• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.11.2019.tde-20191220-135712
Documento
Autor
Nome completo
Samuel Fabre Sanches
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 1980
Orientador
Título em português
Análise de experimentos em parcelas subdivididas, em blocos casualizados, com perda de uma ou duas subparcelas ou parcelas
Palavras-chave em português
DELINEAMENTO EXPERIMENTAL
MODELOS MATEMÁTICOS
PLANEJAMENTO EM BLOCOS
Resumo em português
O presente trabalho foi orientado no sentido de apresentar um estudo simples da análise estatística de um experimento em parcelas subdivididas, onde ocorrem perdas de: a. uma subparcela, b. duas subparcelas em várias situações, c. uma parcela, d. duas parcelas em várias situações. Considerou-se o modelo matemático: Yijk= m+bj + ti + tbij + t’k + tt’ik + lijk . A partir desse modelo, pelo método do resíduo condicional, foram abordados os seguintes tópicos 1. Cálculo das somas de quadrados dos parâmetros: SQP (m̂, b̂, t̂, tb̂, t̂', tt̂'), SQP (m̃, b̃, t̃, tb̃, t̃'), SQP (m̅, b̅, t̅, tb̅), SQP (m̂̂, b̂̂, t̂̂), SQP (m̃̃, b̃̃) e SQP (m̅̅), onde os acentos ( ̂, ̃, ̅ )referem-se à estimativa dos respectivos parâmetros segundo modelo 2. Demonstrações das fórmulas para se obter as somas de quadrados ajustados das diversas causas de variações e a seguir, os esquemas de análise de variâncias 3, Demonstrações dos números U(s) para as correções das somas dos quadrados das causas de variações quando estas são determinadas com os valores estimados das observações perdidas. 4. Apresentação de variância de alguns contrastes que envolvem as observações perdidas em todos os casos discutidos. Os principais resultados obtidos foram: a. As somas de quadrados ajustados das causas de variações são sempre idênticas, assim como os números U(s) se apresentam sempre com a mesma expressão. b. As somas de quadrados das causas de variações são ligeiramente maiores que as verdadeiras quando se usa a estimativa da parcela perdida segundo seu modelo; quando se emprega a estimativa segundo o modelo original dado, então somente a SQ T x T'(x) é que ficará superestimada, e as demais somas poderão estar super como subestimadas exceto o resíduo (b), nos dois casos. c. No caso de parcelas perdidas ocorre o mesmo, porém neste caso o resíduo (a) não se altera. d. A SQT' (aj) = SQT 1 (usual) no caso de parcelas perdidas, onde SQT' = Soma de quadrados dos tratamentos secundários (T")
Título em inglês
not available
Resumo em inglês
not available
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
SanchesSamuelFabre.pdf (10.66 Mbytes)
Data de Publicação
2019-12-20
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.