• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.11.2019.tde-20191218-123534
Document
Author
Full name
Edmilson de Araujo Silva
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 1987
Supervisor
Title in Portuguese
Análise de covariância em delineamentos de blocos completos aumentados (blocos de Federer)
Keywords in Portuguese
ANÁLISE DE COVARIÂNCIA
DELINEAMENTO EXPERIMENTAL
Abstract in Portuguese
No presente trabalho considera-se uma variável auxiliar num ensaio em blocos completos aumentados (blocos de Federer). O objetivo foi apresentar um método de análise para esse tipo de ensaio. Os parâmetros que caracterizam os delineamentos em blocos completos aumentados foram definidos como: c: número de tratamentos comuns, b: número de blocos, z: número de tratamentos regulares, rj: número de repetição do tratamento j (j = 1, 2, ..., c, c+1, ..., c+z), Ki: número de parcelas no bloco i (i =1, 2, ..., b), N: número total de parcelas (N= bc + z). O modelo matemático adotado foi o seguinte: yij = μ + βi + tj + ϒxij + e ij, onde, yij é o valor observado da parcela do bloco i que recebeu o tratamento j; μ é a media geral; β é o efeito do bloco i; tj é o efeito do tratamento j; ϒ é o coeficiente da regressão linear de Y em relação a X xij = Xij - X̄, onde Xij são os valores observados da variável auxiliar (covariável) eij é o erro experimental associado a observação Yij onde se supõe que os eij's são independentes e normalmente distribuídos, com média zero e variância σ2. O efeito tj envolve ts (s = 1, 2, ..., c) e trs' (s' = c+l, c+2, ..., c+z), que são os efeitos dos tratamentos comuns e regulares, respectivamente. Sob as condições anteriores são determinados: o sistema de equações normais, os estimadores dos efeitos dos parâmetros, as somas de quadrados e suas esperanças matemáticas; e ainda, as distribuições das formas quadráticas e um quadro da análise de covariância. Um exemplo numérico e apresentado para ilustrar o método proposto.
Title in English
Analysis of covariance in augmented randomized complete block design (block of Federer)
Abstract in English
A statistical investigation was conducted for the case in which experiments are designed in augmented randomized complete block with a concomitant variable. The main objective was to develop a method of analysis for this specific kind of experiment. The following parameters were considered as pertinent to the design: c: number of standard treatments; b: number of blocks; z: number of new treatments; rj: number of replicate in the jth treatment; Ki: number of plots in the ith block (i= 1, 2, ..., b); N: total number of plots (N= bc + z). The following mathematical model was considered: yij = μ + βi + tj + ϒxij + e ij, where: yij observed value due to jth treatment and ith block; μ denotes the effect of the general mean; βi denotes the effect of the ith block; tj denotes the effect of the jth treatment; ϒ is a regression coefficient for the re1ation between Y and X xij = - Xij -X̄, where Xij is the centered observed value of the concomitant variable; eij is a random error component with expectation zero and variance σ2, the eij's being independently distributed. The effect tj involves ts (s= 1, 2, ..., c) and trs' (s'= c+1, c+2, ..., c+z), respectively the standard and new treatments. Under the given conditions, the solution of the normal equations, the estimators of the parameters effects, the sum of squares, the expectations of sum of squares, the distributions of the quadratic forms and the analysis of covariance table are calculated. A numerical example is used to illustrate the proposed method.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-12-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.