• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.11.2019.tde-20191220-115006
Document
Author
Full name
Adalberto José Crocci
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 1984
Supervisor
Title in Portuguese
Modelo auto-regressivo para análise de experimentos com vacas em lactação
Keywords in Portuguese
EXPERIMENTOS
MODELO AUTO-REGRESSIVO
VACAS EM LACTAÇÃO
Abstract in Portuguese
Os modelos usuais para análise de dados de produção de leite, como o ”switchback” introduzido por LUCAS (1956) ou o delineamento em quadrado latino para os ensaios rotativos, pertencem à classe dos chamados experimentos em “change-over”, nos quais cada unidade experimental recebe uma seqüência de vários tratamentos em períodos sucessivos. Tais modelos apresentam uma estrutura e erros do tipo σ2I a custa, em geral, de um número excessivo de parâmetros. Neste trabalho é apresentado um modelo simplificado, denominado modelo auto-regressivo, no qual os erros apresentam uma distribuição probabilística que incorpora a clara correlação existente entre dados de um mesmo animal, com um menor número de parâmetros. Após estabelecido o modelo matemático auto-regressivo procede-se à estimação dos parâmetros pelo método dos mínimos quadrados generalizados, descrito dentre outros por RAO (1965), e através de ensaios em branco com dados reais de produção de leite, amostrados de urna considerada população finita, simulam-se efeitos aditivos de tratamentos objetivando comparar os modelos, no que se refere à sensibilidade do teste F para a detecção de tais efeitos. Para este estudo consideram-se três ensaios, escolhidos de forma a se ter uma desejável variação do número de graus de liberdade para o resíduo, e coerência com os casos mais comuns encontrados em aplicações práticas. Cada ensaio é analisado segundo os vários modelos considerando-se a existência ou não de efeitos de tratamentos, bem como diferentes valores do coeficiente de correlação linear entre períodos de observação, para o modelo auto-regressivo. Os resultados deste trabalho mostram que: (a) Existe uma boa adequação do modelo auto-regressivo às condições experimentais e que tal adequação piora com o aumento da discrepância entre o coeficiente de correlação linear usado e o exato; (b) O modelo auto-regressivo proposto como competidor do “switchback” ou do rotativo, tem maior sensibilidade para indicar diferenças entre efeitos de tratamentos, e tal sensibilidade e dependente do coeficiente de correlação linear entre períodos adotado; (c) A sensibilidade no modelo auto-regressivo é proporcional ao número de períodos adotado, indicando assim que tal modelo deve ser preferível com número máximo de períodos possível.
Title in English
Autoregressive model for dairy cows experiments
Abstract in English
The usual models for dairy cows data analysis like the switchback design introduced by LUCAS (1956) or the latin square design for rotational trials, belong to the so-called change-over class of design, in which each experimental unit receaves a sequence of treatments in successive periods. Such models present an error structure of σ2I type implied, in general, by an excessive number of additive parameters in the model. A simplified model is presented in this work, namely the autoregressive model, in which the residual deviations present a probabilistic distribution that includes the obvius correlation among data from the same animal, with just a few number of additive parameters. After the mathematical model has been stablished, parameter estimation was conducted by the generalized least squares method, described, for instance, by RAO (1965) and, through blank experiments with real dairy data, sampled from a finite fixed population, the “F” statistics was studied with respect to its statistical properties, specially its sensibility to additive treatment effects. For this purpose three designs were considered, selected in a maner to cover a desirable variation of error degrees of freedom and best fitting with actual applied experiments. Each simulated experiment is analysed under several mathematical models, considering or not the existence of treatment effects, as well as different values of linear correlation coefficients among periods, only for the autoregressive type. The main results showed that: (a) There exists a good fitting of the autoregressive model in the worked experimental conditions and such a fitting is worse when the difference of the real and the used linear correlation turns bigger; (b) The proposed autoregressive model as competitor of the switchback and of the rotational models, is more sensible in detecting treatment differences, and such sensibility is dependent of the linear correlation coefficient adopted; (c) The sensibility of the autoregressive model is proportional to the number of periods used, showing that such a model is prefered when the maximum possible number of periods is attained.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-12-20
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.