• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.11.2011.tde-28062011-095106
Document
Author
Full name
Cristiane Rodrigues
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 2011
Supervisor
Committee
Demetrio, Clarice Garcia Borges (President)
Candolo, Cecilia
Cordeiro, Gauss Moutinho
Title in Portuguese
Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa
Keywords in Portuguese
Distribuição binomial
Distribuição de Poisson
Distribuições (Probabilidade)
Estatística
Verossimilhança.
Abstract in Portuguese
Neste trabalho, alguns resultados, tais como, função geradora de momentos, relações de recorrência para os momentos e alguns teoremas da classe de distribuições em séries de potencias modificadas (MPSD) proposta por Gupta (1974) e da classe de distribuições em séries de potências modificadas inflacionadas (IMPSD) tanto em um ponto diferente de zero como no ponto zero são apresentados. Uma aplicação do Modelo Poisson padrão, do modelo binomial negativo padrão e dos modelos inflacionados de zeros para dados de contagem, ZIP e ZINB, utilizando-se as técnicas dos MLGs, foi realizada para dois conjuntos de dados reais juntamente com o gráfico normal de probabilidade com envelopes simulados. Também foi proposta a distribuição Weibull binomial negativa (WNB) que é bastante flexível em análise de dados positivos e foram estudadas algumas de suas propriedades matemáticas. Esta é uma importante alternativa para os modelos Weibull e Weibull geométrica, sub-modelos da WNB. A demostração de que a densidade da distribuição Weibull binomial negativa pode ser expressa como uma mistura de densidades Weibull é apresentada. Fornecem-se, também, seus momentos, função geradora de momentos, gráficos da assimetria e curtose, expressoes expl´citas para os desvios médios, curvas de Bonferroni e Lorenz, função quantílica, confiabilidade e entropia, a densidade da estat´stica de ordem e expressões explícita para os momentos da estatística de ordem. O método de máxima verossimilhança é usado para estimar os parametros do modelo. A matriz de informação esperada ´e derivada. A utilidade da distribuição WNB está ilustrada na an´alise de dois conjuntos de dados reais.
Title in English
Inflated modified power serie distribution and Weibull negative binomial
Keywords in English
Binomial distribution
Distributions (Probability)
Estatistic
Likelihood.
Poisson distribution
Abstract in English
In this paper, some result such as moments generating function, recurrence relations for moments and some theorems of the class of modified power series distributions (MPSD) proposed by Gupta (1974) and of the class of inflated modified power series distributions (IMPSD) both at a different point of zero as the zero point are presented. The standard Poisson model, the standard negative binomial model and zero inflated models for count data, ZIP and ZINB, using the techniques of the GLMs, were used to analyse two real data sets together with the normal plot with simulated envelopes. The new distribution Weibull negative binomial (WNB) was proposed. Some mathematical properties of the WNB distribution which is quite flexible in analyzing positive data were studied. It is an important alternative model to the Weibull, and Weibull geometric distributions as they are sub-models of WNB. We demonstrate that the WNB density can be expressed as a mixture of Weibull densities. We provide their moments, moment generating function, plots of the skewness and kurtosis, explicit expressions for the mean deviations, Bonferroni and Lorenz curves, quantile function, reliability and entropy, the density of order statistics and explicit expressions for the moments of order statistics. The method of maximum likelihood is used for estimating the model parameters. The expected information matrix is derived. The usefulness of the new distribution is illustrated in two analysis of real data sets.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Cristiane_Rodrigues1.pdf (653.15 Kbytes)
ERRATA.pdf (47.43 Kbytes)
Publishing Date
2011-06-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.