Master's Dissertation
DOI
https://doi.org/10.11606/D.11.2019.tde-20191218-123618
Document
Author
Full name
Antonio Claudio Almeida de Carvalho
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 1996
Supervisor
Title in Portuguese
O método Bootstrap e sua aplicação em análise de dados agroflorestais com variáveis aleatórias do tipo razão
Keywords in Portuguese
ANÁLISE DE DADOS
MÉTODOS ESTATÍSTICOS
REAMOSTRAGEM BOOTSTRAP
SISTEMAS AGROFLORESTAIS
Abstract in Portuguese
O conceito de produção sustentada, baseada no princípio de diversificação de culturas é consolidado através dos sistemas agroflorestais, que é a denominação recente para os cultivos consorciados que envolvem um componente arbóreo, culturas agrícolas e/ou animais. Devido à possibilidade de múltiplas interações entre os componentes, a análise e a interpretação dos dados experimentais de um sistema agroflorestal pode tornar-se complexa. Uma abordagem muito encontrada na literatura, para análise de cultivos consorciados é feita através do LER (Land Equivalent Ratio), que representa uma medida de equivalência do uso da terra do consórcio em relação ao monocultivo. Do ponto de vista estatístico, o LER representa uma variável aleatória formada pela razão de duas variáveis aleatórias e, conseqüentemente, sua distribuição de probabilidades nem sempre segue a distribuição normal. Esse fato, impossibilita a aplicação dos métodos paramétricos, comumente empregados na experimentação agronômica. Os métodos computacionalmente intensivos como "Jackknife" e "Bootstrap" possibilitam análise estatísticas livres de suposições de modelos teóricos, tornando possível a exploração das propriedades amostrais, independentemente de suas formas analíticas. O método "Bootstrap" é mais versátil que o método "Jackknife" e pode ser implementado facilmente, tanto na forma não-paramétrica quanto paramétrica, para uma grande variedades de situações. A idéia básica dos procedimentos "Bootstrap" baseia-se no fato de se obter uma distribuição empírica, que reproduza o mecanismo probabilístico gerador dos dados amostrais e assim, a partir de grande quantidades de reamostras, obtêm-se as estimativas das estatísticas de interesse. Encontra-se neste trabalho uma sucinta descrição do método "Jackknife". Os conceitos e algoritmos que envolvem os procedimentos "Bootstrap" não-paramétricos, são descritos e executados através de dados simulados. A análise de um sistema agroflorestal, com a variável aleatória LER, foi realizada com o uso dos procedimentos "Bootstrap" e através dos software SAS e S-PLUS obtiveram-se limites de confiança e teste de hipótese para os parâmetros populacionais.
Title in English
Bootstrap application to data analysis of agroforestry experiments for ratio type random variables
Abstract in English
The concept of sustainable yield, based on the principle of crop diversification, is consolidated through agroforestry systems, that is the up-to-date denomination for mixture of crops that include a tree component, crops and/or livestock. Due to the possibility of multiple interactions among the systems components, the analysis and interpretation of the experimental data of an agroforestry systems many became complex. An approach found in the literature for analysis of intercropping experiments is to use LER (Land Equivalent Ratio), that represent a measurement of equivalence of land use by the intercropping and cropping. Under statistical point of view, LER represents a random variable representing the ratio of two random variables, and its distribution not always follow the normal distribution. This fact do not allow the application of parametric methods, frequently used in agricultural experiments. Methods which use intensively computer, as Jackknife and Bootstrap, allow for analysis of data without following the assumptions of theoretical models. This, it is possible to explore sample properties, independent of analytical forms. Bootstrap is more freely used as the Jackknife method and can be implemented as parametric and non parametric forms, for wide situations. The basic idea of Bootstrap procedures is that one can get empirical distribution, that mimic the mechanism of generating sample data, and then, with the large amount of resampling data, it is, possible to get statistics of interest. In this paper it was presented a brief description of the Jackknife method and the concepts underlying Bootstrap procedures under non parametic form are also described and executed with simulated data. The analysis of a Agroforestry system, using LER as random variable was analised through the use of Bootstrap procedure and SAS and S-PLUS softwares. It is presented the confidence interval for the parameters and the respective hypothesis test.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-12-19