• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.11.1983.tde-20210104-165647
Documento
Autor
Nome completo
Celso Chiarini
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 1983
Orientador
Título em português
A distribuição de probabilidades do quociente de variáveis aleatórias normais: determinação, propriedades, tabela e algumas aplicações
Palavras-chave em português
ARMAZENAMENTO
FORMULAÇÕES
FUNGOS ENTOMOPATOGÊNICOS
INSETICIDAS BIOLÓGICOS
PRESERVAÇÃO
Resumo em português
O problema é de natureza teórica, no campo do Cálculo de Probabilidades, mas motivado por importantes aplicações práticas. O desenvolvimento do trabalho considera o quociente (Descrito na tese), sendo ρ o coeficiente de correlação entre X1 e X2. Onde se mostra conveniente, são utilizados os coeficientes de variação de (Descrito na tese) não nulos. Estuda-se o caso geral da distribuição de probabilidades do quociente de variáveis aleatórias normais, correlacionadas ou não. Determina-se sua função de densidade de probabilidade, diretamente, a partir da função de densidade de probabilidade do quociente de variáveis aleatórias absolutamente contínuas. Verificam-se propriedades que simplificam a obtenção e apresentação de tabela, concluindo-se que ; suficiente a obtenção de tabela para variáveis independentes, de variâncias unitárias e coeficientes de variação (ou médias) positivos. Demonstra-se que, se a mediana (ou média) de X2 é não nula, a mediana do quociente de variáveis aleatórias normais independentes i o quociente das medianas. Apresentam-se tabela e gráficos julgados de interesse. Aplica-se a distribuição de probabilidades do quociente de variáveis aleatórias normais no teste da hipótese (Descrito na tese), em amostras independentes ou não. Apresentam-se exemplos de aplicação, fazendo-se sua análise a luz da metodologia proposta.
Título em inglês
The probability distribution of the quotient of normal random variables: characterization, properties, table and applications
Palavras-chave em inglês

Resumo em inglês
The problem is theoretical in nature and belongs to the field of probability theory. It is motivated by important practical applications. This work considers the quotient (See theses). The correlation coefficient between X1 and X2 is ρ. It is used, where convenient, the coefficients of variation of X1 and X2 (See theses). It is studied the general case of the distribution of the quotient of normal random variables, correlated or not. Its probability density function is obtained directly from the general expression of the probability density function of the quotient of absolutely continuous random variables. Properties are derived to simplify the process of generating a probability table. It is concluded that it is enough to generate one table for normal independent random variables with unit variances and positive coefficients of variation (or means). It is proved, assuming the median (or mean) of X non null, that the median of the quotient of normal independent random variables is the quotient of the medians. The work presents table and graphs of the probability distribution. Results are applied to test the hypothesis (See theses), in the context of samples independent or not. Applications are presented and analyzed in the light of the proposed methodology.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
ChiariniCelso.pdf (2.26 Mbytes)
Data de Publicação
2021-01-07
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.