• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.11.2009.tde-14102009-084734
Documento
Autor
Nome completo
Michele Barbosa
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2009
Orientador
Banca examinadora
Lima, Cesar Goncalves de (Presidente)
Demetrio, Clarice Garcia Borges
Malheiros, Euclides Braga
Título em português
Uma abordagem para análise de dados com medidas repetidas utilizando modelos lineares mistos
Palavras-chave em português
Análise de dados longitudinais
Leite - Experimentos
Medidas repetidas
Modelos lineares
Software livre.
Resumo em português
No presente trabalho propôs-se uma abordagem simples visando à escolha de um modelo linear misto a ser ajustado a dados com medidas repetidas. A construção do modelo envolveu a escolha dos efeitos aleatórios, dos efeitos fixos e da estrutura de covariâncias utilizando técnicas gráficas e analíticas. O uso do Teste da Razão de Verossimilhança e dos Critérios de Informação de Akaike - AIC e de Schwarz - BIC pode levar a escolhas diferentes da estrutura de covariâncias, o que pode influenciar os resultados das inferências feitas sobre os parâmetros de efeitos fixos. A abordagem foi aplicada a conjuntos de dados resultantes de estudos agropecuários utilizando o software livre R. Foram feitas comparações dos resultados obtidos de modelos implementados com o proc mixed do SAS e com a função lme() do R, observando as vantagens e restrições destes dois softwares.
Título em inglês
One approach to analyzing data with repeated measures using linear mixed models
Palavras-chave em inglês
Analysis of longitudinal data
Free software.
Linear models
Milk-experiments
Repeated measures
Resumo em inglês
In this present work was proposed a simple approach to know how to choose a linear mixed model that can be adjustable to data with repeated measures. The construction of the model involved the choice of random effects, the fixed effects and covariance structure, using graphical and analytical techniques. The use of the Likelihood Ratio Test and the Akaike Information Criteria - AIC and Schwarz - BIC can lead to different choices of the structure of covariance, which may influence the results of inferences made about the parameters of fixed effects. The approach was applied to data sets that was resulted from farming studies using the software R. Comparisons of the results of models implemented were made with the proc mixed of SAS and with the function lme() of R, noting the advantages and limitations of these two softwares.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Michele_Barbosa.pdf (652.18 Kbytes)
Data de Publicação
2009-10-23
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.