• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.11.2013.tde-07062013-150103
Documento
Autor
Nome completo
Antonio Carlos Ricardo Braga Junior
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2013
Orientador
Banca examinadora
Demetrio, Clarice Garcia Borges (Presidente)
Lobos, Cristian Marcelo Villegas
Andrade Filho, Mário de Castro
Cysneiros, Audrey Helen Mariz de Aquino
Silveira, Liciana Vaz de Arruda
Título em português
Distribuições das classes Kumaraswamy generalizada e exponenciada: propriedades e aplicações
Palavras-chave em português
Análise de sobrevivência
Distribuições (Probabilidade)
Máxima verossimilhança
Modelos de regressão
Resumo em português
Recentemente, Cordeiro e de Castro (2011) apresentaram uma classe generalizada baseada na distribuição Kumaraswamy (Kw-G). Essa classe de distribuições modela as formas de risco crescente, decrescente, unimodal e forma de U ou de banheira. Uma importante distribuição pertencente a essa classe é a distribuição Kumaraswamy Weibull modificada (KwMW) proposta por Cordeiro; Ortega e Silva (2013). Com isso foi utilizada essa distribuição para o desenvolvimento de algumas novas propriedades e análise bayesiana. Além disso, foi desenvolvida uma nova distribuição de probabilidade a partir da distribuição gama generalizada geométrica (GGG) que foi denominada de gama generalizada geométrica exponenciada (GGGE). Para a nova distribuição GGGE foram calculados os momentos, a função geradora de momentos, os desvios médios, a confiabilidade e as estatísticas de ordem. Desenvolveu-se o modelo de regressão log-gama generalizada geométrica exponenciada. Para a estimação dos parâmetros, foram utilizados os métodos de máxima verossimilhança e bayesiano e, finalmente, para ilustrar a aplicação da nova distribuição foi analisado um conjunto de dados reais.
Título em inglês
Distributions of the generalized Kumaraswamy and exponentiated classes: properties and applications
Palavras-chave em inglês
Distributions (Probability)
Maximum likelihood
Regression models
Survival analysis
Resumo em inglês
Recently, Cordeiro and de Castro (2011) showed a generalized class based on the Kumaraswamy distribution (Kw-G). This class of models has crescent risk forms, decrescent, unimodal and U or bathtub form. An important distribution belonging to this class the Kumaraswamy modified Weibull distribution (KwMW), proposed by Cordeiro; Ortega e Silva (2013). Thus this distribution was used to develop some new properties and bayesian analysis. Furthermore, we develop a new probability distribution from the generalized gamma geometric distribution (GGG) which it is called generalized gamma geometric exponentiated (GGGE) distribution. For the new distribution we calculate the moments, moment generating function, mean deviation, reliability and order statistics. We define a log-generalized gamma geometric exponentiated regression model. The methods used to estimate the model parameters are: maximum likelihood and bayesian. Finally, we illustrate the potentiality of the new distribution by means of an application to a real data set.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2013-07-04
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.