Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.11.2018.tde-20181127-161531
Documento
Autor
Nome completo
Sandra Denisen do Rocio Marcelino
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2000
Orientador
Título em português
Métodos de estimação de componentes de variância em modelos mistos desbalanceados
Palavras-chave em português
COMPONENTES DE VARIÂNCIA
MODELOS MATEMÁTICOS
Resumo em português
O presente trabalho tem por objetivo descrever de forma simples e concisa alguns métodos utilizados para a obtenção das estimativas dos componentes de variância em modelos mistos desbalanceados. O presente trabalho tem por objetivo descrever, de forma simples e concisa, alguns métodos utilizados para a obtenção das estimativas dos componentes de variância em modelos mistos desbalanceados. Há muitos métodos disponíveis, cada qual levando, em geral a resultados diferentes, e escolher um deles pode não ser uma tarefa simples. Alguns métodos exigem álgebra extensa enquanto que outros necessitam de métodos iterativos para suas soluções. Neste estudo são apresentados nove métodos: Método da Análise de Variância (ANOVA); Métodos 1,11 e IU de Henderson; Métodos da Máxima Verossimilhança (ML) e da Máxima Verossimilhança Restrita (REMI), Método do Estimador Quadrático Não-viesado de Norma Mínima (MINQUE), Métodos do Estimador Quadrático Não-viesado de Variância Mínima(MIVQUE) e do MINQUE- Iterativo (I-MINQUE). Com o objetivo de ilustrar comparativamente, sem o apelo de competição, os nove métodos considerados, de modo a estar tão próximo quanto possível da realidade do pesquisador, usuário dos métodos de estimação, considera-se um conjunto de dados desbalanceados, adaptado de Searle et al.(1992), para o qual adota-se o modelo misto de dois fatores com interação. A ilustração é feita, então, em duas partes: na primeira as estimativas são obtidas tomando-se uma matriz de variâncias e covariâncias com estrutura do tipo VC, considerada default na grande maioria dos sistemas estatísticos disponíveis. Na segunda, para o mesmo conjunto de dados, exemplifica-se a utilização do PROC MIXED do sistema estatístico SAS na obtenção de estimativas através dos métodos ali disponíveis, considerando a ocorrência de diferentes matrizes de variâncias e covariâncias. Exceto através das propriedades dos estimadores, não se pode concluir sobre um melhor método de estimação, mesmo porque os verdadeiros valores dos componentes de variância, para o conjunto de dados adotado para ilustração, são desconhecidos. Poder-se-ia comparar os métodos, por exemplo, se fosse adotado um conjunto de dados simulados, com determinada distribuição e para o qual os componentes de variâncias fossem à priori, conhecidos. Para o conjunto de dados adotado para ilustração nesse estudo, observou-se que a matriz G de variâncias e covariâncias com estrutura do tipo TOEP (1) foi a que"melhor"descreveu os dados, independente do método adotado para obtenção das estimativas dos componentes de variância. No entanto, a experiência do pesquisador associada à natureza dos dados deve indicar a estrutura mais apropriada dentre as muitas disponíveis nos sistemas computacionais estatísticos
Título em inglês
not available
Resumo em inglês
not available
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-11-27