• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
Documento
Autor
Nome completo
Hiron Pereira Farias
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2019
Orientador
Banca examinadora
Piedade, Sonia Maria de Stefano (Presidente)
Alves, Lucilio Rogerio Aparecido
Bacchi, Mirian Rumenos Piedade
Emiliano, Paulo César
Título em português
Modelagem de séries temporais para fins de previsão
Palavras-chave em português
Commodity
Modelagem ARMA(p; q)
Série Temporal
Variáveis climáticas
Resumo em português
Nesse trabalho, exploramos técnicas para análise de séries temporais para fins de previsão. Para tanto, foram considerados dados observados de três séries climáticas e de uma série econômica. Para análise das séries climáticas, foi considerada a modelagem multivariada em comparação com os subsequentes modelos univariados de cada série. Os modelos multivariados e univariados foram comparados com base em seus respectivos resultados preditivos. Para análise da série econômica, considerou-se a modelagem ARMA-GARCH, cuja média condicional e variância condicional são modeladas conjuntamente. Para essa mesma série foi realizada uma modelagem ARIMA em que considerou-se dois casos. No primeiro, a modelagem foi realizada na série original. No segundo, foi realizada na pré-modelagem uma filtragem na série, denominada de sistema de decomposição Wavelet- WavDS, com o objetivo de melhorar o poder preditivo. Na seleção dos modelos ARIMA, considerou-se a metodologia backtesting, em que as previsões são realizadas de forma sequencial, o modelo selecionado foi o que apresentou menor raiz quadrada do erro quadrático médio de previsão (REQM). Toda análise estatística realizada nesse trabalho foi com auxílio do software livre R.
Título em inglês
Time-series modeling for prediction purposes
Palavras-chave em inglês
ARMA Modeling (p; q)
Climate variables
Commodity
Time series
Resumo em inglês
In this study, we explored techniques of time-series analysis for prediction purposes. For that, we considered data observed from three climate series and one economic series. For the analysis of the climate series, we considered the multivariate modelling in comparison with the subsequent univariate models of each series. The multivariate and univariate models were compared based on their respective predictive results. For the analysis of the economic series, the ARMA-GARCH modeling was considered, whose conditional average and conditional variance are modeled together. For this same series, the ARIMA modeling was used, considering two cases. At first, the modeling was performed in the original series. In the second, we carried out a filtering in the series during pre-modeling, called Wavelet- WavDS decomposition system, in order to improve the predictive power. In the selection of ARIMA models, we considered the backtesting methodology in which forecasts are performed in sequence. The model selected showed the lowest square root mean of the prediction square error (REQM). All statistical analyses performed in this work were carried out using the free software R.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-06-05
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.