Disertación de Maestría
DOI
https://doi.org/10.11606/D.11.2018.tde-20181127-161531
Documento
Autor
Nombre completo
Sandra Denisen do Rocio Marcelino
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
Piracicaba, 2000
Director
Título en portugués
Métodos de estimação de componentes de variância em modelos mistos desbalanceados
Palabras clave en portugués
COMPONENTES DE VARIÂNCIA
MODELOS MATEMÁTICOS
Resumen en portugués
O presente trabalho tem por objetivo descrever de forma simples e concisa alguns métodos utilizados para a obtenção das estimativas dos componentes de variância em modelos mistos desbalanceados. O presente trabalho tem por objetivo descrever, de forma simples e concisa, alguns métodos utilizados para a obtenção das estimativas dos componentes de variância em modelos mistos desbalanceados. Há muitos métodos disponíveis, cada qual levando, em geral a resultados diferentes, e escolher um deles pode não ser uma tarefa simples. Alguns métodos exigem álgebra extensa enquanto que outros necessitam de métodos iterativos para suas soluções. Neste estudo são apresentados nove métodos: Método da Análise de Variância (ANOVA); Métodos 1,11 e IU de Henderson; Métodos da Máxima Verossimilhança (ML) e da Máxima Verossimilhança Restrita (REMI), Método do Estimador Quadrático Não-viesado de Norma Mínima (MINQUE), Métodos do Estimador Quadrático Não-viesado de Variância Mínima(MIVQUE) e do MINQUE- Iterativo (I-MINQUE). Com o objetivo de ilustrar comparativamente, sem o apelo de competição, os nove métodos considerados, de modo a estar tão próximo quanto possível da realidade do pesquisador, usuário dos métodos de estimação, considera-se um conjunto de dados desbalanceados, adaptado de Searle et al.(1992), para o qual adota-se o modelo misto de dois fatores com interação. A ilustração é feita, então, em duas partes: na primeira as estimativas são obtidas tomando-se uma matriz de variâncias e covariâncias com estrutura do tipo VC, considerada default na grande maioria dos sistemas estatísticos disponíveis. Na segunda, para o mesmo conjunto de dados, exemplifica-se a utilização do PROC MIXED do sistema estatístico SAS na obtenção de estimativas através dos métodos ali disponíveis, considerando a ocorrência de diferentes matrizes de variâncias e covariâncias. Exceto através das propriedades dos estimadores, não se pode concluir sobre um melhor método de estimação, mesmo porque os verdadeiros valores dos componentes de variância, para o conjunto de dados adotado para ilustração, são desconhecidos. Poder-se-ia comparar os métodos, por exemplo, se fosse adotado um conjunto de dados simulados, com determinada distribuição e para o qual os componentes de variâncias fossem à priori, conhecidos. Para o conjunto de dados adotado para ilustração nesse estudo, observou-se que a matriz G de variâncias e covariâncias com estrutura do tipo TOEP (1) foi a que"melhor"descreveu os dados, independente do método adotado para obtenção das estimativas dos componentes de variância. No entanto, a experiência do pesquisador associada à natureza dos dados deve indicar a estrutura mais apropriada dentre as muitas disponíveis nos sistemas computacionais estatísticos
Título en inglés
not available
Resumen en inglés
not available
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-11-27