• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.11.1982.tde-20210104-185946
Documento
Autor
Nome completo
Marineia de Lara Haddad
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 1982
Orientador
Título em português
Estudo sobre parcelas perdidas no delineamento em Quadrado de Youden
Palavras-chave em português
DELINEAMENTO EXPERIMENTAL
QUADRADO DE YOUDEN
Resumo em português
O presente trabalho teve como objetivo principal a dedução da análise estatística do delineamento em Quadrado de Youden com perda de uma e de duas parcelas na mesma linha. O modelo matemático considerado foi: ykji = m + lk + cj + ti(j, k) + ekji, ou, admitindo-se que os efeitos de colunas incluem a média geral teórica, e usando-se a forma matricial, Y = Xβ + ε. Através do método dos quadrados mínimos foram determinadas as estimativas dos parâmetros e as suas respectivas somas de quadrados. Eliminando-se do modelo matemático original os efeitos de tratamentos e, posteriormente, os efeitos de linhas, novas somas de quadrados dos parâmetros foram determinadas. Das diferenças entre elas determinaram-se as corretas somas de quadrados de tratamentos e de linhas. Tornando mínima a soma de quadrados do resíduo, SQR, deduziram-se fórmulas para as estimativas das parcelas perdidas. Através do método do resíduo condicional determinaram-se as expressões das correções das somas de quadrados de tratamentos, SQT, e de linhas, SQL. Verificou-se que a SQR está corretamente estimada, pois a estimativa da parcela perdida oferece uma contribuição nula para essa soma de quadrados. Assim sendo, e levando-se em consideração que a SQT foi ajustada para linhas e colunas e a SQL foi ajustada para colunas, concluiu-se que a correta soma de quadrados de colunas é a usual. Foram obtidas também a matriz de dispersão das estimativas dos parâmetros e a fórmula para a variância da estimativa de um contraste entre duas médias de tratamentos ajustadas. Embora não apresentado o estudo sobre os componentes de variância das diversas causas de variação, determinou-se que a SQR perde tantos graus de liberdade quantas forem as parcelas perdidas.
Título em inglês
Missing plots in the Youden square design
Palavras-chave em inglês

Resumo em inglês
The objective of this study was concerned with the development of a statistical analysis for the Youden Square Design with one and two missing plots in the same row. Mathematical model used was: ykji = m + l k + cj + ti(j, k) + ekji, wich in matrix notation, assuming that column effects includes the mean, could be represented by: Y = Xβ + ε. Estimation of parameters and sum of squares were done by least squares. Delecting treatment effects from the original model and row effects two new sum of squares of parameters were determined. By subctration it was calculated correct values for treatment sum of squares and row sum of squares. By minimization of residual sum of squares formulas were developed for estimation of missing plots as well as correct treatment and row sums of squares. Since the treatment sum of squares was adjusted for rows and columns effects and row sum of squares was adjusted for column it was shown that column sum of squares is the usual. It was also determined the matrix dispersion of the parameters estimates and the variance for the contrast between two adjusted treatment means. Degrees of freedom lost by the residual sum of squares was equal to the number of missing plots.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-01-07
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.