• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.11.2019.tde-20191108-110711
Document
Author
Full name
Maria Izalina Ferreira Alves
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 1990
Supervisor
Title in Portuguese
Inversa generalizada de Moore-Penrose e solução de norma mínima em delineamentos experimentais
Keywords in Portuguese
DELINEAMENTO EXPERIMENTAL
MODELOS MATEMÁTICOS
Abstract in Portuguese
Neste trabalho são apresentadas formas gerais para obtenção de inversas generalizadas de Moore-Penrose para matrizes de delineamentos no modelo linear de Gauss-Markov. Tais formas são dependentes apenas do tamanho do subconjunto de parâmetros existentes no modelo adotado e do respectivo número de repetições. Além das formas gerais para a inversa generalizada da matriz X do delineamento X+, são apresentadas também as formas gerais do projetor P = XX+ da matriz H = X+X e da matriz de variâncias e covariâncias para o estimador da função· λ'e, " V[λ'^e] = λ’X+X+’ λ σ2. Nesse contexto. são apresentadas formas gerais dessas matrizes para os delineamentos: com um fator inteiramente casualizado, com repetições constantes ou não; com dois fatores, balanceados, sem interação (podendo ser caracterizado como blocos ao acaso) e com dois fatores, balanceados, com interação (fatorial). Para exemplificar as formas gerais propostas, foram tomados exemplos de livros textos da área de Modelos Lineares, confirmando os resuItados numéricos obtidos pela metodologia proposta. Nesse sentido, obtiveram-se as estimações por ponto, por intervalo, por região, e as somas de quadrados, através dos projetores ortogonais, para os três casos estudados. Concluiu-se que as formas gerais realmente minimizam o problema numérico da obtenção da inversa de Moore-Penrose em delineamentos experimentais. Isso propicia simplificações relevantes no processo didático dos temas clássicos inerentes aos Modelos Lineares e correlatos, pois as formas das matrizes apresentam uma visão mais clara dos efeitos dos parâmetros envolvidos em cada modelo de delineamento experimental, além da facilidade de obtenção da análise de variância. Dado que as formas gerais levam em conta apenas números fracionários relacionados com os parâmetros envolvidos no modelo, a precisão das estimações é maior que quando se trabalha com equações normais e reparametrizações. Assim, concluiu-se que a maior contribuição dessas formas gerais, além do uso didático, seria sua utilização em programas computacionais, pois o ponto forte dessas formas é reduzir o tempo de processamento e os erros de arredondamento e ou truncamento.
Title in English
The Moore -Penrose generalized inverse and minimum norm solution on experimental designs
Abstract in English
Simple and practical generaI ways to obtain Moore-Penrose generalized inverse for experimental designs, in Gauss-Markov linear model, depending only on the number of elements of each subset of parameters involved in the model are shown. General forms of matrices with the following designs were presented: the one factor balanced and unbalanced. two factors balanced without interaction (or randomized block design), and two factors balanced with interaction (factorial design). General forms of Moore-Penrose matrices for the design matrix, X+, for the projector P = XX+, for H = X+X and for variances and covariances matrix of the parametric estimable function λ'e, V[λ' e] = λ’X+X+’ λ σ2 are presented. Examples from Linear Models text books were used to exemplify the general forms presented. They confirmed numerical results obtained through the proposed methodology. Point, interval and region estimations, and sum of square through orthogonal projectors, for each of the three cases studied were obtained. The general forms minimize the numerical probIem on obtaining the Moore-Penrose inverse in experimentaI designs. This simplifies the didatic process on Linear Model and others reIated cIassic topics because the matrices forms presented a clearer vision of parameters efects, envolved in each experimental design model, and ease obtaining of analysis of variance with the use of the orthogonal projectors. These general forms take into account just fractionary numbers related to the model parameters. Therefore, estimates precision is majored when compared with the results obtained by normal equations and reparameterizations. In addition to the didatic advantage of the generaI forms, we think that the computational methods of computer packages could gain in precision if they use the formulae deveIoped.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-11-08
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.