• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.11.2014.tde-15092014-123217
Documento
Autor
Nome completo
Guilherme Biz
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2014
Orientador
Banca examinadora
Ozaki, Vitor Augusto (Presidente)
Cespedes, Juliana Garcia
Leandro, Roseli Aparecida
Pereira, Júlio César
Savian, Taciana Villela
Título em português
Simulações de pesos espaciais para o modelo STARMA e aplicações
Palavras-chave em português
Autorregressivo
Espaço-temporal
Médias móveis
Pesos espaciais
Previsões
Temperatura
Resumo em português
A modelagem de processos espaço-temporais é de suma importância para dados climatológicos, visto que o clima sofre influência temporal e espacial. A classe de modelos STARMA, autorregressivo e de médias móveis espaço-temporal, adequa-se a esses processos, porém, não há, na literatura, um estudo sobre o melhor método para quantificar a dependência espacial, e não é sabido se há uma diferença entre os métodos para esses modelos. Logo, neste trabalho, é realizado um estudo de simulações do modelo STAR, utilizando-se diferentes formas para obter os pesos espaciais. Após concluir as simulações é realizado o ajuste de um modelo STARIMA para um conjunto de dados de médias mensais de temperaturas mínimas diárias coletadas em uma mesorregião localizada no Oeste do Estado do Paraná. Este trabalho é separado em dois artigos e ambos são realizados utilizando-se o programa R. O primeiro é o estudo de simulações, chegando-se à conclusão de que o método para determinar a dependência espacial interfere no resultado da modelagem e depende da região em estudo. No segundo artigo, conclui-se que o inverso da distância é a melhor opção para a matriz de pesos e um modelo STARIMA sazonal tem o melhor ajuste para o conjunto de dados em questão.
Título em inglês
Simulations of spatial weights for STARMA model and applications
Palavras-chave em inglês
Autoregressive
forecast
moving average
spatial weights
spatio-temporal
temperature
Resumo em inglês
Process modeling spatio-temporal is of great importance for climatological data, once that the climate undergoes spatial and temporal influence. The class of models STARMA, autoregressive models and spatio-temporal moving averages, are suitable to the these processes, however, for these models, there is not a study about the best method to quantify the spatial dependence, and/or it is not known whether there is a difference between the methods for these models. In this thesis, a study simulations of the STAR model using different forms for the spatial weights is performed. After the simulation procedure, the STARIMA model is fitted to the real dataset of monthly mean daily minimum temperatures collected in a mesoregion located to the west of the state of Paraná. This thesis is separated into two papers and both are performed using the statistical software R. The first one is the simulation study that concludes that the method for determining the spatial dependence interferes with results of the modeling and depends on the region under study. In the second paper, it is concluded that the inverse distance is the best option for the weight matrix and a seasonal STARIMA model has the best fit for the data set.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2014-09-24
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.