• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.11.2019.tde-20191220-120505
Documento
Autor
Nome completo
Luis Alberto Lopez Perez
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 1992
Orientador
Título em português
Estimação e predição nos modelos mistos não balanceados
Palavras-chave em português
COMPONENTES DE VARIÂNCIA
ESTIMAÇÃO
MODELOS LINEARES MISTOS
PREDIÇÃO
Resumo em português
Este trabalho apresenta um estudo sobre as funções e preditores lineares nos modelos de efeitos mistos, com estrutura de dados balanceados e desbalanceados. Propõe-se um método alternativo para a estimação dos preditores lineares, baseado nos multiplicadores de Lagrange os quais dependem linearmente da estimação dos efeitos fixos e aleatórios do modelo. A estimação desses efeitos dependem da estrutura da matriz associada de variâncias e covariâncias, por isto apresenta-se uma metodologia visando simplificar sua construção, assim como o cálculo de, sua inversa. Para a estimação dos componentes da variância, o modelo é escrito em termos das decomposições ortogonais lineares, através das quais se estabelece uma relação entre os sub-índices associados aos efeitos do modelo e os produtos de Kronecker das matrizes identidades de ordem s (Is) e, quadradas de elementos unitários de ordem s (Js), com a qual o cálculo dos estimadores de máxima verossimilhança dos componentes de variância associados fica sensivelmente simplificado.
Título em inglês
Estimation and prediction with mixed unbalanced models
Resumo em inglês
This work makes a study about the linear functions and predictors in models with mixed effects with balanced and unbalanced datums. Here is presented an alternative method for the estimation of the linear predictors based on the Lagrange's multiplicators, which depend linearly on the estimation of the fixed and aleatory effects of the model. The estimation of these effects depend on the structure of the associate variances and covariances matrix; that's why, a methodology is presented to facilitate its construction and the calculation of its inverse. For the estimation of the variance's components, the model is written in terms of linear orthogonal decompositions, that allow to stablish a relationship between the subindex associated with the effects of the model an the Kronecker products of the identities matrices of order s (Is) and the square matrices of order s (Js), notation this, that suppies the calculation of the maximum likelihood estimators of the associate variance's components.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-12-20
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.