estimou-se elasticidades para NPK agregadamente, a curto prazo, para os anos 70/71, 74/75 e 76/77, e para o nitro-

gênio, fósforo e potássio, também a curto prazo, para o ano 74/75, além do cálculo das elasticidades cruzadas.

Os resultados para a demanda agregada, indicaram que os agricultores da (DIRA) de Campinas, de uma maneira geral, respondem pouco às variações nos preços dos fertilizantes, isto é,os coeficientes de elasticidades-preço das demandas mostraram valores absolutos pequenos (altas inelasticidades). Além disso, notou-se que as elasticidades possuem valores absolutos menores para o grupo das pequenas propriedades, aumentando para as médias e grandes. Isso sugere que os pequenos agricultores não possuem facilidades da relativa substituibilidade de terra por fertilizantes.

Para a demanda considerando-se os nutrientes separad<u>a</u> mente, os resultados foram semelhantes no que se refere aos estr<u>a</u> tos de área, porém existem pequenas diferenças entre as elasticidades dos elementos, sendo o nitrogênio o mais inelástico, seguin do pelo fósforo e finalmente pelo potássio.

As elasticidades cruzadas mostraram existir uma forte correlação entre a variação no preço de um nutriente com a quantidade adquirida do outro, fato que pode ter como responsável, a utilização generalizada pelos agricultores das adubações "formuladas".

1 - O PROBLEMA E SUA IMPORTÂNCIA, ESTUDOS ANTERIORES SOBRE DEMANDA POR FERTILIZANTES E OBJETIVOS

1.1 - Introdução

O setor primário da economia paulista, experimentou, nas últimas décadas, considerável aumento no volume total produzido de alimentos. Esse incremento deveu-se a expansão de novas áreas agrícolas, e, principalmente, aos aumentos de produtividade por unidade de área. A esses aumentos de produtividade estão associados vários fatores, como a adoção de novas técnicas agrícolas, dentre as quais destaca-se o uso de fertilização química. Como concluem NETO e PENNA (1978):

"A tecnologia no periodo 1950/74 pode ser classificada como tendo sido usado ra de capital ou poupadora de mão-de-o bra. Na decada 1950/60, foi classificada como neutra e no periodo seguinte como poupadora de mão-de-obra".

Estudos de demanda por fertilizantes têm importância no Brasil, principalmente sob o aspecto político. É considerado dese jável que o país consiga alcançar a auto suficiência no setor, para amenizar o problema do equilíbrio na balança de pagamentos, uma vez que a maior parte dos fertilizantes são importados, especialmente os potássicos, dos quais 100%. O governo brasileiro interfere com muita frequência no mercado dos produtos e insumos agríco las, visando aumentos de produção e produtividade através de preços mínimos, subsídios, etc. Portanto é de importância fundamental o conhecimento das reações dos agricultores às variações dos preços dos insumos e produtos.

Sabe-se que fertilizante é um dos insumos mais importantes para aumentos de produtividade, chegando a ser fator limitante em determinadas regiões, para que se mantenha uma produtividade economicamente viável. Além disso, é fácil de se perceber que a intensidade do uso de fertilizantes está relacionada com muitos fatores, tornando-se difícil a avaliação simultânea de todos, pelo menos com a utilização dos modelos econométricos tradicionais.

1.2 - A Situação Problemática

Sabe-se que até há alguns anos, a contribuição do setor agrícola foi fundamental para o desenvolvimento industrial brasileiro. A dinamização da agricultura propiciou fornecimento de matéria prima e excedentes para o setor agro-industrial e industrial,

para que pudesse haver um deslocamento na oferta de produtos industrializados. Em São Paulo, o principal fator responsável pelo
deslocamento da oferta dos produtos agrícolas foi o aumento de pro
dutividade devido ao maior uso da tecnologia capital-intensiva
(NETO e PENNA, 1978). Responsável por esse aumento, destaca-se a
intensificiação no uso de insumos modernos, dentre os quais, possue papel primordial os fertilizantes.

Por outro lado, a utilização dos insumos modernos torna as técnicas tradicionais incompatíveis com as modernas, exigindo uma recombinação dos fatores de produção para a adaptação à nova tecnologia. Nesse sentido, torna-se importante o problema do conhecimento da reação dos agricultores quanto a variação dos preços dos insumos, para que se possa avaliar a tendência da demanda e, consequentemente, prover a oferta dos insumos, a fim de se suprir os requerimentos da produção agrícola, contribuindo para o crescimento econômico.

A nível governamental, seria desejável o conhecimento dos coeficientes de elasticidade-preço da demanda, a curto e longo prazo, por regiões e também por estratos de área. Outros parâmetros que seriam importantes conhecer se relacionam com: (a) a interdependência entre as variações nos preços de um elemento e as quantidades adquiridas dos outros (elasticidades cruzadas); (b) os níveis de utilização de fertilizantes por unidade de área para uma determinada região e por estrato de área, refletindo o nível tecnológico da agricultura da região; (c) o conhecimento do maior número possível dos efeitos de variáveis que possam

influenciar nas decisões dos agricultores em relação ao maior ou menor uso de fertilizantes.

1.3 - Estudos Realizados sobre Demanda por Fertilizantes

GRILICHES (1958) testou para os Estados Unidos, a hipóte se de que uma variação substancial no uso de fertilizantes em termos de nutrientes totais (NPK) pode ser explicada por uma variação no preço relativo daquele insumo, uma variação relativa nos preços recebidos pelos agricultores e no preço pago por outros insumos. O período considerado foi de 1911 a 1956. A estimativa do coeficiente de ajustamento situou-se em torno de 0,25. Isso significa que a uma mudança nas variáveis explicativas de 10%, os agricultores se ajustam aquela mudança em 2,5% no prazo de um ano. As elasticidades-preço da demanda a curto e longo prazo foram de - 0,5 e - 2,0 , respectivamente. A uma variação de 10% no preço, a quantidade procurada variara de 5% e 20%, a curto e longo pra zo, respectivamente. Como o período estudado abrangeu duas ras mundiais, GRILICHES dividiu-o em dois sub-períodos: 1933 e 1934 a 1956, esperando reduzir as distorções pelos dois conflitos mundiais. Para o primeiro sub-período (1911/ 33) encontrou os seguintes resultados: coeficiente de ajustamento igual a 0,24 ; elasticidade da demanda a curto prazo igual a - 0,54; elasticidade da demanda a longo prazo igual a - 2,25. o segundo sub-período (1934-56), os resultados foram os seguintes: coeficiente de ajustamento igual a 0,31; elasticidade da

a curto prazo igual a - 0,78; elasticidade da demanda a longo prazo igual a - 2,52. Como pode ser visto, os resultados dos sub-períodos não diferiram muito dos resultados obtidos para o período todo. O autor diz que:

"Ōbviamente, as variāveis consideradas não são as ūnicas que afetam a demanda por fertilizantes, e a omissão de outras variāveis relevantes podem eter influenciado as estimativas dos coeficientes calculados".

GRILICHES (1959) obteve uma outra estimativa da demanda de fertilizantes no período 1931-56, considerando, agora, cada elemento isoladamente e diferentes regiões dos Estados Unidos. Os resultados mostraram significativas diferenças regionais nos coeficientes de elasticidade e nos coeficientes de ajustamento.

HEADY e YEH (1959) utilizando modelos econométricos, realizaram trabalho semelhante ao de GRILICHES. Para as elasticida des-preço da demanda por NPK, a curto prazo, considerando os períodos 1910-56 e 1926-56, os resultados encontrados foram - 1,71 e - 0,49 respectivamente. Estimaram também a demanda para os três nutrientes separadamente, considerando o período 1926-56, excluindo o período 1944-50. As estimativas das elasticidades para o nitrogênio, fósforo e potássio foram - 0,50, - 0,45 e - 0,40 respectivamente. Esses resultados mostram que as demandas por elementos isolados não diferiram significativamente da demanda agregada por NPK para o período 1926/56. Os autores estimaram ainda, demandas regionais e as elasticidades variaram de - 0,42 a - 3,38, confirmando as diferenças encontradas por GRILICHES nas diversas regiões estudadas.

HAYAMI (1964) num estudo de demanda por fertilizantes na agricultura japonesa em desenvolvimento, concluiu que as causas de um grande aumento no uso de fertilizantes por unidade de area cultivada pode ser explicado quase que totalmente pelo progresso técnico da agricultura e da indústria de fertilizantes. O autor diz que:

"O dinamismo da agricultura em relação aos insumos, principalmente fertilizantes, foi favoravel aos agricultores japoneses porque o insumo em questão e oferecido fora do setor agricola".

De fato, existindo uma relação favorável entre preços recebidos pelos agricultores e preços pagos pelos insumos, haverá maior fornecimento de matéria prima às agroindústrias, dinamizando o setor agrícola e, consequentemente, aumentando a quantidade demandada de insumos pela agricultura. Nesse sentido, a experiência japonesa pode ser útil às nações em desenvolvimento na solução dos problemas da alocação dos recursos escassos no crescimento da agricultura.

HSU (1972) estimou a demanda por nitrogênio, fósforo e potássio, para a cultura do arroz em Taiwan, considerando o perío do 1950-66. Para o nitrogênio encontrou um coeficiente de ajustamento igual a 0,683 e elasticidade-preço da demanda a curto e longo prazo igual a - 2,027 e - 2,968 respectivamente. Para o fósforo concluiu que a variável preço relativo do elemento não influia na sua demanda, e sim, a variável tempo (adaptação dos agriculto res, serviços de extensão, etc.). Para o potássio os resultados foram semelhantes aos encontrados para o fósforo, sugerindo que o

seu preço relativo não tem importância na demanda, mas sim, a variável tempo. Os resultados revelam ainda que os agricultores em Taiwan, consideram como fertilizante verdadeiro apenas o elemento cuja resposta é visível e imediata, como o caso da aplicação de nitrogênio na cultura do arroz.

CIBANTOS (1972) calculou os coeficientes de elasticidade-preço da demanda por NPK, a curto e longo prazo para o Estado de São Paulo. Os resultados apresentam-se sumarizados a seguir:

TABELA 1 - Estimativas das elasticidades e coeficientes de ajustamento. Período 1949-71

Equações	E _{cp} (1)	b (2)	E _{Lp} (3)
IV	- 0,25	0,10	- 2,50
V	- 0,24	0,12	- 2,00
VI	- 0,24	0,12	- 2,00

Fonte: CIBANTOS (1972)

TABELA 2 - Estimativas das elasticidades e coeficientes de ajustamento. Sub-período 1949-71 (exclusive 1961-65)

Equações	E _{cp} (1)	b (2)	E _{Lp} (3)
IV	- 0,16	0,08	- 2,00
v	- 0,22	0,11	- 2,00
VI	- 0,21	0,12	- 1,75

Fonte: CIBANTOS (1972)

TABELA 3 - Estimativas das elasticidades e coeficientes de ajustamento. Sub-período 1949-60

Equações	E _{cp} (1)	b (2)	E _{Lp} (3)
IV	- 0,61	0,35	- 1,74
v	- 0,70	0,38	- 1,84
VI	- 0,76	0,39	- 1,95

Fonte: CIBANTOS (1972)

TABELA 4 - Estimativas das elasticidades e coeficientes de ajustamento. Sub-período 1966-71

Equações	E _{cp} (1)	b (2)	E _{Lp} (3)
IV	- 1,60	0,33	- 4,85
v	- 1,69	0,32	- 5,28
VI	- 1,66	0,37	- 4,49

Fonte: CIBANTOS (1972)

Legenda: (1) Coeficiente de elasticidade preço da demanda a curto prazo.

- (2) Coeficiente de ajustamento.
- (3) Coeficiente de elasticidade preço da demanda a longo prazo.

Nota-se que para o sub-período 1966-71 as respostas dos agricultores foram bastante significativas, tanto a curto como a longo prazo, em relação às variações de preços nos fertilizantes, segundo os resultados encontrados pelo autor. De uma maneira ge-

ral, os resultados indicam que os agricultores respondem às variações de preços nos fertilizantes modificando a quantidade adquirida menos que proporcionalmente a curto prazo e mais que proporcionalmente a longo prazo.

SOUZA (1973) estudou a demanda por NPK para o Brasil, con siderando o período 1950-70. Seus resultados mostram um coeficien te de ajustamento igual a 0,44; elasticidade a curto prazo igual a - 0,28 e a longo prazo igual a - 0,63. Os resultados indicam que, a nível nacional, os agricultores respondem às variações de preços nos fertilizantes com variações menos que proporcionais na quantidade comprada, tanto a curto como a longo prazo. Conclui também o autor que outras variáveis têm influência no consumo de fertilizantes.

PESCARIN (1974) estimou a demanda por nitrogênio, fósforo e potássio para o Estado de São Paulo, considerando o período 1948-72. Os resultados foram os seguintes: para o nitrogênio, o valor do coeficiente de ajustamento foi de 0,43, sugerindo que aproximadamente 43% do desequilíbrio entre o consumo atual e o desejado, a longo prazo, é eliminado em um ano. A elasticidade a curto prazo em relação ao preço real foi de - 0,48 e a longo prazo - 1,12. Portanto a demanda por nitrogênio é relativamente inelástica a curto prazo e relativamente elástica a longo prazo. Para o fósforo, o coeficiente de ajustamento foi de 0,41; a elasticidade a curto prazo igual a - 0,31 e a elasticidade a longo prazo igual a - 0,76. Para o potássio, o coeficiente de ajustamento encontra do foi igual a 0,51; a elasticidade a curto prazo igual a - 0,30 e a longo prazo igual a - 0,60. Portanto, as respostas dos agri-

cultores para o fósforo e potássio, devido a uma variação nos seus preços, são de intensidade menos que proporcional, em termos da quantidade adquirida, tanto a curto como a longo prazo (relativa inelasticidade).

MELO (1975) estudou quais as principais variáveis que explicam o consumo de fertilizantes no Estado de São Paulo. As elasticidades encontradas estão em torno de - 0,16 a - 0,47 a cur to prazo, e entre - 1,56 a - 3,66 a longo prazo, considerando o período 1951-73.

1.4 - Algumas Limitações dos Estudos Anteriormente Citados

- a Somente alguns estudos consideraram aspectos da demanda regional, e entre eles, nenhum foi realizado no Brasil;
- b Nenhum trabalho levou em consideração a possibilidade da divisão da área plantada em estratos, segundo os tipos de propriedades;
- c Quase todos os trabalhos, levaram em consideração as mesmas va riáveis explicativas, tais como: índice de preços de fertilizantes, área total cultivada pelas principais culturas, rendimento físico médio, preços recebidos pelos produtos agrícolas, preços pagos por outros insumos exceto fertilizantes, tendência e consumo de fertilizantes defasados de um ano;
- d Praticamente, todos os trabalhos consideram o consumo aparente de fertilizantes;

e - Pelo próprio modelo utilizado, o número de variáveis deve ser limitado, pois podem surgir problemas demulticolínearidade e tendenciosidade. CIBANTOS, em seu trabalho diz que:

"Os modelos utilizados são sujeitos a criticas, não se pretendendo que eles expliquem de maneira perfeita, o comportamento da demanda de fertilizantes no Estado de São Paulo. Além disso, a omissão involun tāria ãs vezes, e consciente outras vezes, de algumas variáveis pode ter prejudicado a estimativa dos coeficientes obtidos (ten denciosidade). É evidente que outros fatores além dos considerados no presente estudo, podem afetar a demanda de fertilizantes. Pode ser ainda que o mecanismo da demanda desse insumo seja melhor explicado por outro modelo".

1.5 - Objetivos da Pesquisa

O objetivo mais geral é conhecer a reação dos agricultores às variações nos preços de nitrogênio, fósforo e potássio, para a DIRA de Campinas, considerando o período 1970-76.

Mais especificamente pretende-se:

- a Verificar qual o nível de utilização de fertilizantes por uni dade de área e por estrato de área das propriedades na região estudada;
- Verificar a intensidade das respostas dos agricultores quanto as variações de preços nos fertilizantes, por estrato de área;

- c Calcular as elasticidades cruzadas entre nitrogênio, fósforo e potássio;
- d Fornecer subsídios às autoridades governamentais, na formula ção e avaliação das políticas de fertilizantes;
- e Fornecer sugestões para novas pesquisas a respeito do mesmo tema.

2 - O MODELO CONCEITUAL

O modelo escolhido denomina-se "programação linear dinâmica recursiva", e sua apresentação baseia-se no trabalho de HEID
HUES (1966). Inicialmente será apresentada a estrutura esquemática da matriz dos coeficientes técnicos. Maiores detalhes sobre as
pectos teóricos do modelo podem ser encontrados em GEMENTE (1978).
Em seguida são apresentados os conceitos de curva de demanda, coeficiente de elasticidade-preço da demanda e o modelo matemático utilizado para o cálculo dos coeficientes de elasticidade.

2.1 - A Programação Linear Dinâmica Recursiva

DAY (1963) define programação linear dinâmica recursiva como:

"Uma sequência de problemas de programação matemática, nos quais os parâmetros de um problema são funcionalmente relacionados com variáveis em niveis otimos de periodos precedentes".

Portanto, a programação dinâmica difere da estática porque os resultados obtidos no período te, dependem das soluções otimas de períodos anteriores. Isso fornece um instrumento valioso quando se quer estudar o desenvolvimento da agricultura através do tempo. Algebricamente o modelo pode ser rperesentado pelas seguintes equações:

Maximizar
$$\pi_t = Z_t \cdot X_t$$
 $t = 1, ..., T$
Sujeito a $A_t X_t \leq b_t$ sendo $X_t \geq 0$

Onde:

 π_{+} = valor da função objetivo do período \underline{t} ;

 X_{+} = vetor de atividade de dimensão \underline{n} ;

 Z_{+} = vetor de dimensão \underline{n} dos coeficientes da função objetivo;

A_t = matriz dos coeficientes representando a estrutura técni ca e institucional de produção;

b_t = vetor de dimensão <u>u</u>, da capacidade dos fatores fixos, valor numérico das restrições e dos coeficientes de fl<u>e</u> xibilidade.

Indiquemos que seja X_{t}^{*} o plano ótimo no período \underline{t} . A informação endógena do mecanismo de "feed-back", para um período \underline{t} , é obtida pela solução ótima de períodos precedentes. Portanto, os elementos do vetor b_{t} têm uma dependência linear com o plano ótimo dos períodos precedentes (X_{t-1}^{*}) e o vetor capacida-

de b (t-1), representado da seguinte maneira:

$$b_t = A_{t-1} \wedge X_{(t-1)}^* + F_{b_{(t-1)}} * v_t$$

onde lambda e gama são matrizes diagonais dos coeficientes que ser vem para transferir capacidade dos fatores de períodos anteriores para o período presente. O vetor \mathbf{v}_{t} permite incorporar qualquer interferência externa ou exógena no modelo. A seguir é apresentado um esquema da matriz \mathbf{A}_{t} , com os grupos de atividades representadas por sub-matrizes \mathbf{A}_{i} que a compõem.

Os grupos de atividades apresentadas na Tabela 5 incluem:

- a o setor de produção, com P_1 ... P_g atividades representando todas as culturas anuais, perenes e atividades pecuárias;
- b o setor de atividades de compra e venda representado por $P_{\rho+1} \cdots P_h$;
- c o setor de investimentos P_{h+1} ... P_k , compreendendo todas as atividades de investimentos;
- d o setor de consumo P_{k+1} ... P_{L} , representando o consumo da mão de obra familiar;
- e finalmente, o setor de capital, ou seja, a movimentação da conta "caixa", incluindo as atividades $P_{I,+1}$... P_{n} .

Por outro lado, os grupos de restrições considerados são os seguintes:

a - b₁ ... b_p, representando um grupo de restrições sobre a disponibilidade de terra para culturas anuais, perenes e ativid<u>a</u> des pecuárias;

Esquema da matriz tecnológica com os grupos de atividades e estrutura das restrições TABELA 5 -

						The street of th
Tipos de restrições	Produção Pl Pg	Atividades de compra e venda P _{g+1} ··· P _h	Investimen- tos $P_{h+1} \cdots P_k$	Consumo P _{k+1} ··· P _L	Movimento do caixa $ {\stackrel{P}{_{L+1} \cdots \stackrel{P}{_{n}}}} $	전 표 &
1 - Terra para culturas a- nuais, perenes e para atividades pecuárias	A ₁₁	0	A ₁₃	0	0	ь, ь
2 - Trabalho	A ₂₁	A ₂₂	A23	0	0	b _{p+1} b _q
3 - Māquinas e animais	A ₃₁	0	A ₃₃	0	0	р _{q+1} b _v
4 - Consumo familiar	$^{A}_{41}$	A42	0	A44	0	b +1 b z
5 - Outros insumos	A ₅₁	A ₅₂	A ₅₃	0	A ₅₅	$b_{z+1} \dots b_{r}$
6 - Liquizes 7 - Investimentos	A ₆₁	A ₆₂	A ₆₃	A 64	A ₆₅	^b r+1 ··· ^b s
8 - Limite de crédito	0	0	A ₇₃	0	A ₇₅	b _{s+1} ··· b _m
9 - Coeficientes de flexibilidade	A ₈₁	0	A83	0	0	b _{m+1} b _u

- b b_{p+1} ... b_q, representando um grupo de restrições sobre dis ponibilidade de trabalho, incluindo mão de obra familiar;
- c b_{q+1} ... b_v , representando um grupo de restrições concernentes a maquinas e animais;
- $d-b_{v+1}\dots b_z$, representando um grupo de restrições que asseguram o consumo familiar;
- $e-b_{z+1}$... b_r , representando um grupo de restrições que se relacionam com a aquisição de insumos para o setor produtivo;
- f b_{r+1} ... b_s, representando um grupo de restrições de liquidez e investimentos para regular o fluxo interno e alocação do capital;
- g b_{s+1} ... b_m, representando um grupo de restrições concernentes ao limite de empréstimo;
- h b_{m+1} ... b_u , representando um grupo de restrições que constituem os coeficientes de flexibilidade.

Algebricamente, a Tabela 5 mostra que a restrição de terra, por exemplo, deve ter a seguinte forma:

g
$$j = 1 \quad a_{ij}(t) \quad X_{j}(t) \quad + \quad j = h+1 \quad a_{ij}(t) \quad X_{j}(t) \quad - \quad b_{i}(t)$$

sendo $i = 1, \ldots, p$.

Isso significa que o total de terra tipo <u>i</u> (i = 1,...
..., p) destinada às culturas anuais, pastagens e culturas perenes em produção, mais a destinada a investimentos em culturas pe
renes, deve ser menor ou igual ao total de terra tipo <u>i</u> disponível.

Esse modelo permite a inclusão do maior número possível de variáveis, além de eliminar limitações como a consideração de índices de preços e de área cultivada. Permite também dispensar tratamento diferenciado aos diversos estratos de área, determinan do as suas respectivas elasticidades-preço das demandas.

2.2 - As Curvas de Demanda e o Modelo Matemático Escolhido

BILAS (1967) conceitua curva de damanda como sendo:

"O lugar geometrico dos pontos que representam as quantidades máximas procuradas a todos os preços alternativos, ceteris paribus".

Simbolicamente, pode-se representar a demanda da seguinte maneira:

$$Q_1 = \phi (P_1, P_2 \dots P_n, Y, T, W)$$

onde:

Q, = quantidade procurada de determinada mercadoria,

P₁ = preço d**a** mercadoria procurada

 $P_2 \dots P_n = preço das outras mercadorias$

Y = renda

T = gostos

W = riqueza.

Mantendo constante todas as outras variáveis ter-se-á:

$$Q_1 = f(P_1)$$

A elasticidade da demanda por Q_1 (e₁₁) é definida com a variação proporcional de q_1 dividida pela variação proporcio - nal de seu próprio preço:

$$e = \frac{\partial (\log q_1)}{\partial (\log P_1)} = \frac{P_1 \partial q_1}{q_1 \partial P_1}$$

As elasticidades preço da demanda são números puros, in dependentes das unidades de medida dos preços dos produtos. A elasticidade e_{11} é negativa se a curva de demanda for decrescente. 0 dispêndio do consumidor em Q_1 é p_1 q_1 , e

$$\frac{\partial (p_1 q_1)}{\partial p_1} = q_1 + p_1 \frac{\partial q_1}{\partial p_1} = q_1 (1 + \frac{p_1 \partial q_1}{q_1 \partial p_1}) = q_1 (1 + e_{11})$$

o dispêndio do consumidor em Q_1 aumenta com P_1 se $e_{11} > -1$, permanece constante se $e_{11} = -1$ e diminui se $e_{11} < -1$. Da mesma maneira, pode-se definir elasticidade cruzada da função de manda, que mostra a variação proporcional da quantidade procurada de um bem em resposta a uma variação proporcional no preço de outro bem:

$$e_{21} = \frac{\partial (\log q_2)}{\partial (\log p_1)} = \frac{p_1 \partial q_2}{q_2 \partial p_1}$$

As elasticidades cruzadas podem ser negativas ou positivas.

Optou-se pela utilização da função potência para representar a demanda derivada por fertilizantes:

$$Y = a B^b$$
,

onde:

Y = quantidade de fertilizantes utilizada pelos agricultores;

a = termo constante;

B = preço do fertilizante;

b = coeficiente de elasticidade preço da demanda.

Por anamorfose tem-se:

LnY = Lna + bLnB,

que será ajustada através do uso dos mínimos quadrados.

Concluindo, neste capítulo procurou-se dar uma idéia ge ral do conceito de programação linear dinâmica recursiva, baseando-se no trabalho realizado por HEIDHUES (1966). A escolha do presente modelo, permite eliminar uma série de limitações existentes em outros estudos sobre demanda por fertilizantes, tais como a consideração do consumo aparente e a omissão de variáveis por motivos de multicolinearidade, que possam influenciar no consumo daquele insumo. Procurou-se também neste capítulo, apresentar al guns aspectos teóricos sobre curva da demanda, coeficiente de elasticidade-preço e indicou-se o modelo matemático para o cálculo daqueles coeficientes.

3 - A ÁREA DE ESTUDO. O MODELO EMPÍRICO E FONTE DOS DADOS

Neste capítulo são fornecidas algumas informações sobre a área de estudo, tais como: aspectos agronômicos da região, dis ponibilidade de assistência técnica ao agricultor e localização da região no Estado de São Paulo. Apresenta-se também as atividades escolhidas e qual a razão de tal escolha, e também a divisão em estratos de área.

3.1 - Descrição da Área de Estudo

A Divisão Regional Agrícola (DIRA) de Campinas é uma das dez DIRAs do Estado de São Paulo e abrange seis sub-regiões ou de-legacias agrícolas, as quais possuem sede nos municípios de Campinas, Rio Claro, Limeira, São João da Boa Vista e Casa Branca, num

total de 65 municípios assim dispostos:

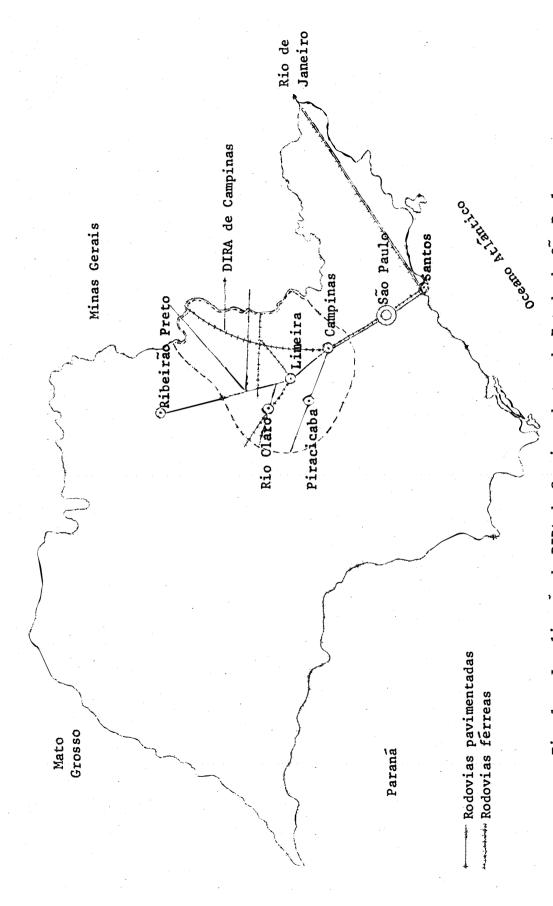
Sub-região I - Águas de Lindóia, Amparo, Campinas, Indaiatuba, Jaguariúna, Lindóia, Monte Alegre do Sul, Monte Mor, Paulínea, Pedreira, Santo Antonio da Posse, Serra Negra, Socorro, Sumaré, Valinhos e Vinhedo.

Sub-região II - Águas de São Pedro, Americana, Capiva - rí, Charqueada, Elias Fausto, Mombuca, Nova Odessa, Piracicaba, Rafard, Rio das Pedras, Santa Bárbara D'Oeste, Santa Maria da Serra e São Pedro.

Sub-região III - Analândia, Brotas, Cordeiropolis, Corum bataí, Ipeuna, Itirapina, Rio Claro, Santa Gertrudes e Torrinha.

Sub-região IV - Araras, Arthur Nogueira, Conchal, Cosm<u>o</u> p**ol**is, Iracemápolis, Leme, Limeira, Pirassununga, Porto Ferreira e Santa Cruz da Conceição.

Sub-região V - Aguaí, Águas da Prata, Itapira, Pinhal, Mogi Guaçu, Mogi Mirim, Santo Antonio do Jardim, São João da Boa Vista e Vargem Grande do Sul.


Sub-região VI - Caconde, Casa Branca, Divinolândia, It<u>a</u> bí, Mococa, Santa Cruz das Palmeiras, São José do Rio Pardo, São Sebastião da Grama, Tambaú e Tapiratiba.

A população da DIRA é de aproximadamente 1,7 milhões de habitantes, representando quase 10% da população do Estado (Secretaria da Agricultura - Programa Regional de Assistência Técnica à Agricultura, 1968). A população urbana compreende 70% desse total

e a migração rural-urbana tende a se acentuar, dadas as caracterís ticas de crescimento industrial da região.

A localização da DIRA em relação ao Estado e um mapa da mesma com seus respectivos municípios são apresentados nas Figuras 1 e 2, respectivamente. Como pode ser observado, sua localiza - ção em relação às vias de acesso que possam facilitar escoamento de produção, inclusive para exportação é bastante privilegiada.

Como já foi mencionado, trata-se de uma região privile - giada quanto a canais de comercialização, além de estar dentro de limites de uma área altamente desenvolvida, tanto agronômica como industrialmente.

Programa Regional de Assistência Técnica a Agricultura Secretaria da Agricultura do Estado de São Paulo Fig. 1 - Localização da DIRA de Campinas dentro do Estado de São Paulo FONTE:

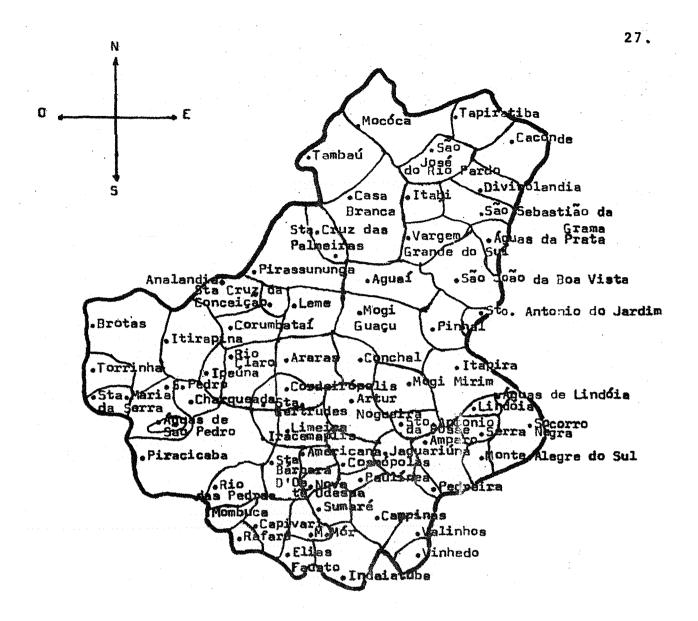


Fig. 2 - Mapa representando a DIRA de Campinas e seus respectivos municípios.

Fonte: Programa Regional de Assistência Téc nica à Agricultura - Secretaria da A gricultura do Estado de São Paulo.

3.2 - Aspectos Agronômicos da Região, Nível Tecnológico e Assistência Técnica ao Agricultor

A região possui topografia ondulada, com 95% de sua área sujeita a diversas modalidades de erosão, necessitando de práticas conservacionistas. Com relação a fertilidade, um levantamento realizado pela Secretaria da Agricultura do Estado de São Paulo, em 1968, forneceu os seguintes resultados:

TABELA 6 - Fertilidade dos solos na DIRA de Campinas por subregiões

C			Fertilida	d e	
Sub-região		Muito baixa	Baixa	Média	Alta
Sub-região	I	3 %	17%	67%	13%
Sub-região	II	12%	22%	55%	11%
Sub-região	III	17%	30%	50%	3 %
Sub-região	IV	22%	23%	38%	17%
Sub-região	V	19%	30%	38%	13%
Sub-região	VI	8 %	30%	45%	17%
DIRA		14%	25%	49%	13%

Fonte: Programa Regional de Assistência Técnica à Agricultura - Secretaria da Agricultura do Estado de São Paulo.

Como a Tabela 6 indica, a DIRA apresenta um total de 39,0% de terras de fertilidade baixa e muito baixa, 49,0% de fertilidade média, e apenas 13,0% de terras de fertilidade alta. Não havendo uma conservação de solo eficiente, tanto a fertilidade al-

ta como a média tendem a diminuir, evidenciando-se em contrapartida, uma tendência de aumento de solos com fertilidade baixa e muito baixa.

O grande desenvolvimento agrícola da DIRA de Campinas é caracterizado pela diversidade de culturas exploradas. Desde a cultura da cana de açúcar, que ocupa a maior área, passando pelas tradicionais culturas de café, milho, arroz, feijão, etc., até as mais especializadas como uva, figo, e as atividades olerícolas, os lavradores dessa região desenvolvem atividades relacionadas com mais de cinquenta produtos agrícolas.

O nível tecnológico da agricultura da região pode ser con siderado bom quando comparado a outras regiões do Estado. A adubação é prática adotada pela maioria dos agricultores, mas nem sempre é feita segundo as mais corretas recomendações técnicas. Os solos da DIRA de Campinas são usados intensivamente há longos anos por culturas exigentes em nutrientes, e estão sujeitos a desgaste in tenso pela falta dos adequados cuidados conservacionistas. O alto valor das terras obriga o lavrador a retirar do solo altas produtividades físicas, a fim de tornar suas explorações econômicas. Para lelamente ao maior emprego de insumos modernos, os agricultores vêm adotando práticas que auxiliam o aumento da produtividade, tais como, melhor preparo do solo, plantio em época certa, utilização de espaçamento adequado, aprimoramento das técnicas de cultivo, colheita e armazenamento.

Em relação à assistência técnica, é a região do Estado mais próxima dos principais polos de irradiação de novas técnicas a gronômicas. Dentro da DIRA de Campinas estão situados a Escola Su-

perior de Agricultura "Luiz de Queiroz", o Instituto Agronômico de Campinas e a sede da Coordenadoria de Assistência Técnica Integral (CATI), órgão que coordena as Casas da Agricultura a nível Estadual, através das Delegacias Agrícolas e das DIRAs. As Casas da Agricultura são responsáveis pela assistência técnica direta ao agricultor, transferindo tecnologia da pesquisa para o campo. Dos 65 municípios da DIRA, 63 possuiam Casas da Agricultura já em 1969. A região é, portanto, adequadamente atendida pela assistência técnica.

3.3 - Escolha das Atividades e Divisão em Estratos de Área

Como já foi citado, a região possue enorme diversidade de atividades agropecuárias. Dentre essas atividades foram esco - lhidas aquelas que deveriam fazer parte da matriz para o desenvolvimento do modelo empírico. Para tal, levou-se em consideração a área ocupada e o valor bruto da produção. As atividades selecionadas foram as seguintes: cana, café, algodão, arroz, soja, tomate, milho, citrus, batata, mandioca, feijão, pecuária de leite C, Pecuária de leite B, pecuária de corte, suinocultura tipo banha e suinocultura tipo carne. Essas atividades produtivas foram esco - lhidas porque ocupam aproximadamente 90% da área da DIRA e correspondem a mais de 85% do valor bruto da produção agropecuária.

Foi feita a estratificação das propriedades por estratos de área. Estudos anteriores não consideraram esse fator e querse, neste estudo, verificar se existem diferenças na demanda pelo

insumo (fertilizantes) entre os diversos estratos. Foram levadas em consideração as áreas médias das propriedades de cada município da DIRA e a área média das propriedades da DIRA como um todo. (Ver apêndice 4). A estratificação foi a seguinte: estrato pequeno representando propriedades com área de 3 a 10 hectares; estrato médio representando propriedades com área de mais de 10 hectares até 100 hectares; estrato grande representando proprieda des com área maior do que 100 hectares.

3.4 - 0 Modelo Empírico

A matriz dos coeficientes técnicos, a estrutura das restrições, o cálculo dos custos e receitas, o comportamento do mode lo durante o período considerado (70/76), estão discutidos deta - lhadamente em GEMENTE (1978). Este trabalho limitar-se-á a definir os códigos utilizados para as colunas e linhas respectivamente, explicando seu significado. (Ver apêndice 2).

3.5 - Fonte dos Dados

Os dados para a construção da matriz tecnológica foram baseados em publicações do Instituto de Economia Agrícola da Secretaria da Agricultura do Estado de São Paulo (IEA), em informações obtidas através de contatos com técnicos do Instituto Agronomico de Campinas, da Coordenadoria de Assistência Técnica Integral e com professores da E.S.A. "Luiz de Queiroz".

3.6 - Exigência das Culturas Consideradas, Produtividade Esperada e Tabela de Preços de Fertilizantes

TABELA 7 - Exigência de fertilizantes por hectare, produtividade esperada e formulas mais utilizadas, em kg por hectare

Cultura		imento de tes por he		Total de	Produtivida- de esperada	Formulas mais uti
	N	P ₂ ⁰ 5	κ ₂ 0	hectare	por hectare	lizadas
Algodão I	47,8	69,0	69,0	185,8	91 arr.	3-15-15
Algodão II	47,8	69,0	69,0	185,8	103 arr.	3-15-15
Batata das águas I	58,0	203,0	116,0	377,0	149 sc. 60 kg.	4-14-08
Batata das aguas II	62,2	235,2	134,4	431,8	157 sc. 60 kg	4-14-08
Batata das secas	224,4	785,4	448,8	1,458,6	105 sc. 60 kg.	4-14-08
Soja	0,0	55,8	18,6	74,4	27 sc. 60 kg.	0-18-06
Mandioca	0,0	27,0	48,0	75,0	15 t.	0-18-32
Tomate	378,0	818,0	625,8	1.821,8	44 t.	4000 NOW 1700s
Feijão das águas I	6,5	23,0	13,0	42,5	9 sc. 60 kg.	4-14-08
Feijão das águas II	7,5	26,0	15,0	47,5	9 sc. 60 kg.	4-14-08
Feijão das secas I	7,0	24,0	14,0	45,0	14 sc. 60 kg.	4-14-08
Fei jão das secas II	8,0	27,0	16,0	51,0	14 sc. 60 kg	4-14-08
Milho I	13,0	45,0	25,0	83,0	37 sc. 60 kg.	4-14-08
Milho II	45,0	38,0	21,0	104,0	47 sc. 60 kg.	4-14-08
Arroz	60,0	30,0	60,0	150,0	19 sc. 60 kg.	12-06-12

continua ...

TABELA 7 - Continuação

			4.12			
Cultura	•	imento de tes por he		Total de	Produtivida-	Fórmulas
	N	P ₂ O ₅	K ₂ 0	NPK por hectare	de esperada por hectare	mais ut <u>i</u> lizadas
Cana	33,5	43,5	25,0	102,0	70 t. 60 kg.	04-14-08
Café em produção	140,0	35,0	120,0	295,0	12 sc. 60 kg.	20-05-20
Café 19 ano	60,0	0,0	48,0	108,0	tipe tipe like	Arrier March March
Café 20 ano	80,0	20,0	60,0	160,0	2,7 sc. 60 kg.	STORY MANNEY FARTAL
Café 3º ano	12,0	30,0	90,0	132,0	5 sc. 60 kg.	1884 - 1884 - 1885a
Investimento em café	32,0	0,0	48,0	80,0	NAME SAME	Miles State Diese
Laranja em produção	51,5	51,5	51,5	145,5	400 cx.	10-10-10
Laranja 19 ano	26,0	10,0	10,0	46,0	440, 500, 500	deart aggs Title
Laranja 29 ano	10,0	10,0	10,0	30,0	una man min	Shine spinge shine
Laranja 30 ano	28,0	27,0	28,0	83,0	100 сж.	Alan tana tahu
Laranja 49 ano	40,0	40,0	40,0	120,0	200 сж.	3664 SQQS 10007

Fonte: Instituto de Economia Agricola - Secretaria da Agricultura do Estado de São Paulo.

A Tabela 7, indica as exigências de NPK para as culturas consideradas no trabalho, as produtividades e as fórmulas mais utilizadas naquelas culturas. Não se deve interpretar as quantidades indicadas como totalmente provenientes das "fórmulas". Algumas

culturas, nas quais a coluna que especifica as "fórmulas" mais utilizadas estão em branco, utilizam elementos não "formulados"; geralmente sulfato de amônio, superfosfato simples e cloreto de potássio. Outras culturas, apesar de possuirem "fórmulas" indicadas na tabela, podem incluir no total dos elementos adubações não "formuladas".

A seguir é apresentada uma tabela com os preços do nitrogênio, fosforo e potássio utilizados no modelo:

TABELA 8 - Preços de fertilizantes (elementos simples) em cruzeiros por tonelada. Período 70 a 76

A		Elementos	
Ano	Nitrogênio	Fósforo	Potássio
1970	268,92	278,81	280,21
1971	329,36	324,48	392,83
1972	418,79	437,93	439,00
1973	587,00	579,20	554,30
1974	1.428,33	1.622,47	1.123,39
1975	1.542,96	1.475,04	1.152,48
1976	1.516,20	1.588,44	1.307,88

Fonte: Instituto de Economia Agrícola. Secretaria da Agricultura do Estado de São Paulo.

A Tabela 8 fornece os preços correntes dos elementos simples que foram utilizados no trabalho. Para os anos de 1975 e 1976, o subsídio de 40% não está incluído.

3.7 - Conclusão

Pode-se notar que a área escolhida para estudo localizase numa região bastante desenvolvida dentro do Estado de São Paulo,
possuindo grandes facilidades para comercialização da produção agrícola e está próxima a um grande centro consumidor. Em contra partida, seus solos não possuem boa fertilidade, exigindo aplica ção de fertilizantes, corretivos e adequado controle de erosão devido a sua topografia ondulada. A divisão em estratos de área foi
realizada com base na média das propriedades dos municípios da

DIRA. Foram fornecidos também alguns aspectos a respeito da fonte dos dados, mostrando a quantidade requerida de elementos (fertilizantes) por hectare e por cultura. Finalmente, como o presente
trabalho é parte de um projeto mais amplo, o qual está sendo desenvolvido por uma equipe de técnicos, foi indicada a referência onde
podem ser encontrados detalhes sobre o modelo empírico utilizado.

4 - RESULTADOS E DISCUSSÕES PARA A DEMANDA DE NPK

O presente capítulo apresenta os resultados obtidos com o modelo original, em relação às quantidades de fertilizantes requeridas, por estrato e por ano, bem como as áreas ocupadas pelas culturas anuais e perenes, considerando o período 70/76. Através das quantidades e das áreas ocupadas pelas culturas, construiu - se uma tabela, com as quantidades de nitrogênio, fósforo e potássio utilizadas por hectare e por estrato de área, durante o período con siderado.

Devido a ausência de alternativas tecnológicas no modelo inicial, a demanda derivada por fertilizantes apresentou-se perfeitamente inelástica. Por essa razão foram introduzidas modificações na matriz original de modo a permitir maior possibilidade de substituição entre terra e fertilizante. Finalmente, os resultados dos coeficientes de elasticidade-preço da demanda para os anos

de 70/71, 74/75 e 76/77, são apresentados e discutidos.

4.1 - Resultados Obtidos do Modelo

As Tabelas 9 e 10 apresentadas a seguir, permitem calcular a quantidade de fertilizantes por hectare e por estrato de área que vem sendo utilizada na DIRA de Campinas, no período 70/76. Os valores resultantes estão apresentados na Tabela 11.

Por inspeção da Tabela 11, pode-se perceber um uso mais intensivo de fertilizantes por unidade de area no grupo das pequenas propriedades (estrato pequeno). Isso sugere que em e estratos correspondentes a maiores propriedades, existe relativa substituibilidade entre terra e fertilizantes. Existem diferenças entre os anos considerados, porém a média para o período é de 144,7 kg NPK / ha cultivado, acima portanto da média do Estado para o perío do 70/72 que, foi de 91 kg de NPK/ha, segundo o Sindicato da Indús tria de Adubos e Colas do Estado de São Paulo (1972). A média para o mesmo período (70/72), de acordo com os resultados do modelo, foi de 146 kg de NPK/ha cultivado na DIRA, acima portanto da média do período (70/76). A proporção de nitrogênio, fósforo e potás sio, em relação ao período 70/76 foi de 45,7:50,4:48,6 kg/ha,ou em termos relativos 1,0:1,10:1,06 respectivamente. A análise acima esta de acordo com o que se acredita tenha sido o nível tecnológico da agricultura da região, principalmente no que se refere ao uso de fertilizantes químicos.

Quantidades em toneladas de nitrogênio, fósforo e potássio, utilizados por estratos de área e por ano na DIRA de Campinas, durante o período 70/76 TABELA 9 -

Estrato de		10/11			71/72	•		72/73	•		73/74	
area	Z	d	×	Z	Д	×	Z	д	×	Z	P 4	×
Pequenas propriedades	1.730	1.730 1.987	1.792	1.745	745 1.948 1.788	1.788	1.810	1.810 1.967 1.849	1.849	1.859	1.859 2.123	1.997
Médias propriedades	9.075	9.075 12.351 11.351	11.351	9.488	12.208	11.287	10.557	13.575 12.442	12.442	11.651	11.651 14.941 13.752	13.752
Grandes propriedades	12,435	12,435 13,697 13,144	13,144	13.824	13.824 14.638 14.125	14.125	14.811	14.811 15.201 15.090	15.090	15.146	15.146 16.362 16.203	16.203
Total	23.240	23.240 28.036 26.287	26.287	25.057	28.794	27.200	25.057 28.794 27.200 27.178 30.743 29.381	30.743	29.381	28.656	28.656 33.426 31.952	31.952
											Continua	3

... Continuação

Estrato de		74/75	•		75/76			16/11	
area	N	Ъ	K	Z	ď	×	Z	<u>Д</u>	×
Pequenas propriedades	1.946	2.121	2.121 2.064	2.128	2.128 2.193 2.210	2.210	2.252	2.252 2.259 2.347	2.347
Médias propriedades	13.740		15.245 14.585	15.011	15.011 15.532 15.340	15.340	15.702	15.702 16.010 16.151	16.151
Grandes propriedades	17.038	17.738	17.738 18.199	18.357	18.357 18.348 19.147	19.147	19,793	19,793 19.164 20.701	20.701
Total	32.724	35,104	35.104 34.848	35.496 36.073 36.697	36.073	36.697	37.741	37.741 37.433 39.199	39.199

Fonte: Resultados do modelo.

Área em hectares dada pela solução do modelo, por estrato paraaas culturas anuais e perenes consideradas no modelo. Período 70/76 TABELA 10 -

Andrew description of the control of	02	10/11	71,	71/72	72,	72/73	73	73/74
Estrato de area	Culturas anuais	Culturas perenes	Culturas anuais	Culturas perenes	Culturas anuais	Culturas perenes	Culturas anuais	Culturas perenes
Pequenas propriedades	19.832	10.365	19.832	12.967	19.832	16.352	19.832	18.969
Medias propriedades	117.384	56.514	179.058	66.932	202.442	76.968	218.294	91.998
Grandes propriedades	222.459	66.481	241.644	79.025	241.754	89,805	259.948	98.348
Total culturas individuais	419.675	133.360	440.534	158.924	464.028	183.125	498.074	209.315
Total culturas anuais e perenes	553	553,035	565	599,458	947	647.153	.02	707 .389

Continua ...

TABELA 10 - Continuação

•	74.	74/75	75	73/76	76	16/77
Estrato de area	Culturas anuais	Culturas perenes	Culturas anuais	Culturas perenes	Culturas anuais	Culturas perenes
Pequenas propr ie dades	19.832	16.607	19.832	21.760	19.832	23,543
Médias propriedades	218.294	103.221	118.294	115.725	218.294	129.887
Grandes propriedades	269.159	110.741	281.815	121.346	288,304	133.929
Total culturas individuais	507.285	230.569	519.941	258.831	526.430	287.359
Total culturas anuais e perenes	737	737.854	377	778.772	813	813.789

Fonte: Resultados do modelo.

Quantidade dos elementos em kg/ha cultivado, por estrato de área TABELA 11 -

Estrato de	-		70/71	-		'	71/72	-	-	'`	72/73			. `	73/74	
area	Z	P	R F	Total	tal N	Ъ	× -	K Total	Z	Ъ	×	K Total N	Z .	A L	×	P K Total
Pequenas propriedades	57	99	66 99	182	53	53 60 54	24	167	20	54	50 54 51	155 48 55 51 154	84	55	51	154
Médias propriedades	39		23 48	140	39	39 50 46	97	135	38	38 48 44	77	130	37	37 48 44	777	129
Grandes propriedades	43	43 47 45	45	135	43	43 46 44	77	133	45	95	45	133 45 46 45 136	42	97	42 46 45	133
														Cont	Continua	

... Continuação

Estrato de			74/75			7	75/76			-	76/77	
area	N	Ъ	X	K Total	z	<u>г</u>	⊭ -	K Total	Z	Ъ	×	K Total
Pequenas propriedades	53	28	57	53 58 57 168 51 53 53 158	51	53	53	158	52	52	52 52 54 158	158
Médias propriedades	\$	3 47	45	135	45	94	97 97 57	137	45	94	46 46 137	137
Grandes propriedades	45	41	84	45 47 48 140 45 45 47 137 47 45 49 141	45	45	47	137	47	45	64	141

Fonte: Resultados do modelo.

4.2 - Curva de Demanda Esperada e Curva Obtida Empiricamente

Baseando-se na definição de curva de demanda, conceituada no îtem 2.2, procedeu-se da seguinte maneira para se obter a
curva da demanda por fertilizantes: variaram-se os preços dos fer
tilizantes (NPK), de maneira a se obter quatro pontos acima do pre
ço normal e dois pontos abaixo. As variações foram de + 40%,
+ 80%, + 100%, + 300%, - 60% e - 90%. A cada variação de preço correspondia uma quantidade utilizada de fertilizantes, dada pe
la solução ótima do modelo.

O coeficiente de elasticidade-preço da demanda foi igual a zero no intervalo considerado, isto é, não havia variação nas quantidades procuradas de fertilizantes pelos agricultores, a ser que os preços sofressem alterações ainda maiores que na realidade seriam absurdas. Isto deveu-se a limitações de dados, pois o IEA da Secretaria da Agricultura, considera poucas alternativas tecnológicas a nível regional, razão pela qual não foi possível in troduzir na matriz, um número suficiente de tecnologias alternativas que tornariam o modelo mais sensível. Recorreu-se então aos técnicos do Instituto Agronômico de Campinas (IAC) e foram adicionadas à matriz, diversas opções tecnológicas. Estas novas tecnolo gias para cada cultura, diferem das anteriormente consideradas, so mente no uso mais ou menos intensivo de fertilizantes e nas corres pondentes produtividades. É preciso ressaltar o caráter precário destes dados, uma vez que se referem a resultados de experimentos com controle especial da maioria dos fatores que em condições produção comercial, podem afetar as produtividades obtidas. Além

disso, deve-se notar que em alguns casos, elementos altamente subjetivos entraram na elaboração destas novas tecnologias. Neste ca so encontram-se os resultados de opiniões colhidas em contatos com professores e técnicos de agronomia.

As variaveis introduzidas para modificação da matriz or i ginal encontram-se no apêndice 3.

A Tabela 12 apresentada a seguir, fornece as quantidades de fertilizantes, produtividades inicialmente consideradas, os incrementos na produtividade, aumentos na quantidade de elementos por unidade de área e elasticidade de produção aproximada. A média dos valores das elasticidades de produção de fertilizantes para as culturas consideradas é de 0,25, valor próximo do encontrado por ENGLER (1978) para o Estado de São Paulo, cujo valor foi igual a 0,167. É evidente que regionalmente, os resultados das elasticidades de produção devido a fertilizantes tendem a variar, dadas as características diversas, peculiares a cada região.

Quantidade dos elementos e respectivas produtividades. Acréscimo dos ele-(kg/ha) Elasticidade de produção. mentos e da produtividade. TABELA 12 -

Cultura (Novas atividades)	Quant eleme tante triz	tidade entos es na orig	cons mar	Produtividade considerada na matriz original	Acréscimo mentos em a quantida nalmente co		to dos ele- m relação dade origi considerada	Acrescimento esperado na produtividade	Elasticidade de produção aproximada
	Z	PJ	×		Z	ద	× .		
Milho 3	4.5	38	21	2.820	4	12	50	180	0.18
Milho 4	45	38	21	2.820	∞	50	30	240	0,15
Café 1	140	35	120	720	10	15	30	09	0,45
Café 2	140	35	120	720	70	25	07	06	0,43
Laranja 1		21	25	16.000	18	10	15	2,000	0,42
Laranja 2	52	51	25	16.000	52	15	70	2.600	0,42
Laranja 3	52	51	25	16.000	07	20	35	7.000	07.0
Cana 1	33	43	25	70.000	10	30	20	7 000	90.0
Cana 2	33	43	25	70.000	70	20	80	000*9	90.0
Cana 3	33	43	25	•	07	20	120	8,000	0,05
Arroz 1	09	30	09	1.140	- 20	ı S	10	- 120	0,45
Arroz 2	09	30	09	1.140	S	15	Ŋ	09	0,39
Mandioca 1	0	56	87	15.000		43	7	2,000	0,13
Mandioca 2	0	27	84	15.000	70	23	7	2,500	0,12
Algodão 3	7 8	69	69	1.545	10	-	61	105	0,17
Algodão 4	7	69	69	1,545	50	9	81	135	0,15
Soja 1	0	26	18	1.620	0	Ŋ	75	240	0,23
Soja 2	0	26	18	1,620	0	15	62	360	0,21
						Andreas of the Particular Advantage and the			

Fonte: IEA da Secretaria da Agricultura, IAC e ESALQ.

4.3 - Resultados do Modelo após a Introdução das Variáveis Descritas no Apêndice 3

Computando novamente os dados com a matriz modificada e usando-se as mesmas variações nos preços, as quantidades de fertilizantes aos diferentes preços alternativos que maximizam a função objetivo, estão indicadas nas Tabelas 13, 14 e 15. Para obten - ção desses resultados, variaram-se simultaneamente os preços do nitrogênio, fósforo e potássio.

Como os preços do nitrogênio, fósforo e potássio foram alterados simultaneamente, a partir das Tabelas 13, 14 e 15, obtem-se as Tabelas 16, 17 e 18, cujos preços estão ponderados pelas quantidades e as quantidades são apresentadas em termos de NPK agregadamente.

Quantidade dos elementos aos diversos preços considerados para os anos de 70/71 , 74/75 e 76 //7 (em toneladas). Pequenas propriedades TABELA .13 -

	Pr	Preço normal	ma 1	Pr	Preço + 45%	2%	Pro	Preço + 80%	№ º	Pro	Preço + 100%	. %
Anos	Z .	P ₂ 05	P ₂ 0 ₅ K ₂ 0	Z.	$^{P}_{2}^{0}_{5}$ $^{K}_{2}^{0}$	K ₂ 0	N	P_2^{0} K_2^{0}	K ₂ 0	N.	$P_2^{0} > K_2^{0}$	K ₂ 0
17/07	2.183	2.549	2.839	2.130	2.496 2.733	2.733	2.130	2.130 2.496 2.733	2.733	2.130	2.496	2.733
74/75	2.520	2.767	3.435	2.381	2.428 2.904	2.904	2,381	2.428	2.904	2.381	2.428	2.904
76/77	3.275	3.409 4.452	4.452	3.264	3.359 4.430	4.430	3.264	3.359 4.430	4.430	3.052	3.148 4.007	4.007
							-				continua	g

... continuação

	Pre	%00£ + 05a;	%(Pro	Preço - 60%	%(Pre	Preço - 90%	2.0
Anos	N	$P_2^{0.5}$ K_2^{0}	K ₂ 0	Z	P ₂ 0 ₅	P ₂ 0 ₅ K ₂ 0	N	P ₂ 0 ₅	$^{P}_{2}^{0}_{5}$ $^{K}_{2}^{0}$
17/07	2.046	2,301		2,183	2.549	2.839	2.183	2,549 2,839	2.839
74/75	1.619	1.840	1.820	2.674	2.890	3.728	2.674	2.890	3.728
76/77	2.826	2.593	3.131	3.275	3.275 3.409	4.452		3.275 3.409 4.452	4.452

Fonte: Resultados do modelo.

N $P_2^{0}_5$ K_2^{0} N $P_2^{0}_5$ K_2^{0} N $P_2^{0}_5$ K_2^{0} N $P_2^{0}_5$ K_2^{0} N $I2.243$ I5.131 I6.113 11.622 12.997 12.961 10.672 11.897 11.032 10.176 18.816 21.685 27.455 17.302 17.978 21.635 17.302 17.972 21.635 17.302	Margaret de de marganisa de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya del la companya del la companya del la companya de la companya de la companya de la companya del la	Pr	Preço Normal	Preço Normal	i	Preço + 40%	Preço + 40%	ned las	medias propriedades Preço + 80%	2	Pr	Preço + 100%	20
12.243 15.131 16.113 11.622 12.997 12.961 10.672 11.897 11.032 18.816 21.685 27.455 17.302 17.978 21.635 17.302 17.972 21.635	Anos	Z	P ₂ 0 ₅	K ₂ 0	Z	P_{2}^{0}	K ₂ 0		P ₂ 0 ₅	κ_2^{0}	z	P ₂ 0 ₅ K ₂ 0	K ₂ 0
18.816 21.685 27.455 17.302 17.978 21.635 17.302 17.972 21.635	10/11	12.243	15.131	16.113	11.622	12.997	12.961	10.672	11.897	11.032	10.176	11.764	10,694
	74/75	18.816	21.685	27.455	17.302	17.978	21,635	17.302	17.972	21.635	17.302	17.978	21.635
76/77 23.741 25.767 35.122 23.741 25.767 35.122 23.713 25.641 35.069 21.951 23.879 31.545	16/11	23.741	25.767	35.122	23.741	25.767	35,122	23.713	25.641	35.069	21.951	23.879	31.545

... continua

	Pr	Preço + 30	200	P	Preço - 60%	8	Pr	Preço - 90%	8
Anos	z	P ₂ 0 ₅	K ₂ 0	Z	P ₂ 0 ₅	K ₂ 0	z	P ₂ 0 ₅	K ₂ 0
17/07	10.176	10.176 11.764	10.694	14.441	14.441 17.019 19.940	19.940	14.081	14.081 17.399	20.649
74/75	12.218	12.218 14.282	13.904	20.172	23.041	30,167	20.172	23.041	30.167
76/77	19.593	19.593 18.521	22.761	23.741	23.741 25.767	35.122	23.741	25.767	35.122

Fonte: Resultados do modelo

Quantidade dos elementos aos diversos preços considerados para os anos de 70/71 , 74/75 e 76/77 (em toneladas). Grandes propriedades TABELA 15 -

Anos N P_2O_5 K $2O_5$ N P_2O_5 N P_2O_5 N P_2O_5 N P_2O_5 N P_2O_5 N P_2O_5 K $2O_5$ N P_2O_5 K $2O_5$ N P_2O_5 N		Pr	Preço Normal	ıa1	Pr	Preço + 40%	%(Pr	Preço + 80%	2(Pr	Preço + 100%	200
21.156 23.018 30.429 19.536 21.398 27.189 19.536 21.398 27.189 23.218 25.371 34.841 20.575 18.834 24.483 20.575 18.834 24.483 29.373 32.386 46.632 29.373 32.386 46.632	no s	Z	P ₂ 05	κ_2^0	ž.	P ₂ 0 ₅	K ₂ 0		P ₂ 0 ₅			P ₂ 0 ₅	K ₂ 0
23.218 25.371 34.841 20.575 18.834 24.483 20.575 18.834 24.483 29.373 32.386 46.632 29.373 32.386 46.632	0/71	21.156	23.018	30.429		21.398	27.189	19.536	21.398	27.189	19.536	21.398	27.189
29.373 32.386 46.632 29.373 32.386 46.632 29.373 32.386 46.632	4/75	23.218	25.371		20.575	18.834	24.483	20.575	18.834	24.483	20.575	18.834	24.483
	11/9	29.373	32.386	46.632	29.373	32.386	46.632	29.373	32.386	46.632	26,359	29.372	40.605

... continuação

	Pre	.eço + 300%	20	Pr	Preço - 60%	%	Pr	Preço - 90%	8
Anos	N	P ₂ 0 ₅	K ₂ 0	×	P ₂ 0 ₅	K ₂ 0	Z	P ₂ 0 ₅	K ₂ 0
17/07	15.965	15.014	15.014 18.564	21.123	21.123 23.047 30.522	30.522	21.123	21.123 23.047 30.552	30,552
74/75	19.328	17.770	17.770 19.725	25.285	25.285 29.222 40.793	40.793	25.285	29.222	40.793
76/17	23.319	21.752	21.752 24.488	29.373	29.373 32.326 46.632	46.632	29.373	32.386 46.632	46.632

Fonte: Resultados do modelo.

Preços em cruzeiros do nitrogênio, fósforo e potássio agregados, ponderados pelas quantidades (em toneladas). Pequenas propriedades TABELA 16 -

Anos	Preço normal ponderado	Quantidade total de NPK ao pre ço normal	Preco + 40% ponderado	Quantidade total de NPK ao pre ço + 40%	Preço + 80% ponderado	Quantidade total de NPK ao pre ço + 80%	Preço + 100% ponderado	Quantidade total de NPK ao pre ço + 100%
10/11	276,48	7.571	387,05	7.359	79, 267	7.359	552.93	7,359
74/75	1.370,82	8.722	1,924,48	7.713	2,474,34	7.713	2,749,26	7.713
76/77	1,039,48	11.136	1,454,90	11.053	1.870,59	11.053	2.081,34	10.207
And the second desiration of the second desira								Continue

... continua

Anos	Preço + 300% ponderado	Quantidade total de NPK ao pre ço + 300%	Preço - 60% ponderado	Quantidade total de NPK ao pre ço - 60%	Preço - 90% ponderado	Quantidade total de NPK ao pre ço - 90%
17/0/	1,105,33	6.789	110,59	7.571	27,65	7.571
24/75	5.563,46	5.279	546,55	9.292	137,64	9.292
71/91	4.177,31	8.550	415,79	11.136	103,95	11.136

Fonte: Resultados do modelo

Preços em cruzeiros do nitrogênio, fósforo e potássio agregados, ponderados Médias propriedades (em toneladas). pelas quantidades TABELA 17 -

Anos	Preço normal ponderado	Quantidade total de NPK ao pre ço normal	Preço + 40% ponderado	Quantidade total de NPK ao pre ço + 40%	Preço + 80% ponderado	Quantidade total de NPK ao pre ço + 80%	Preço + 100% ponderado	Quantidade total de NPK ao pre ço + 100%
70/71	276,48	43,487	386,73	37.580	497,03	33,601	552,37	32.634
74/75	1,368,08	67.956	1.913,73	56.915	2,472,69	56.915	2.747,47	56.915
. 76/77	1.037,15	84.628	1,452,02	84.628	1.866,66	84.423	2.076,87	77,375
enacione dell'internacionale dell'internaciona								continua

... continuação

	Preço + 300% ponderado	Quantidade total de NPK ao pre ço + 300%	Preço - 60% ponderado	Quantidade total de NPK ao pre ço - 60%	Preço - 90% ponderado	Quantidade total de NPK ao pre ço - 90%
	1.104,74	32.634	110,63	51.400	27,67	52.129
5	5.568,07	40.404	545,57	73.380	136,39	73.380
76/77	4.172,88	60.855	414,86	84.628	103,71	84.628

Fonte: Resultados do modelo

Preços em cruzeiros do nitrogênio, fósforo e potássio agregados, ponderados Grandes propriedades pelas quantidades (em toneladas). TABELA 18 -

Anos	Preço normal ponderado	Quantidade total de NPK ao pre ço normal	Preço + 40% ponderado	Quantidade total de NPK ao pre ço + 40%	Preço + 80% ponderado	Quantidade total de NPK ao pre ço + 80%	Preço + 100% ponderado	Quantidade total de NPK ao pre ço + 100%
70/71	276,58	74.603	387,15	68.123	91,167	68.123	553,06	68,123
74/75	1.357,78	83.430	1.916,19	63.892	2,463,67	63,892	2,737,37	63.892
76/77	1.034,57	108,391	1.448,40	108.391	1.862,23	108,391	2.072,37	96.336
	entre en	and the Artist of the Artist o		in ques summeron montre medio estructual de marco de constante de la constante de la Constante de la Constante	And the second s		Contain in a College of the Artist Annual Annua	

... continuação

Anos	Preço + 300% ponderado	Quantidade total de NPK ao pre ço + 300%	Preço - 60% ponderado	Quantidade total de NPK ao pre ço - 60%	Preço - 90% ponderado	Quantidade total de NPK ao pre ço - 90%
70/71	1.104,59	49.543	110,63	74.692	27,66	74.692
74/75	5.532,75	56.823	542,93	95.300	135,73	95,300
76/77	5.163,20	73.559	413,83	108.391	103,46	108,391

Fonte: Resultados do modelo

4.4 - Cálculo dos Coeficientes de Elasticidade-preço da Demanda

A partir dos resultados das Tabelas 16 , 17 e 18 , foram calculados os coeficientes de elasticidade-preço por NPK , por estrato de \hat{a} rea e para os anos de 70/71 , 74/75 e 76/77. Para o calculo foi utilizada a seguinte equação:

$$LnQ_{NPK} = Lna + bLnP_{NPK}$$

onde:

LnQ_{NPK} = logaritmo da quantidade de NPK ;

Lna = logaritmo da constante da regressão;

b = coeficiente da regressão, que é igual a elas ticidade-preço da demanda por NPK.

Os resultados obtidos estão sumarizados na Tabela 19, a seguir:

TABELA 19 - Coeficientes de elasticidade-preço da demanda a cur to prazo por NPK, para os anos 70/71, 74/75 e 76/77, por estrato de area

R	Coeficientes	de elasticidade-	preço da demanda
Estrato de área	70/71	74/75	76/77
Pequenas pro- priedades	- 0,023	- 0,125	- 0,049
Médias propri <u>e</u> dades	- 0 _a ,154_	- 0,142	- 0,059
Grandes pro- priedades	- 0,082	- 0,157	- 0,071

Fonte: Calculo a partir dos resultados do modelo.

4.5 - Análise dos Resultados

Como pode-se notar, de uma maneira geral os coeficientes são bastante inelásticos, a curto prazo, isto é, os agricultores respondem pouco às variações de preços. Além disso, existem algumas diferenças, embora pequenas, entre os estratos de área e os anos analisados. Deve-se ressaltar aqui, o caráter arbitrário dо procedimento usado na obtenção dessas elasticidades. Conforme indicado no item 4.2, as elasticidades-preço das demandas foram guais a zero quando as alternativas de substituição entre terra e fertilizantes eram restritas, como foi o caso do modelo básico. As únicas oportunidades eram as correspondentes, quase que unica mente, às possibilidades de substituição entre culturas mais ou me nos usadoras de fertilizantes. Um certo número de alternativas foi introduzido na matriz básica, e os coeficientes de elasticidade passaram a ser diferentes de zero. Como o número destas alter nativas foi arbitrário, não se pode fugir ao "corolário" de que a um número ainda maior de alternativas (que pode refletir a possibi lidade real de substituição à disposição dos agricultores) riam corresponder valores absolutos maiores para as elasticidadespreço das demandas.

Quanto às diferenças entre os estratos, pode-se notar uma pequena tendência no sentido dos menores estratos de área res ponderem menos aos preços. Alguns fatores podem ser responsabilizados por essa tendência, dentre os quais, se pode citar o fato de
que nas pequenas propriedades torna-se menor a possibilidade de
substituição de terra por fertilizantes, considerando-se que o pe-

queno agricultor não arrenda terra dos grandes proprietários.

Os baixos valores encontrados para as elasticidades-preco das demandas a curto prazo podem ser explicados pelas seguintes razões: (a) como foi visto no capítulo anterior, a DIRA de Campinas possui a maior parte de suas terras dentro de uma faixa média a baixa fertilidade. O uso da adubação pode tornar-se um fa tor limitante juntamente com outras práticas agrícolas, para que o agricultor consiga produtividades compensadoras ; (b) devido sua privilegiada localização entre outros fatores, as terras d a DIRA possuem um valor real alto. Dessa maneira, torna-se necessário que delas se retire as mais altas produtividades físicas para que as atividades agropecuárias sejam compensadoras em relação ao custo de oportunidade do capital. Levando-se esse fato em conside ração, não se pode dispensar a utilização dos fatores que contri buam para um substancial aumento de produtividade ; (c) finalmen te, como indicado no capítulo 3, a DIRA de Campinas é fartamente servida por uma eficiente rede de assistência técnica ao agricul tor, representada pela CATI (Coordenadoria de Assistência Técnica Integral), da Secretaria da Agricultura do Estado de São Paulo. Assim, o índice de adoção de técnicas modernas por parte dos agricultores têm sido alto nos últimos anos e, uma vez adotada determi nada técnica moderna, é pouco provável a sua "desadoção". Esta relativa irreversibilidade pode ser vista mais facilmente de acordo com a teoria dualista de PAIVA (1971), com o auxílio de alguns gráficos desenvolvidos por CONTADOR (1974).

Suponha a existência de apenas duas tecnologias; uma tradicional e uma moderna. Suponha ainda, que existe competição nos mercados de fatores e produtos, e que existe vantagem econômica da tecnologia moderna sobre a tradicional. Graficamente esta vantagem pode ser representada pela Figura 3, onde:

P = preço do produto;

 S_{π} = curva de oferta do produtor tradicional;

 S_{M} = curva de oferta do produtor moderno;

 Q_{T} = quantidade produzida pelo produtor tradicional;

 Q_{M} = quantidade produzida pelo produtor moderno.

A receita total obtida pelo produtor tradicional $\tilde{\mathbf{e}}$ representada pela $\tilde{\mathbf{a}}$ rea OP CQT .

A receita total para o produtor moderno é representada pela área $\operatorname{OP_ODQ_M}$. Os custos totais para os produtores tradicional e moderno são representados respectivamente pelas áreas $\operatorname{OBCQ_T}$ e $\operatorname{OADQ_M}$. As receitas líquidas ou excedentes dos produtores tradicional e moderno são representadas pelas áreas $\operatorname{BP_OC}$ e $\operatorname{AP_OD}$, respectivamente. A vantagem econômica da técnica moderna sobre a tradicional (VETMT) será representada pela diferença das áreas $\operatorname{AP_OD}$ e $\operatorname{BP_OC}$, isto é,

$$VETMT = AP_OD - BP_OC.$$

A cada preço P, tem-se um valor para a VETMT e consequentemente existirá uma nova proporção na quantidade de produtos oferecidos pelos agricultores tradicionais e modernos. Pode-se representar essa proporção pela linha LL, indicada na Figura 4.

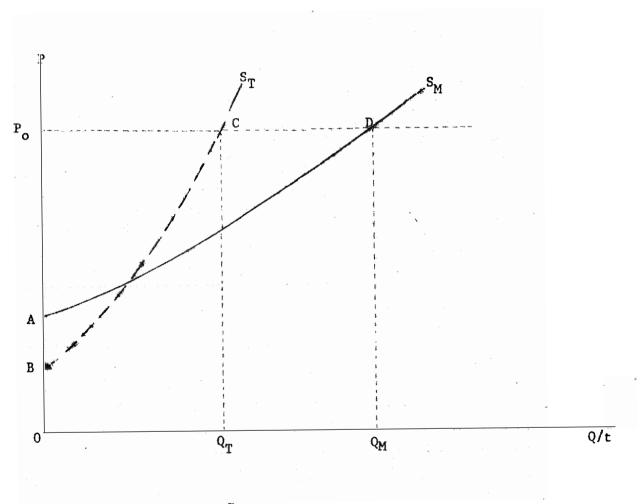


Fig. 3 - Representação das curvas de oferta das tecnologias moderna e tradicional

FONTE: CONTADOR (1974) - Dualismo Tecnológico na Agricultura - Novos Comentários

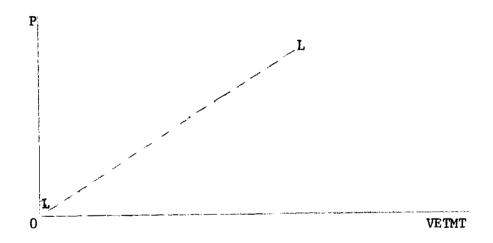


Fig. 4 - Proporção da oferta dos agricultores modernos e tradicionais a cada preço alte<u>r</u> nativo

FONTE: CONTADOR (1974) - Dualismo Tecnológico na Agricultura - Novos Comentários

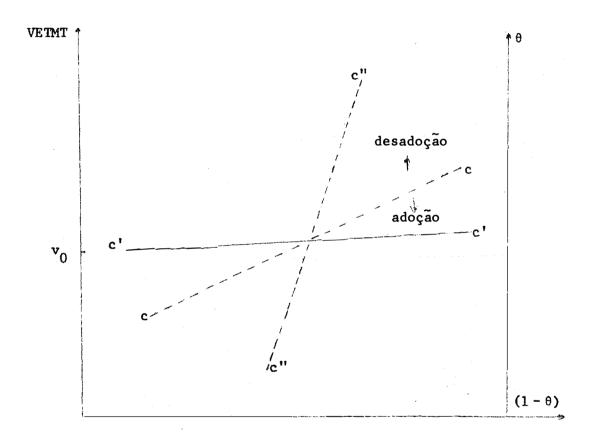


Fig. 5 - Proporção de produtores em relação a adoção ou desadoção das tecnolog**ias** modernas ou tradicionais

FONTE: CONTADOR (1974) - Dualismo Tecnológicona Agricultura - Novos Comentários.

Chama-se agora de θ a proporção de produtores que adotam a tecnologia tradiconal e de $1-\theta$ a proporção de produtores que utilizam a tecnologia moderna. Desenvolve-se a Figura 5.

A curva co representa a mudança na proporção de agricultores tradicionais que adotam a tecnologia moderna. Essa curva representa a situação a curto prazo, uma vez que a situação desejada a longo prazo é atingir a linha c'c' onde praticamente todos os agricultores teriam adotado a tecnologia moderna. Pode-se ver que se a curva co desloca-se para a direita, o processo é de adoção, mas se o movimento é para a esquerda em direção à c"c" existe o processo de desadoção, ocorrendo com maior dificuldade mesmo que a VETMT se torne negativa.

Unindo agora as três figuras, pode-se visualizar a dificuldade da volta à tecnologia tradicional mesmo havendo desvanta gem na relação de preços.

Para analisar a união dos três gráficos, suponha que ao preço P_o existam $(1-\theta_o)$ agricultores produzindo com a tecnologia moderna. Suponha agora um aumento no preço de P_o para P_1 , aumentando com isso a VETMT. A quantidade de agricultores que estarão dispostos a deslocar-se da curva co para c'c' é representa da pela distância $(1-\theta_o)$ a $(1-\theta_1)$. Suponha agora uma queda de preços de P_o para P_2 na mesma proporção. Havendo uma queda na VETMT, a quantidade de agricultores que estarão dispostos a se deslocarem da curva co para c'c' (processo de desadoção) é representada pela distância $(1-\theta_o)$ a $(1-\theta_2)$, quantidade claramente mener que a correspondente à disposição de adotar a nova tecnologia.

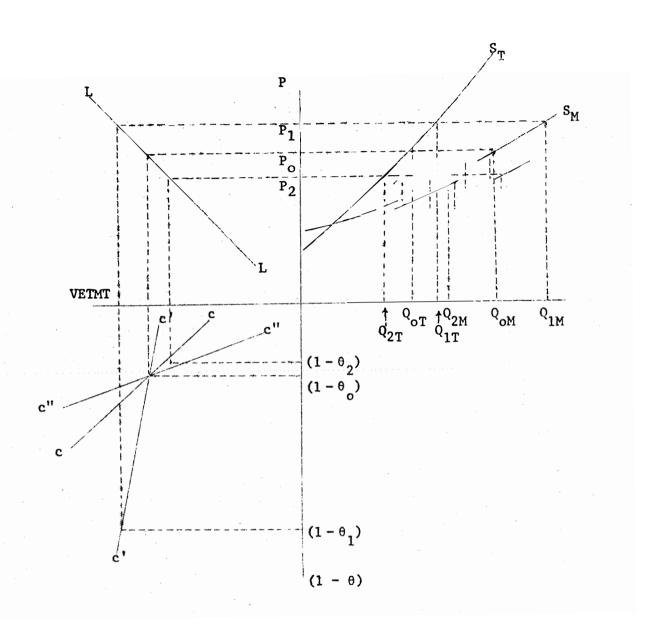


Fig. 6 - Indicação da proporção de adoção ou desadoção com a variação da relação de preços

FONTE: CONTADOR (1974) - Dualismo Tecnológi co na Agricultura - Novos Comentários Portanto, de acordo com este modelo dualista, uma vez adotada determinada tecnologia, o processo é relativamente irreversível, o que explica parcialmente as inelasticidades-preço das demandas encontradas.

5 - CÁLCULO DAS ELASTICIDADES DA DEMANDA POR NITROGÊNIO, FÓSFO-FO E POTÁSSIO, SEPARADAMENTE, ANO AGRÍCOLA 74/75

Este capítulo trata da desagragação dos elementos e variação nos preços de cada elemento separadamente, mantendo os preços dos outros constantes. Esse procedimento permite verificar se existem diferenças entre as elasticidades-preço da demanda para os três elementos. Apresentam-se os resultados obtidos, discutindo - se seus valores e analisando-se o comportamento quanto as diferenças nas elasticidades entre os estratos de áreas e os elementos. Finalmente são apresentadas as elasticidades cruzadas.

5.1 - <u>Demanda por Nitrogênio, Fósforo e Potássio, Considera-</u> dos Separadamente, para o Ano Agrícola de 1974/75

Utilizando os dados da matriz modificada, procedeu-se no caso desagregado, da mesma maneira que a utilizada nos cálculos agregados. Para isso, variaram-se os preços de cada elemento separadamente, mantendo-se constantes os preços dos outros. As magnitudes das variações nos preços foram as mesmas utilizadas para o cálculo das elasticidades no agregado (NPK), apenas excluindo-se a variação - 60%.

O objetivo principal do cálculo das elasticidades da demanda dos elementos foi verificar se havia diferença na resposta dos agricultores às variações de preços do nitrogênio, fósforo e potas sio, considerados separadamente.

Apresenta-se nas Figuras 7, 8 e 9 as curvas de demanda estimadas para o fósforo. As estimativas das curvas de demanda <u>pa</u> ra o nitrogênio e potássio encontram-se no apêndice 1 (Figuras 10, 11, 12, 13, 14 e 15).

Como pode ser notado, a demanda observada possui inclina ção bem acentuada quando o preço varia de P_N a P+40%, o que indica um coeficiente de elasticidade-preço da demanda mais elástico, se estimado nesse intervalo. Para variações acima de 40%, a curva torna-se menos inclinada, e a preços abaixo do normal é praticamente uma reta vertical. Isso sugere que os valores absolutos das elasticidades-preços das demandas, se estimados a cada intervalo, possuirão valores diferentes.

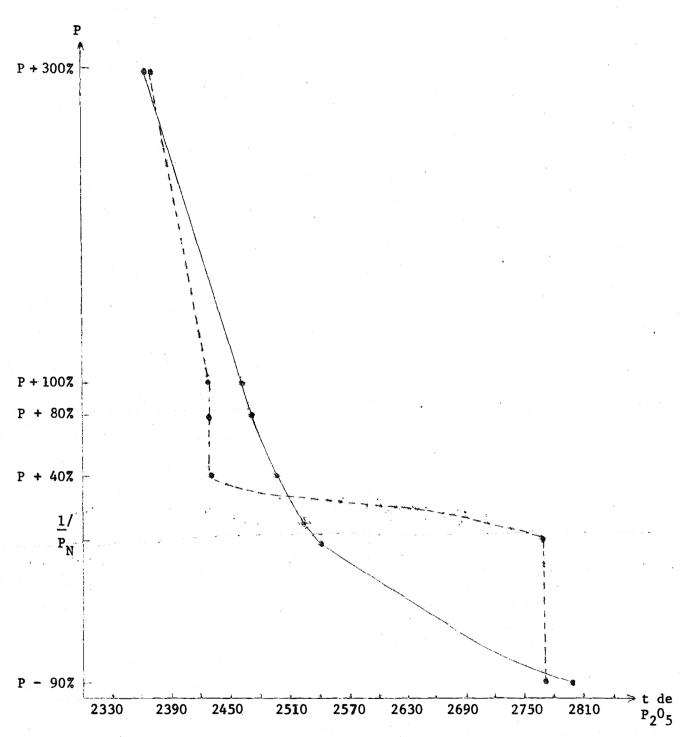


Fig. 7 - Demanda derivada de P₂0₅ para pequenas propriedades

A linha seccionada representa os valores observados e a linha cheia a demanda estimada

Escala da ordenada: 1:300 Escala da abcissa: 1:30

1/ Preço normal

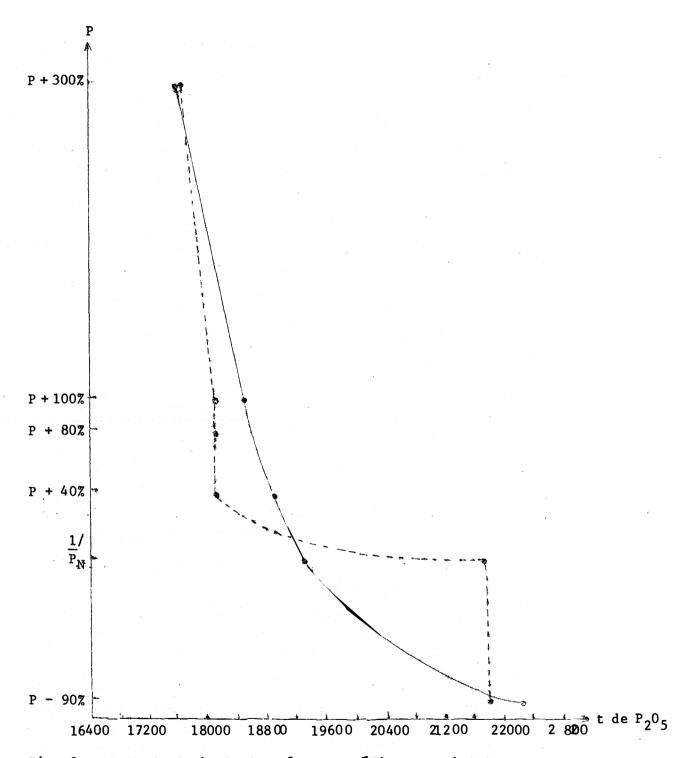


Fig. 8 - Demanda derivada de P₂0₅ para médias propriedades.

A linha seccionada representa os valores observados e a linha cheia a demanda estimada

Escala da ordenada: 1:300 1/ Preço normal Escala da abcissa: 1:400

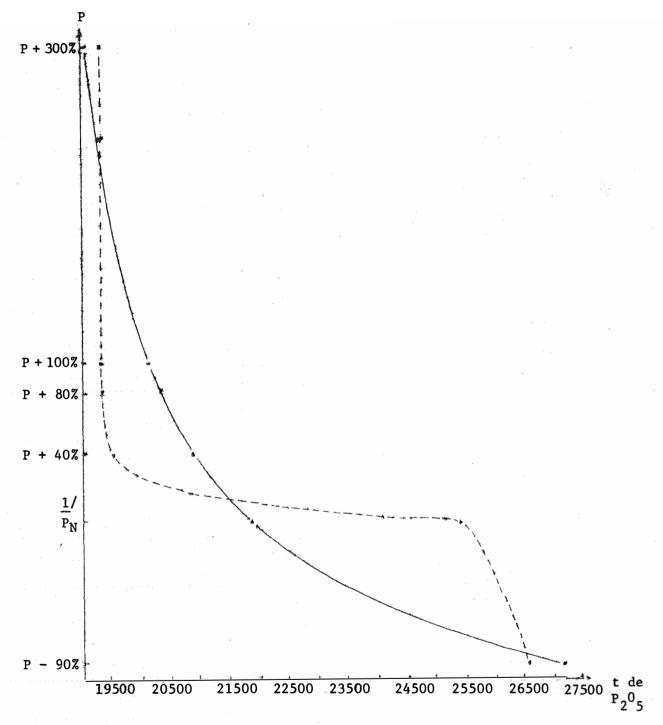


Fig. 9 - Demanda derivada de P₂0₅ para grandes propriedades

A linha seccionada representa os valores dobservados e a linha cheia a demanda estimada

Escala da ordenada: 1:300 Escala da abcissa: 1:500

1/ Preço normal

A demanda estimada (linha cheia) pelos mínimos quadra - dos, corresponde a equação do tipo Q = a B^b, que apresenta elas ticidade constante ao longo de toda curva. Esta equação foi "for çada" com a finalidade de comparação dos resultados com os trabalhos anteriormente citados. A estimativa dos valores para essas elasticidades encontram-se na Tabela 20. (Os preços e quantida - des utilizados para o cálculo das elasticidades apresentadas na Tabela 20 encontram-se no apêndice 1).

TABELA 20 - Elasticidades-preço das demandas por nitrogênio, fósforo e potássio, considerados separadamente, para o ano agrícola de 1974/75

Estratos de área	Nitrogênio	Fosforo	Potássio
Pequenas propriedades	- 0,018	- 0,045	- 0,061
Médias propriedades	- 0,026	- 0,062	- 0,080
Grandes propriedades	- 0,043	- 0,098	- 0,112

Fonte: Resultados do modelo.

Percebe-se claramente algumas tendências entre os resultados correspondentes aos diferentes tamanhos de propriedades e entre os elementos. Quanto ao tamanho das propriedades, tanto agregada, como separadamente há uma tendência dos pequenos agricultores, de reagirem menos às variações dos preços de fertilizantes.

Da mesma forma que a sugerida no capítulo anterior, esse fato pode ser atribuído à maior possibilidade de substituição de terra por

fertilizantes acessível aos grandes proprietários.

Quanto às diferenças no valor das elasticidades entre os elementos, pode-se notar que a maior resposta às variações de preços é obtida pelo potássio nos três estratos de área, seguido pelo fósforo e pelo nitrogênio, em ordem decrescente. Esse valor valor da elasticidade do nitrogênio parece indicar que os agricultores consideram a necessidade de fertilizar com elementos cujas respostas são imediatamente visíveis no desenvolvimento vegetativo da cultura. Sabe-se que um suprimento adequado de nitrogênio é condição indispensável à boa aparência da planta na fase de crescimento. Entre o fósforo e o potássio, as diferenças entre as elasticidades são bem menores, ainda assim, o fósforo é o elemento que responde menos ainda que o potássio as variações de preços, considerando os três estratos de área.

Pode-se afirmar que, de maneira geral, no período de um ano agrícola, as variações na quantidade comprada de fertilizantes resultantes das variações nos preços dos mesmos, no caso da DIRA de Campinas, não são importantes. Suponha que o governo tivesse dado o subsídio de 40% a partir de janeiro de 1974. Aplicando as elasticidades nas quantidades adquiridas de fertilizantes dadas pelo modelo naquele ano, pode-se avaliar qual seria o aumento de consumo do insumo considerado, por tamanho de propriedade, devido ao subsídio.

Pode-se notar na Tabela 21 que o acréscimo no consumo de fertilizantes na DIRA, devido a um subsídio, caso o mesmo tivesse sido concedido no início de 1974, não teria sido grande. Para um

Acréscimo no consumo de fertilizantes, caso o subsídio de 40% tivesse sido dado a partir de janeiro de 1974. DIRA de Campinas (em toneladas) å TABELA 21

Pequenas 2.520 18 2.767 propriedades 18.816 196 21.685 propriedades 23.218 399 25.371	fired de d	Quantida- Acrescimo de de ni- na quanti trogênio dade de \overline{N} ao preço devido ao normal subsídio	Quantida- de de fós foro ao preço normal	Acrescimo na quanti dade de \overline{P} devido ao subsidio	Quantida- de de po- tássio ao preço normal	Acrescimo na quanti dade de K devido ao subsídio	Total de acréscimo de NPK	Total de NPK con- sumido ao preço normal
dades 18.816 196 dades 23.218 399			2.767	50	3.435	84	152	8.722
dades 23.218 399			21.685	538	27.455	878	1.612	67.956
			25.371	766	34.841	1.561	2.946	83,430
Total 44.554 613 49.823	44.55		49.823	1,582	65.731	2.523	4.718	160.108

Fonte: Resultados do modelo

total de 160.108 toneladas de NPK, o acréscimo teria sido de 4.718 toneladas, representado um aumento de consumo da ordem de 2,95%. Nota-se ainda que os maiores aumentos de consumo ocorrem nos grupos dos grandes proprietários, sugerindo que a política de subsídio os favorece, de uma maneira absoluta. Resta saber se os acréscimos em kg/ha cultivados, de nitrogênio, fósforo e potássio, possuem a mesma tendência de aumento de consumo proporcional ao tamanho da propriedade. Para verificar esse fato, construiu-se a Tabela 22 que dá os acréscimos de nitrogênio, fósforo e potássio por hectare e por tamanho de propriedade, e o total de NPK, devido ao subsídio.

Pela simples inspeção da Tabela 22, pode-se inferir que o subsídio na região estudada favorece as maiores propriedades. Os baixos valores absolutos das elasticidades também sugerem que para certas regiões, o subsídio não tem o efeito esperado pelo go verno, pois o nível de utilização de fertilizantes não varia muito com as variações nos preços.

Para esta análise utilizaram-se os preços de 1974 , mas pode-se extrapolar os mesmos resultados para o ano de 1975 , quando realmente vigorou um subsídio de 40%

Acréscimo em kg/ha devido ao subsídio de 40%. DIRA de Campinas Ano 74/75 TABELA 22 --

Estrato de area	Consumo ao preço normal (N)	Acréscimo de N	Consumo ao preço normal (P)	Acréscimo de P	Consumo ao preço normal (K)	Acréscimo de K	Quantida- de de NPK ao preço normal	Total do acréscimo
Pequenas propriedades	00,69	0,50	76,00	1,35	94,00	2,30	239,00	4,15
Médias propriedades	58,50	0,61	67,50	1,67	85,00	2,73	211,00	5,01
Grandes propriedades	61,00	1,00	00*89	2,62	92,00	4,10	221,00	7,72

Fonte: Resultados do modelo

5.2 - <u>Câlculo das Elasticidades Cruzadas e Análise dos</u> Resultados

Calcularam-se também as elasticidades cruzadas entre os elementos para se verificar qual a influência da variação do preço de um elemento na quantidade adquirida do outro. Os resultados estão na Tabela 23 (o cálculo dessas elasticidades foram baseados nos dados do apêndice 1).

TABELA 23 - Elasticidades cruzadas de nitrogênio, fósforo e potássio. DIRA de Campinas. Ano 1974/75

Estratos de área	P _N Q _P	P _N Q _K	P _P Q _N	$^{P}P^{Q}K$	P _K Q _N	P _K Q _P (*)
Pequenas propriedades	- 0,045	- 0,061	- 0,018	- 0,061	- 0,018	- 0,045
Médias propriedades	- 0,062	- 0,080	- 0,026	- 0,080	- 0,026	- 0,062
Grandes propriedades	- 0,098	- 0,112	- 0,043	- 0,112	- 0,043	- 0,098

Fonte: Resultados do modelo

(*) P_N = preço do nitrogênio Q_N = quantidade de nitrogênio P_P = preço do fosforo P_R = preço do potássio P_R = quantidade de potássio

Nota-se facilmente que a influência do preço de um elemento na quantidade do outro, tem intensidade exatamente igual à influência do preço do próprio elemento, cuja quantidade foi consi derada. Assim, se o preço do nitrogênio variasse de 10%, a varia ção na quantidade adquirida de fósforo ou potássio seria a mesma, caso o preço do próprio fósforo ou potássio variasse de 10%. Os valores das elasticidades-preço da demanda cruzada, praticamente não diferem das elasticidades dos próprios elementos. Uma possí - vel explicação está no fato dos agricultores, em sua grande maioria, utilizarem adubos "formulados", portanto uma proporção fixa de nitrogênio, fósforo e potássio.

Os agricultores da região possuem bom nível tecnológico, como já foi comentado no capítulo 3 , portanto mesmo que uma minoria não utilize fórmulas preparadas, estão acostumados a adubar suas culturas com proporções constantes de NPK , e sabem que o uso do elemento isolado, não produz a resposta esperada e nem é recomendado tecnicamente. Somente o nitrogênio é colocado em doses parceladas, devido a sua alta solubilidade e fácil lixiviação.

5.3 - Conclusão

Verificou-se nesse capítulo, que as elasticidades da procura, quando calculadas para os elementos isoladamente, são mais in nelásticas que no agregado, resultado aliás já esperado. Notaram -se pequenas diferenças entre as elasticidades, sendo o nitrogênio o elemento que menos responde as variações de preços, seguido pelo fósforo e finalmente o potássio. As diferenças entre os tamanhos de propriedades possuem as mesmas tendências das elasticidades para os elementos agregados, explicadas no capítulo 4.

Os resultados indicaram que os efeitos de políticas de subsídios, tendem a beneficiar os médios e grandes proprietários que são os que mais respondem com aumentos de consumo de fertilizantes às diminuições nos preços. Além disso, foi mostrado que na região em estudo, de maneira geral, o subsídio de 40% não aumentaria o consumo de maneira significativa, caso fosse dado no início de 1974. Essa conclusão é válida para os anos seguintes, isto é, na DIRA de Campinas o subsídio dado a partir de janeiro de 1975 não deve ter aumentado significativamente o consumo de fertilizantes.

Finalmente, concluiu-se a partir do calculo das elasticidades cruzadas, que existe relação entre a variação no preço de
um elemento com a quantidade do outro.

6 - RESULTADOS E DISCUSSÕES FINAIS

Neste capítulo, discutem-se os resultados obtidos na pes quisa, explica-se o motivo da utilização do modelo de programação linear e procura-se discutir alguns aspectos políticos sobre fertilizantes, além de se sugerir novas pesquisas a respeito do tema deste trabalho.

6.1 - <u>O Modelo Utilizado e suas Limitações</u>

Nesta pesquisa, o modelo de programação linear dinâmica recursiva, é utilizado de maneira a se levar em consideração o naior número possível de variáveis que possam influenciar na intensidade do uso de fertilizantes, na região estudada. O modelo permitiu o agrupamento das propriedades em estratos de área, além de

eliminar algumas limitações dos estudos econométricos tradicionais.

No entanto, o modelo escolhido paaa o desenvolvimento desta pesquisa possui limitações, como por exemplo, o fato de se considerar a utilização de uma proporção fixa de NPK/ha. Số as custas do uso de dados experimentais, os quais não necessariamente guardam estreita relação com as condições atuais de plantio, foi possível reduzir, em parte esta limitação. Além disso, apesar de se considerar mais de um nível de adubação nas principais culturas, o agricultor não tem a opção da não utilização de fertilizantes, por imposição do modelo. Deu-se ênfase apenas ãs consequências das variações de preços a curto prazo.

Sugere-se, no decorrer do trabalho, que os pequenos proprietários não podem substituir terra por fertilizantes. Essa su gestão deve ser considerada com reservas, uma vez que o modelo não permitiu arrendamento de terra.

6.2 - Discussão dos Resultados

De acordo com resultados da pesquisa, o consumo de fertilizantes na região estudada não sofreu variações significativas durante os últimos anos, pois o nível de fertilização utilizado pelos agricultores jã era em 1970, bem próximo do atual. De acordo com resultado do modelo o consumo estimado de NPK/ha na DIRA de Campinas, ultrapassa a média do Estado de São Paulo, situando-se ao nível de 144,7 kg de NPK/ha cultivado. Esse consu-

mo está na seguinte proporção: 45,7:50,4:48,6, ou seja, 1,00:1,01:1,06 de nitrogênio, fósforo e potássio respectivamente.

Os valores das elasticidades-preço da demanda por NPK, a curto prazo indicam altas inelasticidades, o que sugere pouca influência das variações nos preços na quantidade procurada. Entretanto, existem diferenças nos valores das elasticidades entre os estratos de área, sugerindo que os agricultores possuidores de maiores áreas (grandes proprietários), têm a opção da relativa substituibilidade de terra por fertilizantes. As elasticidades para as grandes propriedades possuem valor absoluto maior que para as médias e pequenas, isto é, são menos inelásticas.

O mesmo fenômeno ocorreu quando se calcularam as elasticidades-preço das demandas por nitrogênio, fósforo e potássio separadamente. Os pequenos proprietários continuaram a responder menos às variações nas quantidades devido as variações nos preços, do que os médios e grandes proprietários. Os valores das elasticidades para nitrogênio, fósforo e potássio, calculados separadamente, foram menores que os valores para NPK no agregado. A desagregação tornou os valores mais inelásticos, sendo o nitrogênio o elemento cuja elasticidade apresentou o menor valor, seguido pelo fósforo e finalmente pelo potássio.

As estimativas das elasticidades-preço da demanda por fer tilizantes, para a DIRA de Campinas, possuem valores absolutos bas tante baixos, a curto prazo. Esse fato pode estar relacionado com a baixa fertilidade de grande parte das terras da região, tornando o uso de fertilizantes, fator limitante para obtenção de produtivi

dades físicas compensadoras. Além disso, a região é bem servida por uma rede de assistência técnica ao agricultor, tendo tornado alto o nível de adoção de novas técnicas nos últimos anos, e uma vez adotada uma técnica como a de adubação, é muito difícil que o agricultor a abandone.

O modelo permitiu ainda o cálculo das elasticidades cruzadas, que mostraram existir interdependência entre o preço de um elemento e a quantidade do outro. Isso pode encontrar explicação no fato dos agricultores se utilizarem de adubos "formulados", cu jos elementos guardam entre si uma proporção fixa, e quando há uma variação de preço em apenas um elemento, essa variação é transmitida para a "fórmula", variando consequentemente seu preço.

6.3 - Discussão dos Aspectos Políticos

O setor governamental interfere bastante no mercado de insumos e produtos agrícolas, visando maior produção e produtividade. Geralmente essa interferência tem sido caracterizada por preços mínimos a determinados produtos, concessão de crédito a juros baixos e subsídios aos insumos.

Com relação às políticas de subsídios aos fertilizantes, pode-se deduzir através da análise dos resultados, que o subsídio de 40% dado aos fertilizantes a partir de 1975, não deve ter influenciado muito o consumo de fertilizantes na região estudada.

Isso sugere que as políticas de subsídios devem atingir diferen - cialmente as diversas regiões do Estado, o mesmo devendo aconte-

cer em relação ao país. Portanto, algumas regiões são mais carentes de subsídio que outras, dependendo dos valores das elasticida - des da demanda pelo insumo subsidiado.

Por extensão dos resultados, pode-se notar também que uma política de subsídios favorece os grandes e médios proprietários, havendo uma distribuição de renda em direção a eles. Dessa maneira, desde que o governo conheça as respostas regionais a determinadas políticas de subsídios aos insumos, poderia tentar fornecer subsídios apenas às regiões mais carentes e que melhor respondessem com aumentos de produção e produtividade. Essa medida poderia minorar os custos do subsídio. No entanto, deve-se estudar cuidadosamente os custos fiscais de tais políticas, para que não incorra em custos maiores quando comparada com políticas de subsídios homogêneas.

Admitindo-se a existência de economia de escala na indústria de fertilizantes, adquire importância vital o conhecimento das respostas dos agricultores quanto à utilização desse insu-mo, se o governo brasileiro quiser buscar a auto suficiência. Uma vez conhecidas as elasticidades-preço das demandas, por regiões, o governo poderia promover maior consumo de fertilizantes através de políticas adequadas. Deve-se no entanto, realizar estudos pormenorizados a respeito da forma de se manter ou aumentar o consumo de fertilizantes, uma vez que a concessão de subsídios pode causar distorções e criar oportunidades para desvios na alocação dos recursos públicos.

6.4 - Sugestões para Novas Pesquisas

É de grande interesse o conhecimento das elasticidadespreço da demanda por regiões, pois diferem às vezes significativa
mente de outras regiões do mesmo Estado, cuja agricultura possui
características diferentes. Sugere-se a elaboração de pesquisas
sobre demanda por fertilizantes em outras regiões do Estado de São
Paulo e do Brasil.

No presente trabalho não se considerou a competição entre os estratos de área. Esse é um vasto campo para futuras pesquisas, levando-se em consideração a possibilidade de determinado grupo de propriedades arrendar terras do outro, alugar máqui nas, animais, mão-de-obra, etc.

Como sugere o trabalho, existe tendência de concentra - ção na distribuição da renda proveniente dos subsídios a fertilizantes em direção aos médios e grandes proprietários. Uma pesquisa a nível Estadual, por estratos de área, seria de grande valia para testar se essa tendência persiste a nível Estadual.

No decorrer desta pesquisa, foi difícil conseguir dados a respeito de elasticidades de produção de fertilizantes para as principais culturas da região estudada. Sugere-se que estudos se jam desenvolvidos, tanto agregada como regionalmente, sobre a resposta das principais culturas do Estado e do País, aos incremen tos na adubação.

7 - SUMMARY

The main object of this research is the estimation of the elasticity-price coeficients of the demands per fertilizers in the Divisão Regional Agrícola (DIRA) of Campinas. The work difers from previous one that boarded the same subject, by the utilized model called "Dinamics Recursive Linear Programation". The utilization of this model was chosen, thinking in the elimination of some common restrictions of the traditional econometry models. The recursive programation allowed, with certain facility, the division of the region properties into area strata, of which procedure opened up the estimation of the elasticity-price coeficients of the demands per groups of properties. Thus, it was possible the analysis of the differences in the elasticities among the area strata.

It was estimated elasticities to NPK jointly on short term, for the years 70/71, 74/75 and 76/77 and for the nitrogen, phosphorus and potassium also on short term, for the year 74/75, besides the calculus of the crossed elasticities.

The results of the jointly demand, showed that the agriculturists from the DIRA of Campinas in a general way, have little response to the variation in the fertilizers prices, that is, the elasticity-price coeficients of the demands showed small absolute values (high inelasticities). Besides this, it was noticed that the elasticities have smaller absolute values to the group of small properties, getting bigger to the medium and big ones. This suggests that the small agriculturists don't have facilities of the relative replacement of land per fertilizers.

For the demand considering the nutrients separately, the results were analogous on the area strata, but there are small differences among the elasticities of the elements, being the nitrogen the most inelastic, followed by the phosphorus and finally potassium.

The crossed elasticities showed to exist a strong correlation between the price variation of a nutrient and the acquired quantity of the other, fact that can have as responsible, the generalized utilization by the agriculturists of the "formulated" fertilizations.

8 - BIBLIOGRAFIA

- ANJOS, N. M. e NORONHA, J. F. 1974. Análise dos Mercados Internacional e Brasileiro de Fertilizantes. Agricultura em São Pau 10. Ano XXII-Tomo I e II. p. 341 a 360.
- BARKER, R. e HAYAMI, Y. 1976. Price Support versus Input Subsidy for Food Self-Sufficiency en Developing Countries. American Journal of Agriculture Economics. Novembro, Vol. 58, no parte I, p. 617 a 627.
- BILAS, R. A. 1972. <u>Teoria Microeconômica: Uma Análise Gráfica.</u> 2. ed. Rio de Janeiro, Editora Forense Universitária. 404 p.
- CIBANTOS, J. S. 1972. Demanda de Fertilizantes no Estado de São Paulo. Piracicaba, ESALQ/USP, 196 p. (Tese de Doutoramento).
- CONTADOR, C. 4. 1974. Dualismo Tecnológico na Agricultura: Novos Comentários. Pesquisa e Planejamento Econômico, Fev. vol. 4, nº 1. p. 119 a 138.

- DAY, R. H. 1963. Recursive Programming and Production Response.

 Amsterdam, North-Holland Publishing Company. 226 p.
- ENGLER, J. J. C. 1978. Análise da Produtividade Agrícola entre Regiões do Estado de São Paulo. Piracicaba, ESALQ/USP. 132 p. (Tese de Livre Docência).
- GEMENTE, A. C., 1978. Um Modelo de Programação Recursiva Aplica do na Divisão Regional Agrícola de Campinas, Estado de São Pau lo: 1970/71 a 1976/77. Piracicaba, ESALQ/USP. (Dissertação de Mestrado, ainda não publicada).
- GRILICHES, Z. 1958. The Demand for Fertilizer: An Economic Interpretation of a Techinical Change. <u>Journal of Farm Economics</u>. Vol. 40 I, p. 591 a 606.
- GRILICHES, Z. 1959. Distributed Lags, Disaggregation, and Regional Demand Functions for Fertilizer. <u>Journal of Farm Economics</u>. Vol. 41 I, p. 90 a 102.
- GODOY, O. P. et alii, 1972. Plantas Extrativas. Departamento de Agricultura e Horticultura, ESALQ/USP. p. 12 a 42.
- GRANER, E. A. et alii, 1972. Plantas Alimenticias. Departamento de Agricultura e Horticultura, ESALQ/USP. p. 31 a 78.
- HAYAMI, Y., 1964. Damand for Fertilizer in the Course of Japane-se Agricultural Development. <u>Journal of Farm Economics</u>, Vol. 46 11, p. 766 a 779.
- HEADY, E. O. e YEH, H. M. 1959. National and Regional Demand Functions for Fertilizer. <u>Journal of Farm Economics</u>. Vol. 41 I, p. 332 a 348.

- HEIDHUES, T. 1966. A Recursive Programming Model of Farm Growth in Northern Germany. <u>Journal of Farm Economics</u>. Agosto, Vol. 48 II 2, p. 668 a 684.
- HENDERSON, J. M. e QUANDT, R. E. 1976. <u>Teoria Microeconômica</u>.

 2. ed., São Paulo, Livraria Pioneira Editora. 417 p.
- HSU, R. C. 1972. The Demand for Fertilizer in a Developing Country: The Case of Taiwan. Economic Development and Cultural Change. Vol. 20, no 2. p. 229 a 306.
- MELO, F. B. H. 1975. A Utilização de Fertilizantes e a Moderniza ção da Agricultura Paulista. Agricultura em São Paulo. Ano XXII Tomo I e II. p. 341 a 360.
- NETO, A. S. e PENNA, J. A. 1978. O Processo de Mudança Tecnológica na Agricultura Paulista. Revista de Economia Rural. Jan/março, Vol. 16 nº 1. p. 70 a 88.
- PAIVA, R. M. 1971. Modernização e Dualismo Tecnológico na Agricultura. <u>Pesquisa e Planejamento Econômico.</u> Dezembro, Vol. 1 nº 2, p. 171 a 234.
- PAIVA, R. M. et alii, 1973. O Setor Agricola do Brasil. 2ª ed. Rio de Janeiro, Editora Forense Universitária. 480 p.
- PESCARIN, R. M. C. 1974. Relações Estruturais da Demanda de Fertilizantes no Estado de São Paulo. Piracicaba, ESALQ/USP. 123 p. (Dissertação de Mestrado).
- SÃO PAULO, Secretaria da Agricultura. Instituto Agronômico de Campinas, 1972. <u>Curso Intensivo</u> de <u>Cafeicultura</u>. ESALQ/USP/MA.

- SÃO PAULO, Secretaria da Agricultura. Coordenadoria de Assistência Técnica Integral, 1968. <u>Plano Regional de Assistência Téc</u>
 nica à Agricultura. Divisão Regional Agrícola de Campinas.
 Vol. I, 226 p.
- SÃO PAULO, Secretaria da Agricultura. Instituto de Economia Agrícultura paulista. 319 p.
- SOUZA, W. V. 1973. A Procura de Fertilizantes no Brasil. Viçosa, UFV/MG. 66 p. (Dissertação de Mestrado).

APÊNDICE 1 -

Tabelas com as quantidades e preços para $c\bar{a}lc\underline{u}$ lo das elasticidades desagregadas e curvas de demanda estimadas.

TABELA 24 - Quantidades aos diferentes preços para o cálculo do coeficien te de elasticidade-preço da demanda por nitrogênio. Estrato pequeno. Ano 74/75

Variação	Preços	Quantidades	Ln do Preço	Ln da Quantidade
0%	1.428,33	2,520	7,26426	7,83201
+ 40%	1,999,66	2.397	7,60073	7,78197
+ 80%	2.570,99	2.381	7,85205	7,77528
+ 100%	2.856,66	2.381	7,95741	7,77528
+ 300%	5.713,32	2.381	8,65055	7,77528
- 90%	142,83	2.520	4,96166	7,83201

TABELA 25 - Quantidades aos diferentes preços para o cálculo do coeficien te de elasticidade-preço da demanda por nitrogênio. Estrato médio. Ano 74/75

Variação ,	Preços	Quantidades	Ln do Preço	Ln da Quantidade
+ 0%	1,428,33	18,816	7,26426	9,84246
+ 40%	1.999,66	17.451	7,60073	9,76715
+ 80%	2.570,99	17.299	7,85205	9,7584
+ 100%	2.856,66	17.299	7,95741	9,7584
+ 300%	5.713,32	17,299	8,65055	9,7584
- 90%	142,83	18.806	4,96116	9,84193

TABELA 26 - Quantidades aos diferentes preços para o cálculo do coeficien te de elasticidade-preço da demanda por nitrogênio. Estrato grande. Ano 74/75

Variação	Preços	Quantidades	Ln do Preço	Ln da Quantidade
0%	1.428,33	23.218	7,26426	10,0527
+ 40%	1.999,66	23.173	7,60073	10,0507
+ 80%	2.570,99	19.922	7,85205	9,89958
+ 100%	2.856,66	19.922	7,95741	9,89958
+ 300%	5.713,32	19.920	8,65055	9,89948
- 90%	142,83	23.173	4,96166	10,0507

TABELA 27 - Quantidades aos diferentes preços para o cálculo do coeficien te de elasticiade-preço da demanda por fósforo. Estrato pequeno. Ano 74/75

Variação	Preços	Quantidades	Ln do Preço	Ln da Quantidade
0%	1.622,47	2.767	7,39170	7,92552
+ 40%	2.271,46	2.428	7,72818	7,79482
+ 80%	2.920,45	2.428	7,97949	7,79482
+ 100%	3.244,94	2.428	8,08485	7,79482
+ 300%	6.489,88	2.367	8,77800	7,76938
- 90%	162,25	2.767	5,08914	7,92552

TABELA 28 - Quantidades aos diferentes preços para o cálculo do coeficiente de elasticidade-preço da demanda por fósforo. Estrato médio. Ano 74/75

Variação	Preços	Quantidades	Ln do Preço	Ln da Quantidade
0%	1.622,47	21.685	7,39170	9,98438
+ 40%	2.271,46	18.091	7,72818	9,80317
+ 80%	2.920,45	18.091	7,97949	9,80317
+ 100%	3.244,94	18.091	8,08485	9,80317
+ 300%	6.489,88	17.636	8,77800	9,77770
- 90%	162,25	21.785	5,08914	9,98898

TABELA 29 - Quantidades aos diferentes preços para o cálculo do coeficiente de elasticidade-preço da demanda por fósforo. Estrato grande. Ano 74/75

Variação	Preços	Quantidades	Ln do Preço	Ln da Quantidade
0%	1.622,47	25.371	7,39170	10,14140
+ 40%	2.271,46	19.581	7,72818	9,88231
+ 80%	2.920,45	19.356	7,97494	9,87076
+ 100%	3,244,94	19.356	8,08485	9,87076
+ 300%	6.489,88	19.356	8,77800	9,87076
- 90%	162,25	26.540	5,08914	10,18640

TABELA 30 - Quantidades aos diferentes preços para o cálculo do coeficiente de elasticidade-preço da demanda por potássio. Estrato pequeno. Ano 74/75

Variação '	Preços	Quantidades	Ln do Preço	Ln da Quantidade
1	1	•	9	1
0%	1.123,39	3.435	7,02411	8,14177
+ 40%	1.572,75	2.904	7,36058	7,97384
+ 80%	2.022,10	2.904	7,61189	7,97384
+ 100%	2.246,78	2.904	7,71725	7,97384
+ 300%	4.493,56	2.822	8,41040	7,94520
- 90%	112,34	3.483	4,72153	8,15565

TABELA 31 - Quantidades aos diferentes preços para o cálculo do coeficiente de elasticidade-preço da demanda por potássio. Estrato médio. Ano 74/75

Variação	Preços	Quantidades	Ln do Preço	Ln da Quantidade
0%	1.123,39	27.455	7,02411	10,22030
+ 40%	1.572,75	21.702	7,36058	9,98516
+ 80%	2.022,10	21.702	7,61189	9,98516
+ 100%	2.246,78	21.702	7,71725	9,98516
+ 300%	4.493,56	20.944	8,41040	9,94961
- 90%	112,34	27.505	4,72153	10,22210

TABELA 32 - Quantidades aos diferentes preços para o cálculo do coeficiente de elasticidade-preço da demanda por **potássio**. Estrato grande. Ano 74/75

Variação	Preços	Quantidades	Ln do Preço	Ln do Quantidade
0%	1.123,39	34.841	7,02411	10,45860
+ 40%	1.572,75	25.076	7,36058	10,12970
+ 80%	2.022,10	24.795	7,61189	10,11840
+ 100%	2.246,78	24.795	7,71725	10,11840
+ 300%	4.493,56	24.234	8,41040	10,09550
- 90%	112,34	35.076	4,72153	10,46530

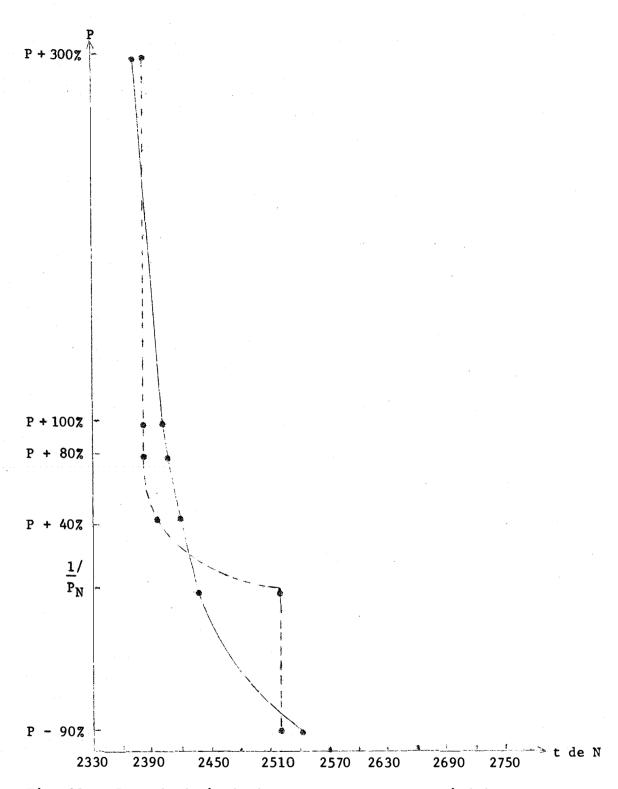


Fig. 10 - Demanda derivada de N para pequenas propriedades

A linha seccionada representa os valores observados e a linha cheia a demanda estimada

Escala da ordenada: 1:250

Escala da abcissa: 1:30

1/ Preço normal

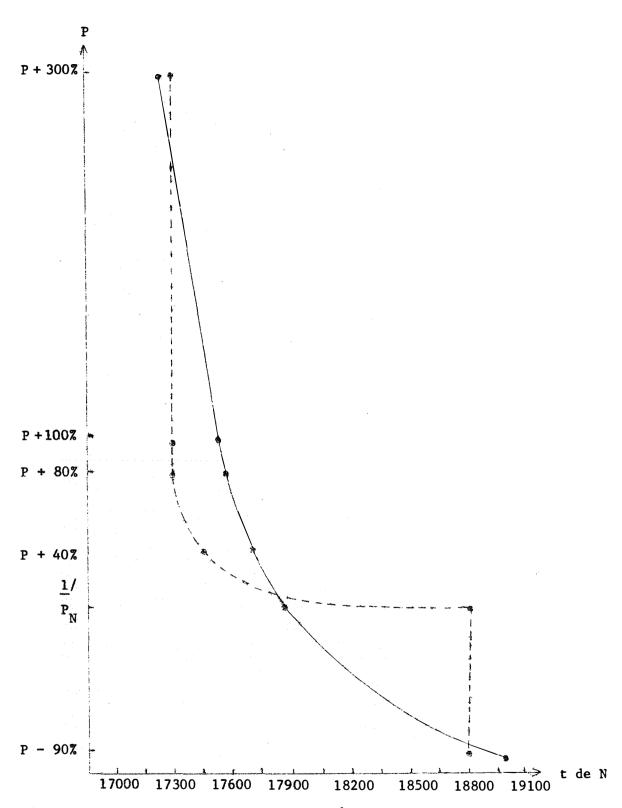


Fig. 11 - Demanda derivada do N para médias propriedades.

A linha seccionada representa os valores observados e a linha cheia a demanda estimada.

Escala da ordenada: 1:250

Escala da abcissa: 1:15

1/ Preço normal

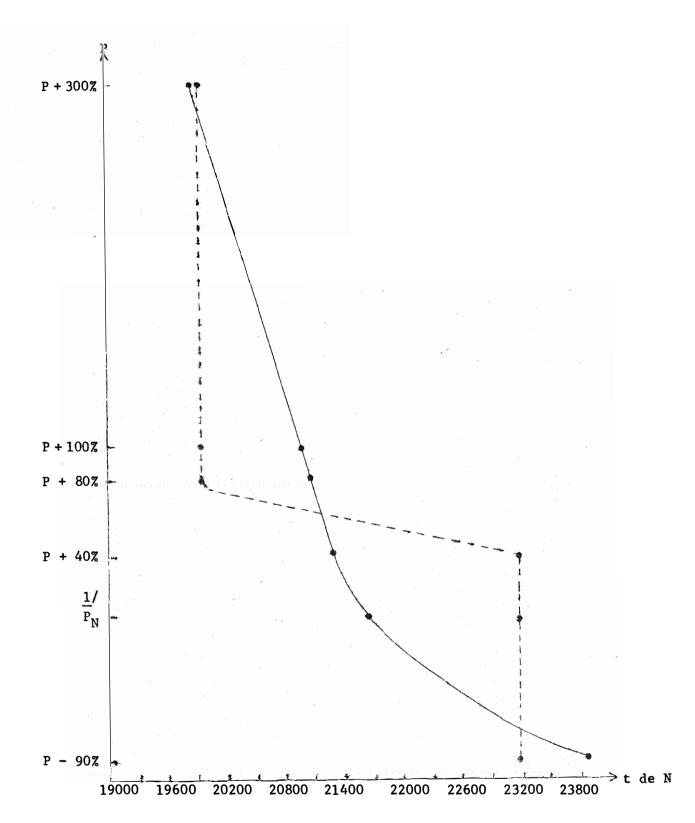


Fig. 12 - Demanda derivada de N para grandes propriedades.

A linha seccionada representa os valores observados e a linha cheia a demanda estimada.

Escala da ordenada 1:250 1/ Preço normal Escala da abcissa: 1:300

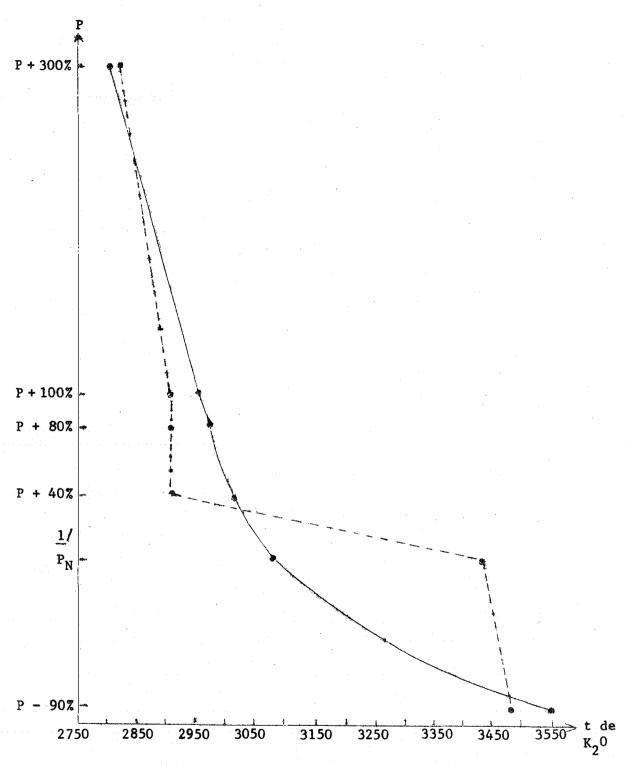


Fig. 13 - Demanda derivada de K₂⁰ para pequenas propriedades

A linha seccionada representa os valores observados e a linha cheia a demanda estimada

Escala da ordenada: 1:200 Escala da abcissa: 1:50

1/ Preço normal

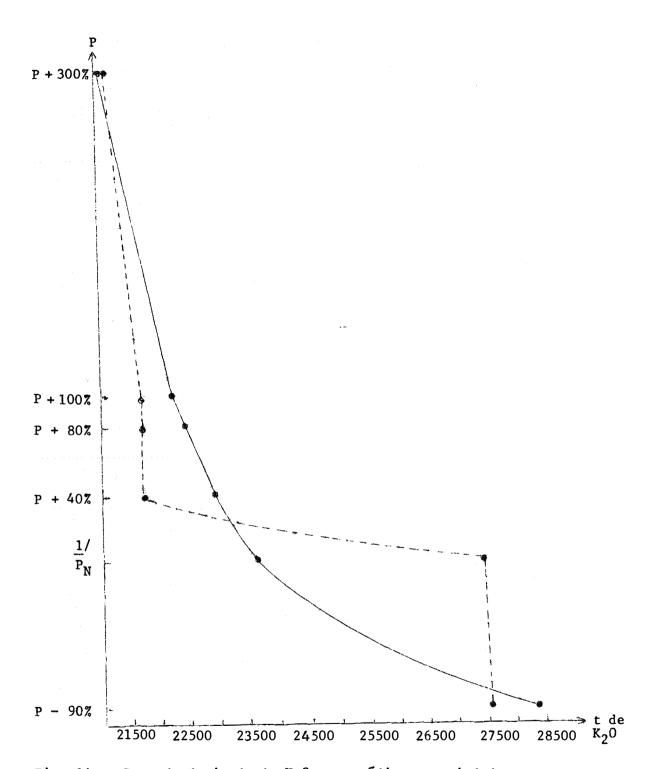


Fig. 14 - Demanda derivada de K₂O para médias propriedades

A linha seccionada representa os valores observados e a linha cheia a demanda estimada

Escala da ordenada: 1:200 Escala da abcissa: 1:500

1/ Preço normal

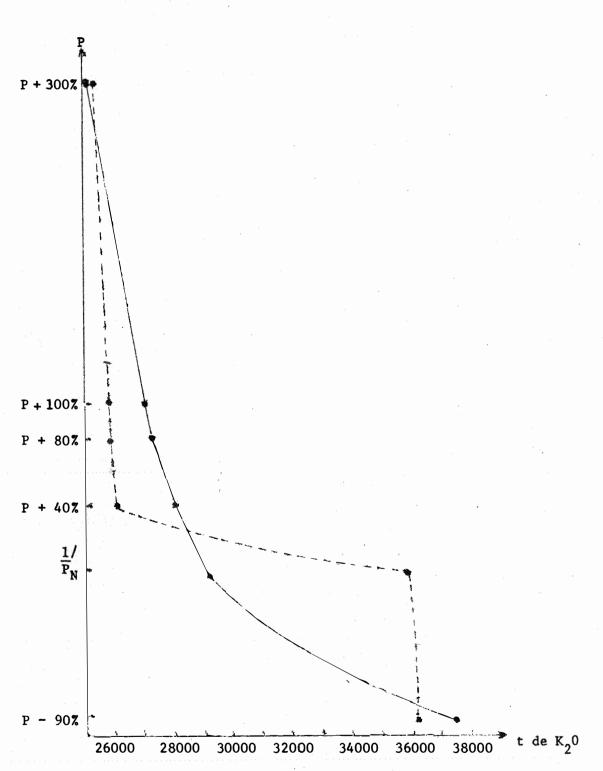


Fig. 15 - Demanda derivada de K₂⁰ para grandes propriedades

A linha seccionada representa os valores observados e a linha cheia a demanda estimada

Escala da ordenada: 1:200 Escala da abcissa: 1:1000

1/ Preço normal

APENDICE 2 -

Descrição das atividades constantes na matriz, seus códigos e significados.

DEFINIÇÃO DOS CÓDIGOS DAS LINHAS (RESTRIÇÕES)

- TERRAl Area total de terra destinada às culturas anuais.
- TERRA2 Area total de terra destinada às culturas perenes.
- TERRA3 Área total de terra destinada às pastagens natural e artificial.
- MO1FAM Total de mão-de-obra familiar disponível para o 19 período.
- MO2FAM Total de mão-de-obra familiar disponível para o 2º período.
- MO3FAM Total de mão-de-obra familiar disponível para o 39 período.
- MORSFM Disponibilidade de mão-de-obra residente não familiar.
- MO1CON Limite de mão-de-obra que pode ser contratada no 19 período.
- MO2CON Limite de mão-de-obra que pode ser contratada no 29 período.
- MO3CON Limite de mão-de-obra que pode ser contratada no 39 período.
- NITRON Exigência do elemento nitrogênio por hectare e por cultura, em toneladas.
- FOSFOR Exigência do elemento fósforo por hectare e por cultura, em toneladas.

- POTASS Exigência do elemento potássio por hectare e por cultura, em toneladas.
- CORRET Exigência de calcário por hectare e por cultura, em toneladas.
- MNSMOD Exigência de insumos modernos por hectare e por cultura (exclusive fertilizantes e calcário) em cruzeiros.
- TRT1 Exigência de uso de trator no 1º período em termos de dias-máquinas por cultura por hectare.
- TRT2 Exigência de uso de trator no 2º período em termos de dias-máquinas por cultura e por hectare.
- TRT3 Exigência de uso de trator no 3º período em termos de dias-máquinas por cultura e por hectare.
- CLH Exigência de colhedeira em dias-maquina por hectare (somente para cultura da soja).
- MANTI Exigência do uso de animal de trabalho para o 1º período em termos de dias de trabalho por hectare e por cultura.
- MANT2 Exigência do uso de animal de trabalho para o 2º período em termos de dias de trabalho por hectare e por cultura.
- MANT3 Exigência do uso de animal de trabalho para o 3º período em termos de dias de trabalho por hectare e por cultura.
- LMSPANTI Limite superior de animais para utilização no 19 período.

LMSPANT2 - Limite superior de animais para utilização no 2º período.

LMSPANT3 - Limite superior de animais para utilização no 3º período.

TFFJ - Mecanismo de tranferência de feijão.

TFARROZ - Mecanismo de transferência de arroz.

TFMLH - Mecanismo de transferência de milho.

TFCFPRD - Mecanismo de ligação com a atividade café em produção.

TFCFlAN - Mecanismo de ligação com a atividade café 1º ano.

TFCF2AN - Mecanismo de ligação com a atividade café 2º ano.

TFCF3AN - Mecanismo de ligação com a atividade café 3º ano.

TFCF - Transferência de café.

TFLRPRD - Mecanismo de ligação com a atividade laranja em prod \underline{u} ção.

TFLR2AN - Mecanismo de ligação com a atividade laranja 29 ano.

TFLR3AN - Mecanismo de ligação com a atividade laranja 39 ano.

TFLR4AN - Mecanismo de ligação com a atividade laranja 49 ano.

TFLR - Transferência de laranja.

TFLEITB - Transferência de leite B.

TFLEITC - Transferência de leite C .

TFPASTO - Transferência da capacidade de suporte de animais por hectare de pasto para a atividade pecuária.

TFCRINV - Transferência de crédito para investimentos.

MORESI - Disponibilidade de mão-de-obra residente para utiliza ção no 1º período em termos de homens-dias.

MORES2 - Disponibilidade de mão-de-obra residente para utiliza ção no 29 período em termos de homens-dias.

MORES3 - Disponibilidade de mão-de-obra residente para utiliza ção no 3º período em termos de homens-dias.

COPK - Limite para o emprego do custo de oportunidade do capital.

CX - Caixa.

LMSPTRT - Limite superior para investimento em tratores.

LMCRINV - Limite de crédito destinado a investimentos.

LMCRUS - Limite de crédito destinado a custeio.

DEFINIÇÃO DOS CÓDIGOS DAS COLUNAS

- MALG1 Cultura do algodão, utilizando-se tecnologia motomeca nizada e animal.
- MALG2 Algodão motomecanizado.
- BATAG1 Cultura da batata das águas motomecanizada e animal.
- BATAG2 Cultura da batata das aguas motomecanizada.
- BATSC Cultura da batata das secas motomecanizada.
- SOJA Cultura da soja motomecanizada.
- TOMATE Cultura do tomate envarado.
- FJAG1 Cultura do feijão das aguas com tração animal.
- FJAG2 Cultura do feijão das águas tração motomecanizada e animal.
- FJSC1 Cultura do feijão das secas animal.
- FJSC2 Cultura do feijão das secas motomecanizada e animal.
- FJVND Venda de feijão.
- FJCPR Compra de feijão.
- FJCNS Consumo de feijão nas propriedades.
- MLH1 Cultura do milho tração moto-animal.

MLH2 - Cultura do milho tração mecanizada.

MLHVND - Venda de milho.

MLHCPR - Compra de milho.

MARROZ - Cultura do arroz.

MARRVND - Venda do arroz,

MARRCPR - Compra de arroz.

MARRONS - Consumo de arroz na propriedade.

CANA - Cultura da cana.

CAFPRD - Café em produção.

CAFIAN - Café de um ano.

CAF2AN - Café de dois anos.

CAF3AN - Café de três anos.

CAFINV - Investimento em novos cafezais.

CAFVND - Venda de café.

LARPRD - Laranja em produção.

LARIAN - Laranja com 1 ano ou investimento em laranja.

LAR2AN - Laranja com 2 anos.

LAR3AN - Laranja com 3 anos.

LAR4AN - Laranja com 4 anos.

LARVND - Venda de laranja.

PASNAT - Pasto natural.

PASART - Pasto artificial.

PECCT - Pecuária de corte.

PECLB - Pecuaria de leite B.

PECLC - Pecuaria de leite C .

LBVND - Venda de leite B .

LCVND - Venda de leite C ,

LCCNS - Consumo de leite C na propriedade.

SUINB - Suinocultura tipo banha.

SUINC - Suinocultura tipo carne.

TFANT1 - Transferência de animal de trabalho no período 1.

TFANT2 - Transferência de animal de trabalho no período 2.

TFANT3 - Transferência de animal de trabalho no período 3.

MORESP - Compra de mão-de-obra residente.

MO1CONP - Contratação de mão-de-obra para o 1º período.

M02CONP - Contratação de mão-de-obra para o 2º período.

MO3CONP - Contratação de mão-de-obra para o 3º período.

MO1FAMP - Venda de mão-de-obra no 1º período.

MO2FAMP - Venda de mão-de-obra no 2º período.

MO3FAMP - Venda de mão-de-obra no 3º período.

CREDCT - Crédito para custeio.

NITRONP - Compra de nitrogênio com capital próprio.

NITRONCR - Crédito para compra de nitrogênio.

FOSFORP - Compra de fósforo com capital próprio.

FOSFORCR - Crédito para compra de fósforo.

POTASSP - Compra de potássio com capital próprio.

POTASSCR - Crédito para compra de potássio.

CORRETP - Compra de corretivo.

MINSMDP - Compra de insumos modernos com capital próprio.

MINSMDCR - Crédito para compra de insumos modernos.

CUSOPK - Custo de oportunidade do capital.

TFTR1TR2 - Transferência de terra 1 para terra 2.

TFTR2TR3 - Transferência de terra 2 para terra 3.

MINVTRT - Investimento em tratores.

MINVCLH - Investimento em colhedeiras.

CREDINV ~ Crédito para investimento.

APÊNDICE 3 -

Variaveis introduzidas na matriz original.

VARIÁVEIS INTRODUZIDAS NAS COLUNAS

- MLH₃ Cultura do milho com a mesma tecnologia em relação ao MLH₂, porém com maior produtividade devido ao uso mais intensivo de fertilizantes.
- \mbox{MLH}_4 Cultura do milho com a mesma tecnologia do \mbox{MLH}_2 , porém com maior produtividade do que o \mbox{MLH}_3 , devido ao uso mais intensivo de fertilizantes.
- CFPRD₁ Cultura do café com a mesma tecnologia em relação ao CFPRD, porém com maior produtividade devido ao uso mais intensivo de fertilizantes.
- CFPRD₂ Cultura do café com a mesma tecnologia do CFPRD, porém com maior produtividade em relação ao CFPRD₁, devido ao uso mais intensivo de fertilizantes.
- LARPRD Cultura da laranja, com a mesma tecnologia em relação ao LARPRD, porém com maior produtividade devido ao uso mais intensivo de fertilizantes.
- LARPRD₂ Cultura da laranja com maior produtividade que LARPRD₁
 devido ao uso mais intensivo de fertilizantes.
- LARPRD₃ Cultura da laranja com maior produtividade que LARPRD₂
 devido ao uso mais intensivo de fertilizantes.
- CANA₁ Cultura da cana, com a mesma tecnologia em relação a CANA, porém com maior produtividade devido ao uso mais intensivo de fertilizantes.

- ${\tt CANA}_2$ Cultura da cana mais produtiva que ${\tt CANA}_1$, devido ao maior uso de fertilizantes.
- ${\tt CANA_3}$ Cultura da cana mais produtiva que ${\tt CANA_2}$, devido ao maior uso de fertilizantes.
- MARROZ₁ Cultura do arroz com a mesma tecnologia em relação ao MARROZ, porém com menor produtividade devido ao uso menos intensivo de fertilizantes.
- MARROZ₂ Cultura do arroz com a mesma tecnologia em relação ao MARROZ₁, porém com maior produtividade devido ao uso mais intensivo de fertilizantes.
- MAND₁ Cultura da mandioca com a mesma tecnologia em relação a MAND, porém com maior produtividade devido ao uso mais intensivo de fertilizantes.
- ${\tt MAND}_2$ Cultura da mandioca mais produtiva que ${\tt MAND}_1$, devido ao maior uso de fertilizantes.
- MALG₃ Cultura do algodão com produtividade aumentada devido ao uso mais intensivo de fertilizantes.
- MALG₄ Cultura do algodão mais produtiva em relação a MALG₃, devido ao maior uso de fertilizantes.
- SOJA, Cultura da soja com a mesma tecnologia em relação a SOJA, porém com produtividade aumentada devido ao maior uso de fertilizantes.
- SOJA₂ Cultura da soja mais produtiva do que a SOJA₁ devido ao maior uso de fertilizantes.

VARIAVEIS INTRODUZIDAS NAS LINHAS

- MLHINCR Mecanismo de ligação com a cultura do milho, permitin do ao modelo optar entre os diversos níveis de adubação.
- CAFINCR Mecanismo de ligação com a cultura do café.
- LARINCR Mecanismo de ligação com a cultura da laranja.
- MAINCR Mecanismo de ligação com a cultura do arroz.
- MADINCR Mecanismo de ligação com a cultura da mandioca.
- MAGINCR Mecanismo de ligação com a cultura do algodão.
- CANINCR Mecanismo de ligação com a cultura do arroz.
- SOJINCR Mecanismo de ligação com a cultura da soja.

APENDICE 4 -

Ārea, numero de propriedades e areas médias das propriedades por sub-região e por município da DIRA de Campinas.

TABELA 33 - Superfícies das sub-regiões ou delegacias agrícolas antendidos pela rede de assistência técni ca. Sub-região I

Municípios	Área em ha	Número de propriedades	Āreas mēdias
Amparo	47.500	900	53
Campinas	79.000	2.490	32,
Indaiatuba	33.900	448	76
Jaguariuna	11.600	446	26
Lindõia	10.600	304	3 5
Monte Alegre do Sul	11.800	382	31
Monte Mor	23.400	642	36
Paulinia	14.100	457	31
Pedreira	11.000	125	88
Santo Antonio da Posse	14.700	347	4 2
Serra Negra	20.200	602	33
Socorro	44.600	2.600	17.
Sumarē	21.100	600	35
Valinhos	13.760	3.118	4 -
Vinhodo	8.200	410	20
Total	365.460	13.871	26

Fonte: Programa Regional de Assistência Técnica à Agricultura - Secretaria da Agricultura do Estado de São Paulo.

TABELA 34 - Superfícies das sub-regiões ou delegacias agrícolas atendidas pela rede de assistência técnica. Sub-região II

Municípios	Área em Ha	Número de propriedades	Āreas mēdias
Americana	10.200	210	48
Capivarí	25.300	562	45
Charqueada	17.900	464	38
Elias Fausto	20.763	464	45
Mombu c a	13.600	266	51
Nova Odessa	8.400	183	46
Piracicaba	142.780	2.500	57
Rafard	16.700	134	125
Rio das Pedras	22.600	470	48
Santa Barbara D'Oeste	27.000	417	65
Santa Maria da Serra	22.870	112	204
São Pedro	59.798	742	80
Total	387.911	6.524	59

Fonte: Programa Regional de Assistência Técnica à Agricultura Secretaria da Agricultura do Estado de São Paulo.

TABELA 35 - Superfícies das sub-regiões ou delegacias agrícolas atendidas pela rede de assistência técnica. Sub-região III

Municípios	Ärea em ha	Número de propriedades	Áreas médias
Analândia	33,698	190	177
Brotas	108.700	600	181
Cordeiropolis	14.641	360	41
Corumbatai	25.380	408	62
Ipeūna	17.000	225	75
Itirapina	52.000	1.300	40
Rio Claro	71.903	1.334	54
Santa Gertrudes	10.000	75	133
Torrinha	29.500	380	78
Total	362.822	4.872	74

Fonte: Programa de Assistência Técnica à Agricultura - Secretaria da Agricultura do Estado de São Paulo

TABELA 36 - Superfícies das sub-regiões ou delegacias agrícolas atendidas pela rede de assistência técnica. Sub-região IV

Municípios	Area em ha	Número de propriedades	Āreas mē dias
Araras	60.500	620	97
Arthur Nogueira	31.800	1.200	26
Conchal	21,200	653	32
Cosmopolis	17.800	430	41
Iracemápolis	10.442	113	9 2
Leme	40.200	753	53
Limeira	57.900	2.110	27
Pirassununga	72.700	922	79
Porto Ferreira	24.000	346	69
Santa Cruz da Conceição	15.000	248	60
Total	351.542	7.395	47

Fonte: Programa Regional de Assistência Técnica à Agricultura Secretaria da Agricultura do Estado de São Paulo

TABELA 37 - Superfícies das sub-regiões ou delegacias agrícolas atendidas pela rede de assistência técnica. Sub-região V

Municípios	Área em ha	Número de propriedades	Áreas médias
Aguaí	50.000	650	77
Águas da Prata	15.500	312	50
Itapira	52.000	1.300	40
Mogi Guaç ű	90.200	1.016	89
Mogi Mirim	48.400	1.055	46
Pinhal	39.400	552	71
Santo Antonio do Jardim	10.510	348	30
São João da Boa Vista	50.140	1.500	33
Vargem Grande do Sul	26.900	500	54
Total	383.050	7.233	53

Fonte: Programa Regional de Assistência Técnica à Agricultura Secretaria da Agricultura do Estado de São Paulo

TABELA 38 - Superfícies das sub-regiões ou delegacias agrícolas atendidas pela rede de assistência técnica. Sub-região VI

Municípios	Ārea em ha	Número de propriedades	Áreas médias
Caconde	39.551	1.106	36
Casa Branca	72.600	746	97
Divinolândia	24.600	1.139	21
Itabí	25.000	220	114
Mococa	84.360	730	115
Santa Cruz das Palmeiras	27.100	180	150
São José do Rio Pardo	42.942	1.043	41
São Sebastião da Grama	23.498	469	50
Tambaú	58.400	350	167
Tapiratiba	22.800	150	152
Total	420.851	6.133	69

Fonte: Plano Regional de Assistência Técnica à Agricultura Secretaria da Agricultura do Estado de São Paulo

> Levantamento global da área e propriedades atendidas pela rede de assistência técnica na região de Campinas

	Area em ha	Número de propriedade	Āreas mēdias	7
Total Geral	2.271.636	46.028	49	Ŷ