Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.11.1984.tde-20220207-234204
Documento
Autor
Nome completo
José Carlos Seraphin
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 1984
Orientador
Título em português
Comparação numérica de três estimadores de componentes de variância em alguns modelos genético-estatísticos de cruzamentos
Palavras-chave em português
COMPONENTES DE VARIÂNCIA
CRUZAMENTOS
ESTIMADORES
MODELOS
Resumo em português
A literatura estatística em geral, embora apresente muitos estudos e discussões sobre os estimadores de componentes de variância, pouco, ou quase nada, traz sobre as comparações destes. Neste trabalho fez-se a comparação numérica de três estimadores de componentes de variância em dois modelos lineares genéticos-estatísticos de cruzamentos, usando como medida de eficiência, de cada estimador, o erro quadrático médio, além do tempo gasto em CPU (Unidade Central de Processamento) e outras características, tais como: estimativas médias para cada componente de variância, com o valor mínimo e o máximo encontrado, número de estimativas negativas e experimentos cujo processo numérico de estimação não convergiu. Os estimadores estudados foram: ajuste de constantes ou método 3 de Henderson, estimadores de máxima verossimilhança e os estimadores quadráticos não tendenciosos de mínima variância - MIVQUE, enquanto que os modelos foram os de: classificação hierárquica, aleatório (Modelo I) e o fatorial, misto, com interação (Modelo II), referenciados em HALLAUER e MIRANDA FILHO (1981) como "Design I" e "Design III", respectivamente. Os dados foram simulados a partir da distribuição normal, para cada modelo estudado, considerando-se duas relações de variâncias, σ2i/σ2, onde σ2i é a variância do efeito aleatório, exceção do erro, e σ2 variância do erro, tomando-se para cada uma os casos balanceados e não balanceados, com 5% de parcelas ou "células" vazias. Uniformemente nenhum dos métodos, ajuste de constantes e MIVQUE, é melhor do que o outro para os modelos estudados, embora deve-se preferir o método MIVQUE caso os recursos computacionais sejam de fácil acesso, dada sua rapidez e eficiência como estimador. Caso contrário, deve-se preferir o método de ajuste de constantes, tão eficiente como o anterior e de cálculo relativamente fácil para os modelos estudados. Já o método de máxima verossimilhança, baseado somente nos dados de eficiência, foi mais eficiente que os dois apenas no modelo II, podendo, portanto, ser empregado para esse modelo, desde que não se considere de fundamental importância a tendenciosidade e os problemas de convergência e tempo.
Título em inglês
Numerical comparison of three variance components estimators in some statistical-genetics models of crosses
Resumo em inglês
The statistics literature in general, although presenting many studies and discussions on the variance component estimators, present little or almost nothing about the comparisons among them. In this work a numerical comparison among three variance components estimators in two statistical-genetic models of crosses was made, using as a measure of the efficiency of each estimator, the mean squared error besides the time spent in Central Processing Unit (CPU) and other characteristics such as: the mean estimative for each variance component with the maximum and the minimum value determined, the number of negative estimates and the number of experiments whose numerical process of estimation did not converge. The studied estimators were: the constant adjustments or method 3 of Henderson, maximum likelihood estimator and the minimum variance quadratic unbiased estimator - MIVQUE. The models were the random hierarchic classification (Model I) and the mixed factorial with interaction (Model II), referred by HALLAUER and MIRANDA FILHO (1981) as Design I and Design III, respectively. Data were simulated from the normal distribution for each model studied, considering two variance ratios σ2i/σ2, were σ2i is the variance of random effects except for the error variance and σ2 is the error variance, taking for each one the balanced and unbalanced cases, with 5% empty plots. Between the constant adjustment and MIVQUE none is better than the other for the studied models although MIVQUE should be preferred when computer resources are readily available, given its speed and efficiency as estimator. Otherwise, the constant adjustment procedure should be preferred because it is a efficient as the former and is relatively easy to calculate for the studied models. Based only on efficiency data, the maximum likelihood method was the most efficient of the three, for model II. Thus it can be used for this model when the presence of bias and problems of time and convergence are not considered of fundamental importance.
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2022-02-07