• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.11.2013.tde-22082013-154605
Document
Author
Full name
Thiago Gentil Ramires
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 2013
Supervisor
Committee
Ortega, Edwin Moises Marcos (President)
Lemonte, Artur José
Vivanco, Mario Javier Ferrua
Title in Portuguese
A distribuição beta semi-normal generalizada geométrica
Keywords in Portuguese
Análise de sobrevivência
Distribuição beta semi-normal generalizada geométrica
Modelos locação-escala
Abstract in Portuguese
Com o avanço tecnológico aprimorado, diferentes comportamentos do tempo de vida vem sendo estudados, e com isso é necessário a criação de novos modelos, muitas vezes mais complexos, para melhor ajuste e inferência sobre a população em estudo. A distribuição beta semi-normal generalizada é útil para modelagem de tempos de vida, e com isso propomos neste trabalho uma distribuição mais ampla chamada distribuição beta semi-normal generalizada geométrica, cuja função de risco pode assumir as formas crescente, decrescente, forma de banheira ou modal. A função densidade da nova distribuição é escrita como uma combinação linear da função densidade da distribuição beta semi-normal generalizada, sendo assim, algumas importantes propriedades da nova distribuição foram obtidas, como: momentos, assimetria, curtose, função geradora de momentos, desvios médios, função quantíl e curvas de Lorenz e de Bonferroni. Para a estimação dos parâmetros, é utilizado o método de máxima verossimilhança. Também foi proposto no trabalho, o novo modelo de regressão baseado na distribuição beta semi-normal generalizada geométrica, os quais podem ser muito úteis em análise de dados reais por serem mais flexíveis.
Title in English
The beta generalized half-normal geométric distribution
Keywords in English
Location-scale models
Survival analysis
The beta generalized half-normal geometric distribution
Abstract in English
Due to the technological improved advances, different behaviors of the lifetime has been studied and for this reason, it is necessary to create new statistical models, many times more complex, for the better fit and inferences about the population under study. The beta generalized half-normal distribution is useful for modeling lifetime data, and in this sense, we propose, in this work, a wider distribution called the geometric beta generalized half-normal distribution in which the hazard function takes the forms increasing, decreasing, bathtub and unimodal. The density function of the new distribution can be written as a linear combination of the beta generalized half-normal densities, and thereby, some properties of the new distribution can be obtained such as the moments, skewness, kurtosis, moment generating function, mean deviations, quantile function and Lorenz and Bonferroni curves. For the estimation of the parameters, we use the maximum likelihood method considering the presence of censored data. We also propose a new regression model based on the geometric beta generalized half-normal distribution, which can be very useful in the analysis of real data due to their flexibility.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2013-09-03
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.