TRATAMENTO FUNGICIDA E CONSERVAÇÃO DE SENENTES DE FEIJOEIRO

(Phaseolus vulgaris L.)

ANA DIONISIA DA LUZ COELHO NOVEMBRE
Engenheiro Agrônomo

Orientador: Prof. Dr. JULIO MARCOS FILHO

Dissertação apresentada à Escola Superior de Agricultura "Luiz de Queiroz", da Universidade de São Paulo, para obtenção do título de Mestre em Agronomia. Área de Concentração: Fitotecnia.

PIRACICABA
Estado de São Paulo - Brasil
Agosto - 1987
AGRADECIMENTOS

Ao Professor Julio Marcos Filho, pela amizade, orientação e dedicação durante a condução do trabalho.

Aos Dr. Osvaldo Bacchi, Prof. Dr. Salim Simão e Prof. Dr. Francisco F. de Toledo pelo apoio e estímulo iniciais.

Ao Professor José O.M. Menten, pelo auxílio na orientação da análise sanitária das sementes.

Aos Colegas de curso, pela amizade e incentivos.

Ao Professor Décio Barbin e Marinêia de Lara Haddad pela orientação e execução da análise estatística.

Aos Professores e funcionários do Departamento de Agricultura e Horticultura.

À Fundação de Amparo à Pesquisa do Estado de São Paulo e Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior pelas bolsas de estudos concedidas.

À Fundação Instituto Agronômico do Paraná, pelo fornecimento das sementes.
ÍNDICE

<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMO</td>
<td>viii</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>x</td>
</tr>
<tr>
<td>1. INTRODUÇÃO</td>
<td>1</td>
</tr>
<tr>
<td>2. REVISÃO DE LITERATURA</td>
<td>3</td>
</tr>
<tr>
<td>2.1. Armazenamento</td>
<td>3</td>
</tr>
<tr>
<td>2.2. Fungicidas: momento de aplicação</td>
<td>13</td>
</tr>
<tr>
<td>2.3. Fungicidas: controle de microorganismos e efeitos na qualidade das sementes</td>
<td>19</td>
</tr>
<tr>
<td>3. MATERIAL E MÉTODOS</td>
<td>27</td>
</tr>
<tr>
<td>3.1. Sementes</td>
<td>27</td>
</tr>
<tr>
<td>3.2. Tratamentos fungicidas</td>
<td>30</td>
</tr>
<tr>
<td>3.3. Armazenamento</td>
<td>33</td>
</tr>
<tr>
<td>3.4. Avaliação da qualidade das sementes</td>
<td>33</td>
</tr>
<tr>
<td>3.4.1. Determinação do grau de umidade</td>
<td>35</td>
</tr>
<tr>
<td>3.4.2. Germinação</td>
<td>35</td>
</tr>
<tr>
<td>3.4.3. Envelhecimento acelerado</td>
<td>36</td>
</tr>
<tr>
<td>3.4.4. Emergência das plântulas</td>
<td>36</td>
</tr>
<tr>
<td>3.4.5. Sanidade das sementes</td>
<td>37</td>
</tr>
<tr>
<td>3.5. Procedimento estatístico</td>
<td>38</td>
</tr>
<tr>
<td>4. RESULTADOS</td>
<td>43</td>
</tr>
<tr>
<td>4.1. Primeiro ano experimental</td>
<td>43</td>
</tr>
<tr>
<td>4.1.1. Umidade</td>
<td>43</td>
</tr>
<tr>
<td>4.1.2. Tratamento fungicida antes do início do armazenamento</td>
<td>45</td>
</tr>
<tr>
<td>4.1.2.1. Lote 1</td>
<td>45</td>
</tr>
<tr>
<td>4.1.2.1.a. Germinação</td>
<td>45</td>
</tr>
<tr>
<td>4.1.2.1.b. Envelhecimento acelerado</td>
<td>47</td>
</tr>
</tbody>
</table>
4.1.2.2. Lote 2............................... 49
4.1.2.2.a. Germinação......................... 49
4.1.2.2.b. Envelhecimento acelerado.......... 50
4.1.2.3. Lote 3............................... 52
4.1.2.3.a. Germinação........................ 52
4.1.2.3.b. Envelhecimento acelerado.......... 53
4.1.3. Comparação entre épocas de tratamentos. 55
4.1.3.1. Lote 1............................... 56
4.1.3.1.a. Germinação........................ 56
4.1.3.1.b. Envelhecimento acelerado.......... 56
4.1.3.1.c. Emergência das plântulas.......... 57
4.1.3.1.d. Sanidade das sementes............. 57
4.1.3.2. Lote 2............................... 64
4.1.3.2.a. Germinação........................ 64
4.1.3.2.b. Envelhecimento acelerado.......... 64
4.1.3.2.c. Emergência das plântulas.......... 66
4.1.3.2.d. Sanidade das sementes............. 66
4.1.3.3. Lote 3............................... 72
4.1.3.3.a. Germinação........................ 72
4.1.3.3.b. Envelhecimento acelerado.......... 72
4.1.3.3.c. Emergência das plântulas.......... 74
4.1.3.3.d. Sanidade das sementes............. 74
4.2. Segundo ano experimental

4.2.1. Umidade

4.2.2. Tratamento fungicida antes do início do armazenamento

4.2.2.1. Lote 1A

4.2.2.1.a. Germinação

4.2.2.1.b. Envelhecimento acelerado

4.2.2.2. Lote 2A

4.2.2.2.a. Germinação

4.2.2.2.b. Envelhecimento acelerado

4.2.2.3. Lote 3A

4.2.2.3.a. Germinação

4.2.2.3.b. Envelhecimento acelerado

4.2.3. Comparação entre épocas de tratamentos

4.2.3.1. Lote 1A

4.2.3.1.a. Germinação

4.2.3.1.b. Envelhecimento acelerado

4.2.3.1.c. Emergência das plântulas

4.2.3.1.d. Sanidade das sementes

4.2.3.2. Lote 2A

4.2.3.2.a. Germinação

4.2.3.2.b. Envelhecimento acelerado

4.2.3.2.c. Emergência das plântulas

4.2.3.2.d. Sanidade das sementes
<table>
<thead>
<tr>
<th>4.2.3.3. Lote 3A</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.3.a. Germinação</td>
<td>111</td>
</tr>
<tr>
<td>4.2.3.3.b. Envelhecimento acelerado</td>
<td>112</td>
</tr>
<tr>
<td>4.2.3.3.c. Emergência das plântulas</td>
<td>112</td>
</tr>
<tr>
<td>4.3.3.3.d. Sanidade das sementes</td>
<td>115</td>
</tr>
<tr>
<td>5. DISCUSSÃO</td>
<td>120</td>
</tr>
<tr>
<td>6. CONCLUSÕES</td>
<td>133</td>
</tr>
<tr>
<td>REFERÊNCIAS BIBLIOGRÁFICAS</td>
<td>135</td>
</tr>
<tr>
<td>ANEXOS</td>
<td>145</td>
</tr>
</tbody>
</table>
TRATAMENTO FUNGICIDA E CONSERVAÇÃO DE SEMENTES DE FEIJOEIRO

(*Phaseolus vulgaris* L.)

Autora: ANA DIONISIA DA LUZ COELHO NOVEMBRE
Orientador: Prof. Dr. JULIO MARCOS FILHO

RESUMO

A utilização de fungicidas para preservar a qualidade de sementes armazenadas tem sido muito discutida. O exame da literatura revela que não existe consenso entre os pesquisadores quanto ao momento mais adequado para a aplicação destes produtos. Portanto, esta pesquisa, conduzida nos Laboratórios de Análise de Sementes e de Patologia de Sementes da Escola Superior de Agricultura "Luiz de Queiroz", da Universidade de São Paulo, teve por objetivo avaliar os efeitos da aplicação dos fungicidas Thiram, Captan, Benomyl, Tiofanato metílico e da mistura Thiram + Benomyl, em diferentes lotes de sementes de feijoeiro (*Phaseolus vulgaris* L.) antes de se iniciar o período de armazenamento e nos momentos correspondentes às épocas de semeadura "das águas" e "da seca". Avaliaram-se os efeitos dos produtos durante dois anos experimentais (pe-
ríodos de sete e nove meses), sobre a germinação, vigor (envelhecimento acelerado), emergência das plântulas em campo, grau de umidade e sanidade das sementes. A análise dos dados e interpretação dos resultados permitiram as seguintes conclusões: os benefícios da aplicação de fungicidas antes do início do armazenamento se manifestam, principalmente, em lotes de sementes de feijoeiro de baixa qualidade armazenadas durante períodos prolongados; dentre os fungicidas Captan e Thiram + Benomyl são mais eficientes para o controle de Penicillium spp. e Aspergillus spp.; o método do papel de filtro com congelamento é mais eficiente na recuperação de fungos associados às sementes de feijoeiro.
FUNGICIDE TREATMENT AND SEED PRESERVATION OF DRY BEAN

(*Phaseolus vulgaris* L.)

Author: ANA DIONISIA DA LUZ COELHO NOVEMBRE

Adviser: Prof. Dr. JULIO MARCOS FILHO

SUMMARY

This research was carried out with the objective of evaluating the application effects of the fungicides Benomyl, Captan, Thiram, Thiophanate methyl and the mixture of Thiram + Benomyl on different bean (*Phaseolus vulgaris* L.) Seed lots before storage and before sowing in the field in the rainy and dry seasons. The experiments were set at the seed Technology Laboratory and at the Seed Pathology Laboratory of the "Escola Superior de Agricultura Luiz de Queiroz", University of São Paulo in Piracicaba, state of São Paulo, Brazil. The effects of fungicide treatments on germination, accelerated aging, field emergence, moisture content and seed health were evaluated at two experimental periods (seven and nine months). The results indicated that the application of fungicides before the storage time is most advantageous for low quality bean.
seeds stored for a long time. The fungicides Captan and Thiram + Benomyl are most effective in the control of *Penicillium* spp. and *Aspergillus* spp. The freezing method is better than the blotter test, enabling a greater recovery of fungi on bean seeds.
1. INTRODUÇÃO

O armazenamento de sementes é necessário em função do período de tempo que decorre entre a colheita e o momento mais adequado para a semeadura. A principal preocupação durante esta fase é a preservação da qualidade das sementes, procurando minimizar a velocidade do processo de deterioração.

Sabe-se que as condições de temperatura e umidade relativa do ambiente de armazenamento influenciam diretamente a atividade biológica das sementes e, de maneira indireta a ação de insetos e microorganismos, frequentemente associados como responsáveis pela redução da qualidade de sementes armazenadas.

Na impossibilidade do armazenamento de sementes comerciais de feijão e de outras espécies, em ambiente controlado ou em regiões geográficas nas quais as condições climáticas sejam favoráveis, a adoção de medidas que possam contribuir para a melhor conservação das sementes assume importância considerável.
Desta forma, o emprego de fungicidas pode se constituir numa prática auxiliar relativamente econômica, pois, além de prevenir ou mesmo impedir a presença de microorganismos durante o período de armazenamento, pode oferecer proteção à fase inicial de desenvolvimento das plantas em campo.

Entretanto, não há concordância entre os pesquisadores quanto à época mais adequada para se efetuar o tratamento das sementes: antes do armazenamento ou no momento da semeadura.

Portanto, esta pesquisa foi conduzida com a finalidade de se avaliar os efeitos da utilização de fungicidas, antes de se iniciar o período de armazenamento e nos momentos correspondentes às épocas de semeadura, sobre a qualidade fisiológica e sanidade de sementes de feijoeiro. Também, estudou-se a metodologia mais adequada para a detecção dos microorganismos associados às sementes armazenadas.

Face às divergências existentes na literatura e a necessidade de serem obtidas informações adicionais que possam contribuir para o esclarecimento do assunto, considerou-se relevante a condução desta pesquisa.
2. REVISÃO DE LITERATURA

2.1. Armazenamento

O armazenamento, face à defasagem das épocas de colheita e semeadura, constitui-se numa etapa praticamente obrigatória de um programa de produção de sementes. Deve ser conduzido de maneira extremamente cuidadosa para possibilitar a preservação da qualidade das sementes, minimizando a deterioração (OWEN, 1956; DELOUCHE, 1968a e 1968b).

Pela inviabilidade econômica do armazenamento de sementes comerciais de feijoeiro e de outras espécies, em ambiente controlado, diversos pesquisadores têm conduzido trabalhos com a finalidade de se verificar o comportamento dessas sementes em diferentes condições.

LOPEZ (1964) armazenou em ambiente controlado, por um período de sete meses, sementes de feijão com diferentes graus de umidade. Verificou que ocorreu a manutenção da porcentagem de germinação e do vigor, quando a umidade das sementes variou de 11,51 a 14,68%; concluiu que é viável o armazenamento destas sementes, durante o período considerado, quando a umidade for igual ou inferior a 14,0%.

Por outro lado ZINK e ALMEIDA (1970) armazenaram sementes de feijão com umidade inicial de 14,0; 9,3 e 6,7%, por dois anos, em condições não controladas, usando embalagens de aniagem, plástico fino e plástico grosso. Concluíram que a umidade inicial inferior a 10,0% e embalagem em saco plástico permitiu a manutenção da germinação acima de 95%, no final do período. Foi observada queda de germinação em poucos meses, quando o grau de umidade inicial das sementes era elevado.

Em outro trabalho, ZINK et alii (1976) estudaram os efeitos de diferentes condições de armazenamento sobre a germinação, vigor (envelhecimento acelerado), "stand" e produção de sementes de feijoeiro. Verificaram que alta umidade e alta temperatura foram prejudiciais à germinação e ao vigor das se-
mentes; o vigor decresceu mais rapidamente do que a germinação. As porcentagens de emergência das plântulas em campo foram, na maioria dos casos, inferiores às porcentagens de germinação.

Por sua vez, FREIRE et alii (1978) concluíram que sementes de feijão podem ser armazenadas em ambiente aberto por até 22 meses, com manutenção da germinação e vigor, quando o grau de umidade das sementes for de 13,0%.

Resultados semelhantes foram obtidos por ZINK et alii (1979) quando armazenaram sementes de feijoeiro sem controle da temperatura e umidade relativa. Conseguiram melhor conservação com grau de umidade das sementes igual ou inferior a 13,0%. No entanto, encontraram respostas diferentes para os dois cultivares estudados.

Para a generalização das condições de armazenamento, em regiões tropicais e subtropicais, por um período de um a nove meses, DELOUCHE et alii (1973) recomendaram que o grau de umidade das sementes de cereais deve ser inferior a 13,0%, quando a soma da temperatura (em °C) e da umidade relativa (em porcentagem) for inferior a 80. Nesta situação, há conservação da germinação, podendo haver queda no vigor.

Condições de ambiente específicas para a boa conservação das sementes de feijão foram indicadas por López e Christensen (1962), citados por SCHWARTZ e GÁLVEZ (1980); os auto-
res afirmaram que, para a manutenção da qualidade destas sementes, o armazenamento deve ser efetuado em locais com umidade relativa de no máximo 75%, sementes com grau de umidade inferior a 15,0% (preferivelmente 13,0%) e temperatura ambiente inferior a 10°C.

Portanto, estes trabalhos indicaram a necessidade da manutenção de sementes de feijão com umidade inferior ou igual a 13,0%, para o armazenamento em condições não controladas.

Além dos efeitos diretos da umidade relativa (ou grau de umidade da semente) e da temperatura do ambiente de armazenamento sobre a conservação das sementes, diversos pesquisadores enfatizam os efeitos indiretos desses fatores, sobre a ação de microorganismos responsáveis pela deterioração das sementes armazenadas.

De acordo com CHRISTENSEN (1972), sob o ponto de vista ecológico, os fungos que invadem as sementes podem ser divididos em dois grupos gerais: fungos de campo e de armazenamento.

Fungos de campo não se desenvolvem em sementes armazenadas, desde que estas apresentem teor de água adequado para o armazenamento, pois os mesmos perdem gradualmente a viabilidade; a taxa em que este processo ocorre depende da espécie do fungo e da umidade e temperatura das sementes armazenadas.

Os fungos de armazenamento compreendem, principalmente, espécies de Aspergillus e Penicillium que podem estar presentes como contaminantes ou na forma de micélio dormente entre os tecidos do pericarpo ou do tegumento das sementes (Warnock e Preece, 1971, citados por NEERGAARD, 1977). Podem se desenvolver e provocar danos às sementes armazenadas, em função da temperatura e umidade relativa do ar.

A temperatura ótima para o crescimento da maioria dos fungos de armazenamento está entre 30-33°C, a temperatura máxima entre 50-55°C e a mínima de 0-5°C. Fungos de armazenamento que invadem sementes cujo teor de água esteja em equilíbrio com umidade relativa superior a 85%, apresentam crescimento bastante lento em temperaturas abaixo de 10°C. Por esta razão e pela própria redução da atividade fisiológica da semente, sementes armazenadas com alto teor de água devem man-
ter sua viabilidade por um período prolongado, se armazenadas em ambiente de baixa temperatura (CHRISTENSEN, 1973).

NEERGAARD (1977) relatou que a composição específica da flora fúngica no armazenamento é altamente dependente do grau de umidade das sementes; variações muito pequenas desse grau podem modificar substancialmente a flora, tanto em qualidade como em quantidade.

Parece haver concordância entre os pesquisadores quanto ao fato de que, em umidades relativas inferiores a 65%, não há invasão de fungos às sementes durante o armazenamento. Os limites de umidade relativa citados, para que ocorra invasão e/ou danificações por esses microorganismos, são 65-90% (CHRISTENSEN e LÖPEZ, 1963); 70-90% (CHRISTENSEN e KAUFMANN, 1969); 65-70% e 85-90% (NEERGAARD, 1977) e 68-90% (CHRISTENSEN, 1978).

Ainda, CHRISTENSEN (1973) afirmou que, uma vez estabelecidos num lote de sementes, os fungos das sementes armazenadas poderão continuar a se desenvolver em condições de temperatura e umidade inferiores àquelas exigidas para que invadam sementes sadias.

Pesquisas também têm sido conduzidas com a finalidade de se avaliar os efeitos de fungos associados a sementes armazenadas.
CHRISTENSEN (1973) explicou que evidências acumuladas desde 1940 não deixam motivos para dúvidas de que fungos de armazenamento causam queda na germinabilidade das sementes; citou como exemplos trabalhos de Papavizas e Christensen (1960); Qasem e Christensen (1960); Christensen (1962); Fields e King (1962) e López e Christensen (1967).

O trabalho efetuado por FIELDS e KING (1962) mostra bem este efeito. Os autores armazenaram sementes de ervilha a 30°C e 85% UR, inoculadas com *Aspergillus* spp.; ocorreu perda do poder germinativo aos seis meses nas sementes inoculadas, enquanto as sadias mantiveram a alta capacidade de germinação.

Amostras de milho, trigo e sorgo mantiveram alta porcentagem de germinação, durante o período experimental, cujas condições eram favoráveis para o desenvolvimento de fungos de armazenamento, enquanto amostras infectadas perderam tal capacidade em poucas semanas ou meses (CHRISTENSEN e LÓPEZ, 1963).

Pesquisas mais recentes, conduzidas com diferentes espécies também vem confirmar a ação desses microorganismos em detrimento da qualidade de sementes armazenadas.

Assim, TANAKA e CORRÊA (1981) concluíram que *Aspergillus* e *Penicillium* podem causar a deterioração de sementes de feijão armazenadas em ambiente aberto. LIMA et alii (1984) trabalhando com sementes de algodoeiro; HENNING et alii

Os microorganismos de armazenamento, desde que haja condições de umidade e temperatura, agem no sentido de acelerar a taxa de deterioração das sementes (CARVALHO e NAKAGAWA, 1983). Os mesmos autores, destacaram, que a manutenção da viabilidade de um lote de sementes, por determinado período de armazenamento depende, principalmente, do grau de umidade das sementes (ou da umidade relativa do ar), da temperatura do ar, da ação de insetos e fungos do armazenamento e do tipo de embalagem utilizada.

Ainda que Aspergillus e Penicillium se constituam nos principais gêneros de fungos que se associam a sementes armazenadas, outros microorganismos também podem se mostrar prejudiciais.

Desta forma, CHRISTENSEN (1972), afirmou que a incidência de Alternaria é muito comum em sementes recém-colhidas de diferentes espécies; trabalhos conduzidos por diferentes pesquisadores têm demonstrado que apenas a presença deste fungo não provoca a deterioração das sementes armazenadas. Por outro lado, a presença de Fusarium spp. pode ser causa de redução na germinação.
A presença de *Fusarium* spp., principalmente *F. semitectum* foi apontada por HENNING (1984) como causa de problemas na germinação de sementes de soja, em laboratório; segundo este autor, sua presença está frequentemente associada a sementes que sofreram atraso na colheita ou deterioração em campo. O mesmo autor se refere a *Alternaria tenuis* e *Rhizopus nigricans*, dentre outros, como saprófitas e que não devem ser considerados na análise sanitária de sementes de soja.

Por outro lado, KABEERE e TALIGOOLA (1983), verificaram intensa invasão de *Rhizopus* sp. e de bactérias em sementes de soja (cv 'Clark'), à medida que decorria o período de armazenamento; atribuíram a estes microorganismos perda da viabilidade das sementes.

LIMA et alii (1984) estudaram a influência de *Aspergillus niger*, *A. flavus* e *Rhizopus* sp. na deterioração de sementes de algodoeiro armazenadas, demonstrando que a presença destes fungos prejudicou a germinação e o vigor das sementes.

SOAVE (1985), citou *Alternaria* sp., *Fusarium* spp. e *Rhizopus* sp. dentre os microorganismos associados a sementes de algodoeiro herbáceo que já tiveram sua patogenicidade comprovada às plântulas ou como sendo transmitidos pela semente.
A presença destes fungos também tem sido constatada em sementes de amendoim. Assim, patógenos de importância, dentre os quais *Aspergillus* spp. e *Rhizopus* sp., foram citados por PHIPPS (1984) como associados a estas sementes; o autor concluiu que, embora *Rhizopus* sp. tenha causado problemas na germinação em laboratório, não se constituiu em causa comum de doenças em plântulas no campo.

No entanto, em um levantamento sanitário efetuado em sementes de feijão, NITSCHBE e CAFATI (1985) verificaram que isolados de *Rhizopus stolonifer* mostraram-se patogênicos às plântulas. Até então, segundo os autores, essa ocorrência não constava da literatura sobre o assunto, ainda que alguns pesquisadores tenham citado este fungo como contaminante interno das sementes (Bolkan et alii, 1976; Ellis et alii, 1976; Prasad, 1979 e Ellis e Gálvez, 1980).

Também trabalhando com sementes de amendoim, MORAES e MARIOTTO (1985) relataram que *Aspergillus* spp., *Penicillium* spp., *Rhizopus* sp., *Fusarium* spp., *Macrophomina phaseolina* e *Rhizoctonia solani* destacaram-se pela frequência com que ocorrem nestas sementes, prejudicando a germinação ou causando tombamento das plântulas emergidas.

De forma semelhante, MARIOTTO (1986) afirmou que fungos considerados de pouca importância, ou mesmo saprófitas, em sementes de outras culturas, tais como *Rhizopus, Aspergillus*
e *Penicillium*, aparecem frequentemente e em grande quantidade em sementes de amendoim, estando geralmente associados a sementes de má qualidade e baixo poder germinativo.

Portanto pode-se perceber que já existe a preocupação em relação a estes fungos e seus efeitos na qualidade das sementes, havendo a necessidade de maiores estudos sobre a possibilidade de serem patogênicos.

2.2. **Fungicidas: momento de aplicação.**

Não existe consenso entre pesquisadores quanto ao uso de fungicidas para o tratamento de sementes armazenadas, apesar de existirem na literatura, trabalhos de pesquisa demonstrando a ação de microorganismos como possível causa da deterioração de sementes.

Deve, também, ser feita a consideração sob o ponto de vista comercial com respeito ao momento de aplicação destes produtos químicos pois, uma vez que não haja a possibilidade da comercialização das sementes, o material tratado com fungicidas não poderá ser utilizado como grão para consumo na alimentação humana e animal.

CHRISTENSEN (1973) recomendou a aplicação de produtos químicos às sementes antes de serem acondicionadas pois, os mesmos podem oferecer boa proteção à invasão e danos causados por fungos de armazenamento, quando as condições de ambiente favorecem o desenvolvimento destes microorganismos.
De forma semelhante, MEHTA (1979), também reconheceu a importância do tratamento das sementes antes do armazenamento em função das condições de armazenamento e do grau de umidade das sementes.

Pesquisas conduzidas por MORENO-MARTINEZ e RAMIREZ (1985) também parecem reforçar a utilidade dos fungicidas em condições específicas de armazenamento, principalmente, em regiões tropicais e subtropicais onde fungos de armazenamento têm um papel importante na perda da viabilidade das sementes.

Pode-se perceber que há divergências quanto ao uso de fungicidas para proteger a qualidade das sementes armazenadas. Embora os resultados referentes às sementes de feijão, pareçam mostrar-se favoráveis ao tratamento antes do armazenamento, atualmente não têm sido comum a adoção de tal procedimento pelos produtores de sementes.

A aplicação de fungicidas às sementes pouco antes da semeadura, parece ser recomendada com maior intensidade em condições adversas de clima ou em sementes de qualidade inferior.

Desta forma, ELLIS et alii (1976b) aplicaram fungicidas em sementes de feijão de baixa qualidade e verificaram que o tratamento proporcionou benefícios à emergência das plântulas em campo.

Estudos conduzidos por GUERREIRO (1976), com diversos fungicidas aplicados em sementes de feijão, permitiram concluir que alguns dos produtos utilizados proporcionaram efeito favorável à emergência das plântulas; não foi destacada nessa pesquisa o nível de qualidade das sementes.

HENNING et alii (1985), enfatizaram que o uso de fungicidas em sementes de soja deve ser efetuado no momento da semeadura e em condições específicas: solo com baixa disponibilidade hídrica, falta de sementes de boa qualidade e quando a semeadura é efetuada em solos com baixa temperatura ou altos níveis de umidade.

Por outro lado, MEHTA (1979), trabalhando com sementes de trigo não encontrou resultados favoráveis quando efetuou a aplicação de fungicidas dez dias antes da semeadura. Gaudêncio (1979), citado por este mesmo autor, em trabalho semelhante chegou à mesma conclusão.
Além da questão referente ao momento adequado da aplicação de fungicidas, têm sido discutida a utilização destes produtos em função do nível de qualidade das sementes.

CARVALHO e NAKAGAWA (1983) destacaram que a intensidade de resposta ao uso de fungicidas pode variar de acordo com o nível de vigor das sementes. Assim, sementes com nível de vigor alto ou muito baixo não apresentam resposta ao tratamento com fungicidas; as de nível de vigor médio reagem, até certo ponto, com uma intensidade crescente à medida que cresce o nível de vigor dentro dessa faixa.

Tal consideração talvez possa se relacionar com a afirmação de MEHTA (1979), uma vez que a qualidade das sementes foi severamente afetada por fungos, o tratamento das sementes não poderá trazer benefícios. De forma semelhante, HENNING et alii (1985) explicaram que em sementes de soja armazenadas com grau elevado de umidade e alta temperatura ambiente, há a ocorrência de Aspergillus spp. e, ainda, neste caso, o uso de fungicidas é ineficaz pois, embora haja o controle do fungo, a deterioração causada resulta em perda da viabilidade.

Algumas pesquisas mostraram a variação de resposta ao uso de fungicidas de acordo com a qualidade das sementes.

ELLIS et alii (1976b) trataram sementes de feijão de baixa qualidade com fungicidas e verificaram melhor desempenho das sementes tratadas, comparadas à testemunha; semen
tes de alta qualidade não apresentaram respostas em função dos produtos utilizados.

Num estudo com sementes de feijão e soja, BOLKAN et alii (1976), verificaram que os três cultivares de feijão apresentavam boa qualidade inicial e não mostraram qualquer resposta aos diferentes tratamentos fungicidas. Por outro lado, de três cultivares de soja com baixa qualidade, em apenas dois ocorreu melhor desempenho com a aplicação de fungicidas.

CARVALHO (1981) conduziu experimento com fungicidas em sementes de feijão e observou que o tratamento foi mais benéfico quando as sementes não apresentavam nível avançado de deterioração.

TABAJARA e SOUZA (1979) mostraram que a utilização de fungicidas mostrou-se favorável, quando aplicados em lotes de sementes de soja com baixo poder germinativo.

Apesar destes trabalhos evidenciarem a atuação dos fungicidas, influenciada pelo nível de qualidade das sementes falta, entretanto, a quantificação dos valores de germinação e incidência de patógenos, para se chegar a conclusões mais precisas, pois os pesquisadores podem adotar diferentes critérios para a classificação dos níveis de qualidade.
2.3. Fungicidas: controle de microorganismos e efeitos na qualidade das sementes

O método mais econômico e eficiente de se controlar fungos associados às sementes é o uso de sementes livres de patógenos, o que estabelece sua alta qualidade (ELLIS et alii, 1976a)

Na impossibilidade de se utilizar sementes livres de patógenos, a utilização de produtos químicos para o tratamento das sementes pode oferecer proteção contra os microorganismos associados a estas e/ou presentes no solo.

Sabe-se que na cultura do feijoeiro um dos maiores problemas é o grande número de doenças que podem ser, em sua maioria, transmissíveis pela semente. Desta forma, diferentes pesquisadores afirmaram que muitos patógenos do feijoeiro estão presentes internamente nas sementes podendo causar redução de germinação (ZAUMEYER e THOMAS, 1957; NOBEL e RICHARDSON, 1968 e ELLIS et alii, 1976a).

Ainda, SCHWARTZ e GÁLVEZ (1980) explicaram que o tratamento de sementes é relativamente econômico e pode melhorar a germinação e emergência no campo de lotes de sementes com níveis moderados de infecção.

De acordo com MACHADO (1986) o tratamento de sementes de feijão no Brasil tem-se efetuado pela aplicação de
Benomyl, Carbedazin, Thiabendazol, Tiofanato metílico e Carboxin (ação sistêmica), Thiram, Captan, Quintozone, Captafol e Ethazol (ação protetora). Também, para uma maior eficiência, têm sido utilizadas misturas de fungicidas com espectro de ação complementares (protetora e sistêmica).

Alguns exemplos de pesquisas já conduzidas com o uso de fungicidas em sementes de feijão, armazenadas ou não, podem mostrar o efeito dos produtos no controle de microorganismos e sobre a qualidade e desempenho das sementes.

Desta forma, ELLIS et alii (1976b) trataram sementes de feijão com baixa qualidade (baixa porcentagem de germinação e alta incidência de fungos) com Captan, Thiram e Benomyl. Observaram que os três produtos foram eficazes para reduzir a porcentagem total de fungos presentes nas sementes; não encontraram diferenças significativas nas porcentagens dos microorganismos isolados, com os produtos usados. Com relação à qualidade fisiológica verificaram que ocorreu maior porcentagem de germinação "in vitro" e emergência em campo, para todos os fungicidas testados em relação à testemunha. Não constataram diferenças em relação à porcentagem de germinação e emergência de plantas devidas à atuação dos produtos aplicados.

Por outro lado, BOLKAN et alii (1976) não encontraram maiores porcentagens de germinação e emergência, quando trataram sementes de três cultivares de feijão de alta qualidade.
de com Thiram, Captan, Benomyl e Acetato de trifeniltny. Verificaram que estes produtos proporcionaram menor recuperação de *Aspergillus* e *Penicillium* do que a observada na testemunha, mas Benomyl mostrou-se o mais efetivo na redução das colônias de fungos detectadas. Também não foram constatadas diferenças entre os fungicidas Thiram e Captan no controle efetuado.

Já em trabalho conduzido por TANAKA e CORRÊA (1981) com sementes de feijoeiro armazenadas em ambiente aberto, houve conclusão de que o uso de Captan e Carbedazin foi eficiente no controle de *Aspergillus* e *Penicillium*, comparados à testemunha. A aplicação destes fungicidas foi favorável para a manutenção da qualidade fisiológica das sementes durante o período de armazenamento.

Comparando a ação de fungicidas protetores (Thiram e Captafol) e sistêmicos (Benomyl e Tiofanato metílico) no tratamento de sementes de feijão, efetuado em diferentes épocas, CARVALHO (1981), destacou o melhor controle de *Aspergillus* spp. com o uso dos produtos sistêmicos. Observou, ainda, que a aplicação destes fungicidas antes de armazenar as sementes permitiu aumento superior a 65% de germinação das sementes tratadas, em comparação com as que não receberam tratamento, após 8 meses de armazenamento.
Fazendo um levantamento da incidência de fungos em sementes de feijão e do controle proporcionado pelo uso de três fungicidas, KHARE (1985) verificou que Benomyl, seguido por Captan, proporcionaram menor porcentagem total de recuperação de fungos. Estes dois fungicidas também proporcionaram maior porcentagem de germinação.

Verificando a influência do tratamento com Thi­ram, Benomyl e a mistura Thiram + Benomyl em dois lotes de sementes de feijão armazenados sob condições ambientais, RESTREPO (1985) obteve melhor controle de Aspergillus com Benomyl e a mistura. Durante os seis meses de armazenamento, ocorreu controle total de Penicillium spp. com Thiram + Benomyl, em apenas um dos lotes. Embora o tratamento dos lotes de baixa e alta qualidade tenha reduzido a incidência de fungos, não foi encontrada correlação significativa com a qualidade fisiológica das sementes.

A variação encontrada no controle de microorganismos com os diferentes fungicidas, talvez possa ser em parte explicada pelo modo de atuação. Assim, SCHWARTZ e GÁLVEZ (1980) relataram que fungicidas protetores, como Thiram e Captan, penetram na testa das sementes de feijão onde se encontram localizados muitos fungos, mas não conseguem atingir o interior dos cotilédones. Os fungicidas sistêmicos como, por exemplo, Benomyl podem atingir os cotilédones e fornecer maior grau de controle.
A aplicação de fungicidas em sementes de outras espécies também têm sido estudada. Assim, ELLIS et alii (1975), pesquisando a atuação de Thiram, Captan e Benomyl, em três lotes de sementes de soja, verificaram que todos os fungicidas proporcionaram menor porcentagem de incidência de fungos comparados à testemunha. Observaram, com o uso de Captan e Benomyl, menor incidência de fungos que com a aplicação de Thiram. Dos três produtos, Thiram foi o menos efetivo no controle de *Aspergillus* spp.. A porcentagem de germinação das sementes tratadas superiorou a testemunha; em dois lotes Captan e Thiram foram superiores ao tratamento com Benomyl; no terceiro, não observaram diferenças entre os produtos testados.

Resultados diferentes foram encontrados por BOLKAN et alii (1976) que observaram maior porcentagem de germinação em sementes de soja tratadas com Benomyl, comparando-se com a testemunha, Thiram e Captan.

MORENO-MARTINEZ et alii (1985) armazenaram em ambiente controlado (27°C e 85% UR), sementes de milho tratadas com seis fungicidas e inoculadas com espécies de *Aspergillus* e *Penicillium* e observaram que o uso de Benomyl não permitiu recuperação de *Aspergillus* spp.. Captan não proporcionou controle tão eficiente destes dois fungos, mas apresentou valores inferiores à testemunha. Não foram constatadas diferenças na germinação das sementes tratadas com Captan e com Benomyl; a testemunha apresentou valores inferiores de germinação ao das sementes tratadas.
Trabalho semelhante foi conduzido por MORENO-MARTINEZ e RAMIREZ (1985) com sementes de milho armazenadas sob condições controladas (26°C, 75 e 85% UR) e tratadas com diferentes fungicidas e misturas de alguns produtos. Constataram que Benomyl proporcionou controle total de Aspergillus e Penicillium; já a utilização de Captan permitiu o controle total de Penicillium spp., embora a incidência de Aspergillus spp. tenha sido inferior à da testemunha. Os autores concluíram que algumas misturas de fungicidas foram melhores para o controle de fungos e manutenção da viabilidade das sementes.

Procurando uma explicação para baixa capacidade de germinação de sementes tratadas sem aparente invasão por fungos de armazenamento, MORENO-MARTINEZ e RAMIREZ (1985) afirmaram que o fato pode ser consequência de processos fisiológicos, fungos não detectados ou fitotoxicidade de alguns fungicidas.

Pode-se ainda verificar na literatura a existência de trabalhos de pesquisas com fungicidas, visando avaliar o efeito destes sobre a qualidade fisiológica das sementes.

Desta forma, MARCOS FILHO e PERRY JÚNIOR (1977) observaram que a aplicação de Thiram em sementes de feijoeiro, promoveu valores superiores de germinação e vigor das sementes em relação à testemunha. MENTEN e MENDES (1982) também verificaram a ocorrência de maior porcentagem de germinação de sementes de feijão tratadas com Thiram e MAEDA et alii (1976), com
sementes de algodão. Ainda MARCOS FILHO e SOUZA (1983) concluíram que o tratamento fungicida de sementes de soja, antes do início do armazenamento, pode beneficiar a conservação do vigor; enfatizaram a necessidade da análise sanitária das sementes para conclusões mais precisas.

Assim, Sinclair (1975) citado por MENTEN (1978), sugeriu que o aumento de potencial de germinação no teste de envelhecimento acelerado pelo tratamento das sementes com fungicidas, demonstrou que grande parcela do vigor da semente está relacionado à presença de patógenos. Pesquisa efetuada por FRANÇA NETO et alii (1985) pode confirmar tal observação; os autores trataram sementes de soja com fungicidas antes do teste de envelhecimento acelerado e obtiveram maior porcentagem de germinação com as sementes tratadas; as não tratadas sofreram intenso ataque de *Aspergillus flavus*.

Com relação ao controle de outros microorganismos, trabalhando com sementes de feijão, ELLIS et alii (1976b) não encontraram diferenças entre Thiram, Captan e Benomyl no controle exercido sobre *Fusarium* sp., embora tenha proporcionado do menor porcentagem de ocorrência do que a testemunha. ELLIS et alii (1975) obtiveram melhor controle de *Fusarium* spp., em sementes de soja, com o uso de Thiram. Por outro lado, MENTEN e MENDES (1982) verificaram que a aplicação de Thiram não permitiu o controle deste fungo em sementes de feijão. Resultados diferentes foram obtidos por FURLAN et alii (1985), que
observaram maior eficiência de Benomyl e Captan, quando comparados a outros fungicidas, no controle de _Fusarium_ spp. em sementes de algodão.

Para o controle de _Rhizopus_ spp. têm sido recomendada a utilização de Captan para o tratamento das sementes de amendoim (PHIPPS, 1984).

Pelo exame da literatura pode-se perceber que existem variações nas respostas ao uso de fungicidas, em função do produto utilizado, do nível de qualidade das sementes e dos microorganismos a elas associados. Portanto, estudos nesse sentido procuram encontrar produtos mais eficientes no controle de determinados microorganismos que, por seus efeitos diretos ou indiretos, possam contribuir para a qualidade das sementes.
3. MATERIAL E MÉTODOS

O presente trabalho, conduzido no Laboratório de Sementes e no Campo Experimental do Departamento de Agricultura e Horticultura (LAH) e no Laboratório de Patologia de Sementes do Departamento de Fitopatologia (LFT) da Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) constou, em linhas gerais, da avaliação da influência da época do tratamento fungicida sobre a conservação de sementes de feijoeiro (*Phaseolus vulgaris* L.) com diferentes níveis de qualidade fisiológica e sanitária.

3.1. Sementes

A pesquisa foi realizada em dois anos experimentais (1983/84 e 1984/85), utilizando-se sementes de feijoeiro, cultivar Rio Vermelho, cedidas pela Fundação Instituto Agronômico do Paraná (IAPAR), Londrina (PR). Durante o primeiro ano, no período compreendido entre julho/83 e março/84, utilizaram-se três lotes (designados lotes 1, 2 e 3) colhidos no mês de...
janeiro de 1983 (correspondendo à safra "das águas" 1982/83); no segundo ano, no período compreendido entre maio/84 e abril/85 estudaram-se outros lotes (designados lotes 1A, 2A e 3A) colhidos nas safras "das águas" 1982/83 e 1983/84.

A escolha de lotes com diferenças de qualidade fisiológica e sanitária foi efetuada com base em resultados de análises conduzidas pela Área Básica de Sementes do IAPAR, para o primeiro ano experimental e em resultados preliminares obtidos no Laboratório de Sementes do LAH/ESALQ/USP, para o segundo ano. Os resultados encontram-se nas Tabelas 1 e 2.

A Tabela 1 mostra que o lote 2 apresentou qualidade fisiológica superior ao lote 1, em função dos resultados dos testes de germinação e envelhecimento acelerado; a sanidade do lote, com base na recuperação de *Alternaria* sp., *Fusarium* spp., *Rhizoctonia solani* e *Macrophomina* sp., também superou a do lote 1. O lote 3 apresentou qualidade fisiológica e sanitária superior, quando comparado aos outros dois lotes, o que pode ser verificado pelo exame dos dados referentes aos testes de germinação, envelhecimento acelerado e de sanidade das sementes.
Tabela 1 - Caracterização da qualidade das sementes dos lotes 1, 2 e 3, do primeiro ano experimental (1983/84).

Dados fornecidos pelo IAPAR, abril 1983.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Lote 1</th>
<th>Lote 2</th>
<th>Lote 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pureza física (%)</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Germinação (%)</td>
<td>78,0</td>
<td>91,0</td>
<td>96,0</td>
</tr>
<tr>
<td>Umidade (%)</td>
<td>12,7</td>
<td>12,0</td>
<td>13,3</td>
</tr>
<tr>
<td>Envelhecimento acelerado (42°C-96 h)</td>
<td>76,0</td>
<td>83,0</td>
<td>96,0</td>
</tr>
<tr>
<td>Alternaria sp. (%)</td>
<td>5,0</td>
<td>1,0</td>
<td>2,5</td>
</tr>
<tr>
<td>Colletotrichum sp. (%)</td>
<td>0,5</td>
<td>1,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Fusarium spp. (%)</td>
<td>5,0</td>
<td>2,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Rhizoctonia solani (%)</td>
<td>1,5</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Macrophomina sp. (%)</td>
<td>1,0</td>
<td>0,5</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Pela Tabela 2, pode-se verificar que a caracterização da qualidade inicial dos lotes 1A, 2A e 3A foi efetuada com base nos resultados obtidos nos testes de germinação e envelhecimento acelerado; desta forma, considerou-se o lote 1A como o de qualidade fisiológica inferior aos outros dois lotes; o lote 2A apresentou qualidade fisiológica intermediária, enquanto o lote 3A superou os demais. Quanto à sanidade das sementes dos três lotes, observa-se que, em geral o lote 1A apresentava maior incidência de microorganismos, em relação aos
demais, e que o lote 2A pode ser considerado como o de melhor sanidade.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Lote 1A</th>
<th>Lote 2A</th>
<th>Lote 3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pureza física (%)</td>
<td>97,1</td>
<td>99,9</td>
<td>99,8</td>
</tr>
<tr>
<td>Germinação (%)</td>
<td>50,0</td>
<td>94,0</td>
<td>90,0</td>
</tr>
<tr>
<td>Umidade (%)</td>
<td>10,5</td>
<td>11,0</td>
<td>9,7</td>
</tr>
<tr>
<td>Envelhecimento acelerado (%)</td>
<td>52,0</td>
<td>64,0</td>
<td>81,0</td>
</tr>
<tr>
<td>42°C - 72 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria sp. (%)</td>
<td>67,0</td>
<td>55,0</td>
<td>52,0</td>
</tr>
<tr>
<td>Aspergillus spp. (%)</td>
<td>12,0</td>
<td>3,0</td>
<td>15,0</td>
</tr>
<tr>
<td>Fusarium spp. (%)</td>
<td>28,0</td>
<td>4,0</td>
<td>3,0</td>
</tr>
<tr>
<td>Penicillium spp. (%)</td>
<td>79,0</td>
<td>6,0</td>
<td>79,0</td>
</tr>
<tr>
<td>Rhizoctonia solani (%)</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Rhizopus sp. (%)</td>
<td>1,0</td>
<td>3,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

3.2. Tratamentos Fungicidas

Em cada ano experimental, após a recepção dos diferentes lotes, os mesmos foram submetidos ao expurgo com Fosfeto de Alumínio - Fosfina (GastoXin B), utilizando-se um comprimido de 0,6g/2 m³/saca de 50kg, durante 48 horas. Em se-
guida procedeu-se a homogeneização dos lotes e, de cada um deles, separaram-se seis amostras, ou sejam; cinco amostras de 7kg cada, destinadas aos tratamentos fungicidas e uma amostra de aproximadamente 15kg, correspondente à testemunha. Cada uma das amostras de 7kg foi submetida a tratamento fungicida usando-se os seguintes produtos:

- Thiram 70% - bissulfeto de tetratomiltiuran (Rhodiauram 70).
- Tiofanato metílico 70% - 1,2 bis(3-metoxicarbonil-2-tiourrado) benzeno (Cercobin M-70).
- Captan 50% - N-(triclorometiltitio) ciclohex-4-eno-1,2-dicarboximida (Captan 50WP).
- Benomyl 50% - metil N(l-butilcarbomoi)-benzimidazol-2-carbamato (Benlate 50).

Todas as amostras receberam, também, tratamento com o inseticida Malathion 2% (0,5 g/kg de sementes) para prevenir a infestação de insetos.

Para a aplicação dos fungicidas procedeu-se da seguinte maneira: pesou-se a quantidade adequada de cada fungicida, que foi colocada em um recipiente plástico tipo "gerbox"; em seguida acrescentou-se o peso adequado do inseticida e efetuou-se a mistura com auxílio de um bastonete de vidro. A seguir, a mistura de defensivos e as sementes foram reunidas e homogeneizadas parceladamente no interior de uma saca de polietileno com capacidade para 10 kg, até que se completasse o tra-
tamento de cada amostra, para todos os lotes. O tratamento testemunha recebeu apenas a aplicação do inseticida. Desta forma, obtiveram-se, para cada lote, os seguintes tratamentos:

\begin{itemize}
 \item \textbf{T₀: Testemunha - sem fungicida}
 \item \textbf{T₁: Thiram (Rhodiauram 70) - 140 g i.a./100 kg de sementes.}
 \item \textbf{T₂: Tiofanato metílico (Cercobin M-70) - 210 g i.a./100 kg de sementes.}
 \item \textbf{T₃: Thiram + Benomyl - 112g i.a. + 75 g i.a./100 kg de sementes.}
 \item \textbf{T₄: Captan (Captan 50 WP) - 125g i.a./100 kg de sementes.}
 \item \textbf{T₅: Benomyl (Benlate 50) - 100g i.a./100 kg de sementes.}
\end{itemize}

A aplicação dos fungicidas foi realizada previamente ao início do armazenamento, em cada ano experimental. Vendo verificar a influência da época do tratamento sobre a qualidade das sementes, os fungicidas também foram aplicados em épocas correspondentes à semeadura "das águas" (setembro/outubro) e "da seca" (janeiro/fevereiro). Nestas épocas, da amostra correspondente à testemunha de cada um dos lotes, foram separadas cinco porções de aproximadamente 1 kg cada que, em seguida foram submetidas a tratamento com os cinco fungicidas já citados; o tratamento dessas amostras, foi efetuado da mesma maneira descrita anteriormente (antes do início do armazenamento das sementes), excetuando-se a aplicação do inseticida Malathion.
3.3. Armazenamento

As amostras de sementes correspondentes aos seis tratamentos, embaladas em sacos de papel Kraft, permaneceram armazenadas em condições ambientais do Laboratório de Análise de Sementes do LAH/ESALQ/USP, durante o período de julho/83 a março/84 (primeiro ano experimental) e de maio/84 a abril/85 (segundo ano experimental). Os dados referentes à temperatura e umidade relativa do ar foram registrados diariamente em higrotermôgrafo; os dados encontram-se nos Anexos 1 e 2.

3.4. Avaliação da Qualidade das Sementes

A avaliação da qualidade fisiológica das sementes foi efetuada no Laboratório de Análise de Sementes e Campo Experimental do LAH/ESALQ/USP; a análise sanitária, foi realizada no Laboratório de Patologia de Sementes do LFT/ESALQ/USP. Foram efetuadas análises de sementes tratadas antes do início do armazenamento e em épocas correspondentes à semeadura "das águas" e "da seca".

No período de julho/83 a março/84 (primeiro ano experimental) foram conduzidas quatro épocas de testes, em intervalos bimestrais, designadas no presente trabalho por:
E₁I: sementes tratadas e testadas em julho/83 (início do armazenamento);
E₂I: sementes tratadas em julho/83 e testadas em setembro/83;
E₂A: sementes tratadas e testadas em setembro/83 (correspondendo à época de semeadura "das águas").
E₃I: sementes tratadas em julho/83 e testadas em novembro/83;
E₄I: sementes tratadas em julho/83 e testadas em fevereiro/84;
E₄S: sementes tratadas e testadas em fevereiro/84 (correspondendo à época de semeadura "da seca").

No período compreendido entre maio/84 e abril/85 (segundo ano experimental) foram conduzidas cinco épocas de testes, em intervalos bimestrais, designadas por:

E₁I₁: sementes tratadas e testadas em maio/84 (início do armazenamento);
E₂I₁: sementes tratadas em maio/84 e testadas em julho/84;
E₃I₁: sementes tratadas em maio/84 e testadas em outubro/84;
E₃A₁: sementes tratadas e testadas em outubro/84 (correspondendo à época de semeadura "das águas");
E₄I₁: sementes tratadas em maio/84 e testadas em dezembro/84;
E₅I₁: sementes tratadas em maio/84 e testadas em fevereiro/85;
E_5S_1: sementes tratadas e testadas em fevereiro/85 (correspondendo à época da semeadura "da seca").

As amostras correspondentes a cada um dos tratamentos dos três lotes, em cada ano experimental, eram divididas previamente à instalação dos testes, de forma a serem obtidas quatro subamostras para a condução das análises em cada época considerada.

As sementes correspondentes a cada um dos lotes e a cada tratamento, foram analisadas em todas as épocas, dos dois anos experimentais quanto ao grau de umidade, germinação e vigor (envelhecimento acelerado); a análise de sanidade e a emergência das plântulas em campo foram efetuadas no início do armazenamento e nas épocas correspondentes à semeadura "das águas" (setembro-outubro) e "da seca" (janeiro-fevereiro), conforme as especificações a seguir:

3.4.1. Determinação do grau de umidade

Efetuada em estufa Fanem, a 105°C ± 3°C, durante 24 horas, utilizando-se duas repetições por amostra, conforme as Regras para Análise de Sementes (BRASIL, M.A., 1976). Os resultados foram expressos em porcentagem.

3.4.2. Germinação

Utilizaram-se 400 sementes por amostra, isto é, duas repetições de 50 sementes por subamostra, semeadas em ro
los de papel toalha e colocadas para germinar em aparelho Burrows, sob temperatura constante de 30°C. As contagens foram efetuadas aos quatro e seis dias após a semeadura; as avaliações para a obtenção das porcentagens de plântulas normais, realizaram-se segundo os critérios estabelecidos nas Regras para Análise de Sementes (BRASIL, M.A., 1976).

3.4.3. Envelhecimento acelerado

Utilizaram-se 400 sementes por tratamento (duas repetições de 50 sementes por sub-amostra) colocadas em recipientes plásticos com fundo perfurado e levadas para uma câmara de envelhecimento acelerado marca DE LEO por 72 horas, a temperatura constante de 42°C e 100% de umidade relativa.Decorrido o prazo de permanência na câmara, as sementes eram colocadas para germinar conforme descrito no item 3.4.2.; as avaliações para a obtenção das porcentagens de plântulas normais efetuaram-se aos quatro dias após a semeadura.

3.4.4. Emergência das plântulas

Conduzida em solo pertencente ao Grande Grupo Terra Roxa Estruturada, no campo Experimental do LAH/ESALQ/USP, preparado de maneira convencional, sem adubação prévia. Foram utilizadas 200 sementes por tratamento (uma repetição de 50 sementes por sub-amostra); cada repetição constou de uma linha de 5,0 m de comprimento, espaçada de 0,2 m. A primeira conta-
gem foi realizada aos 10 dias após a semeadura e, as demais, efetuadas com intervalos de dois a três dias até a estabilização da emergência. Os resultados foram expressos em percentagem de plantulas normais.

3.4.5. Sanidade das sementes

O exame de sanidade das sementes foi conduzido no Laboratório de Patologia de Sementes do LFT/ESALQ/USP. Foram analisadas 400 sementes por tratamento (10 repetições de 10 sementes por subamostra).

Diferentes métodos podem ser utilizados para análise sanitária das sementes; no presente trabalho utilizou-se o método do papel de filtro, onde normalmente não é bloqueada a germinação das sementes durante o período de incubação; existe uma modificação deste método que consiste em se evitar a germinação das sementes incubadas. Adotou-se tal modificação nesta pesquisa, com a finalidade de se verificar qual a metodologia mais adequada a uma maior recuperação de microorganismos presentes em sementes de feijoeiro.

Cada repetição de 10 sementes, era semeada em placa de Petri plástica, contendo três folhas de papel de filtro, previamente umedecidas em água destilada. A câmara para incubação das sementes apresentava temperatura constante de 20°C e regime de 12 horas com iluminação com lâmpada de luz
branca fluorescente, alternada por 12 horas de escuro. Cinco das 10 repetições utilizadas por sub-amostra, eram semeadas e levadas à câmara de incubação por um período de 7 dias, após o qual era avaliada a porcentagem de microorganismos presentes nas plântulas e/ou sementes (método denominado, neste trabalho, por método do papel de filtro sem congelamento - s/c). As cinco repetições restantes por sub-amostra, eram semeadas e colocadas na câmara de incubação por 24 horas e, decorrido este período, colocadas por mais 24 horas em congelador com temperatura constante de -20°C, com a finalidade de se evitar a germiação das sementes; em seguida, retornavam à câmara de incubação por cinco dias, completando o período de 7 dias para a avaliação da porcentagem de microorganismos presentes nas sementes (denominado método do papel de filtro com congelamento - c/c).

A porcentagem e identidade dos microorganismos encontrados foram avaliadas com o auxílio de microscópio estereoscópico; quando necessária, a identificação das estruturas dos microorganismos foi feita utilizando-se microscópio composto.

3.5. Procedimento Estatístico

Para cada um dos lotes, foram analisados estatisticamente os resultados obtidos nos testes de germinação, envelhecimento acelerado e emergência das plântulas em campo. A
análise foi efetuada em computador do Centro de Informática na Agricultura, ESALQ/USP.

O delineamento experimental utilizado foi inteiramente casualizado e, os dados referentes aos testes de germinação, envelhecimento acelerado e emergência das plântulas, transformados em arc sen $\frac{\sqrt{x}}{100}$. A comparação entre médias de tratamentos foi efetuada pelo método de Tukey, para todos os parâmetros analisados.

No primeiro ano experimental (1983/84) foram efetuadas duas análises: na Tabela 3, encontra-se o esquema para a análise conjunta dos dados obtidos em laboratório, em todas as épocas de testes, quando utilizaram-se sementes tratadas antes do início do armazenamento ($E_1I; E_2I; E_3I$ e E_4I). Na Tabela 4, encontra-se o esquema utilizado para a análise de variância dos dados obtidos em laboratório e campo na segunda e quarta épocas, quando foram comparados o tratamento das sementes antes do início do armazenamento e nas épocas correspondentes à semeadura “das águas” e “da seca” ($E_2I; E_2A; E_4I$ e E_4S). Foi utilizado o delineamento inteiramente casualizado, com 11 tratamentos e 4 repetições.

<table>
<thead>
<tr>
<th>Causa de variação</th>
<th>G.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamentos (T)</td>
<td>5</td>
</tr>
<tr>
<td>Resíduo (a)</td>
<td>18</td>
</tr>
<tr>
<td>(Parcelas)</td>
<td>(23)</td>
</tr>
<tr>
<td>Épocas (E)</td>
<td>3</td>
</tr>
<tr>
<td>Inter. T x E</td>
<td>15</td>
</tr>
<tr>
<td>Resíduo (b)</td>
<td>54</td>
</tr>
<tr>
<td>Total</td>
<td>95</td>
</tr>
</tbody>
</table>

Tabela 4 - Esquema da análise da variância dos dados obtidos em laboratório e campo, na segunda e quarta épocas com tratamentos por ocasião das análises. Piracicaba, 1983/84

<table>
<thead>
<tr>
<th>Causa de variação</th>
<th>G.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamentos</td>
<td>10</td>
</tr>
<tr>
<td>Resíduo</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
</tr>
</tbody>
</table>
No segundo ano experimental (1984/85) também foram efetuadas duas análises. Na Tabela 5, encontra-se o esquema para análise conjunta dos dados obtidos em laboratório, em todas as épocas de testes, quando utilizaram-se sementes tratadas no início do armazenamento (E1I1; E2I1; E3I1; E4I1 e E5I1). Na Tabela 6, encontra-se o esquema utilizado para a análise de variância dos dados obtidos em laboratório e campo na terceira e quinta épocas, quando se compararam os tratamentos das sementes antes do início do armazenamento com os efetuados nas épocas correspondentes à semeadura "das águas" e "da seca" (E3I1; E3A1; E5I1 e E5S1). Foi utilizado o delineamento inteiramente casualizado com 11 tratamentos e 4 repetições.

<table>
<thead>
<tr>
<th>Causa de variação</th>
<th>G.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamentos (T)</td>
<td>5</td>
</tr>
<tr>
<td>Resíduo (a)</td>
<td>18</td>
</tr>
<tr>
<td>(Parcelas)</td>
<td>(23)</td>
</tr>
<tr>
<td>Épocas (E)</td>
<td>4</td>
</tr>
<tr>
<td>Inter. T x E</td>
<td>20</td>
</tr>
<tr>
<td>Resíduo (b)</td>
<td>72</td>
</tr>
<tr>
<td>Total</td>
<td>119</td>
</tr>
</tbody>
</table>
Tabela 6 - Esquema da análise de variância dos dados obtidos em laboratório e campo, na terceira e quinta épocas com tratamentos por ocasião das análises. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Causa de variação</th>
<th>G.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamentos</td>
<td>10</td>
</tr>
<tr>
<td>Resíduo</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
</tr>
</tbody>
</table>
4. RESULTADOS

A análise estatística foi efetuada separadamente para os diferentes lotes estudados, nos dois anos experimentais; também, realizaram-se análises separadas considerando-se a aplicação dos fungicidas às sementes, antes do início do armazenamento e nos momentos correspondentes às semeaduras "das águas" e "da seca".

Embora os dados tenham sido transformados para a execução das análises estatísticas, os resultados são apresentados através das médias dos dados originais, para maior facilidade de interpretação e visualização.

4.1. Primeiro Ano Experimental

4.1.1. Umidade

Com relação ao grau de umidade das sementes dos três lotes armazenados durante o primeiro ano experimental, pode-se verificar pelo exame da Tabela 7, a superioridade dos valores médios obtidos em setembro, novembro e fevereiro em relação aos referentes a julho.

<table>
<thead>
<tr>
<th>Lotes</th>
<th>E₁I Jul/83</th>
<th>E₂I Set/83</th>
<th>E₃I Nov/83</th>
<th>E₄I Fev/84</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>10,8</td>
<td>13,1</td>
<td>12,1</td>
<td>13,0</td>
</tr>
<tr>
<td>Thiram</td>
<td>11,5</td>
<td>13,3</td>
<td>12,1</td>
<td>11,9</td>
</tr>
<tr>
<td>1 Tiofanato metílico</td>
<td>11,4</td>
<td>13,3</td>
<td>12,2</td>
<td>12,2</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>10,7</td>
<td>14,1</td>
<td>12,6</td>
<td>12,8</td>
</tr>
<tr>
<td>Captan</td>
<td>11,1</td>
<td>13,7</td>
<td>12,3</td>
<td>12,4</td>
</tr>
<tr>
<td>Benomyl</td>
<td>11,1</td>
<td>13,4</td>
<td>12,2</td>
<td>12,9</td>
</tr>
<tr>
<td>Testemunha</td>
<td>11,0</td>
<td>13,8</td>
<td>12,6</td>
<td>12,1</td>
</tr>
<tr>
<td>Thiram</td>
<td>10,8</td>
<td>13,5</td>
<td>12,8</td>
<td>12,5</td>
</tr>
<tr>
<td>2 Tiofanato metílico</td>
<td>11,2</td>
<td>13,4</td>
<td>12,5</td>
<td>12,5</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>11,2</td>
<td>13,7</td>
<td>12,6</td>
<td>13,4</td>
</tr>
<tr>
<td>Captan</td>
<td>10,6</td>
<td>13,0</td>
<td>12,5</td>
<td>12,7</td>
</tr>
<tr>
<td>Benomyl</td>
<td>11,2</td>
<td>13,6</td>
<td>12,7</td>
<td>12,5</td>
</tr>
<tr>
<td>Testemunha</td>
<td>11,6</td>
<td>14,7</td>
<td>12,1</td>
<td>13,1</td>
</tr>
<tr>
<td>Thiram</td>
<td>10,8</td>
<td>13,7</td>
<td>12,4</td>
<td>12,7</td>
</tr>
<tr>
<td>3 Tiofanato metílico</td>
<td>11,3</td>
<td>13,8</td>
<td>12,4</td>
<td>12,9</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>11,4</td>
<td>13,6</td>
<td>12,3</td>
<td>13,5</td>
</tr>
<tr>
<td>Captan</td>
<td>11,4</td>
<td>13,9</td>
<td>12,4</td>
<td>12,9</td>
</tr>
<tr>
<td>Benomyl</td>
<td>11,0</td>
<td>14,0</td>
<td>12,3</td>
<td>13,0</td>
</tr>
</tbody>
</table>
4.1.2. Tratamento fungicida antes do início do armazenamento

Os valores de F obtidos nas análises de variância dos lotes 1, 2 e 3, para sementes tratadas antes do início do armazenamento, no primeiro ano experimental, são apresentados na Tabela 8. Para os lotes 1 e 2 verificam-se efeitos significativos, ao nível de 1% de probabilidade, de tratamentos, épocas e da interação tratamentos x épocas para germinação e envelhecimento acelerado. Quanto ao lote 3, os valores de F foram significativos ao nível de 1% de probabilidade para tratamentos, épocas e interação tratamentos x épocas para envelhecimento acelerado, enquanto para germinação ocorreram efeitos significativos de tratamentos e de épocas.

4.1.2.1. Lote 1

4.1.2.1.a. Germinação

As médias obtidas para os efeitos de tratamentos, de épocas e da interação tratamento x épocas e os coeficientes de variação, encontram-se na Tabela 9. Na primeira época (E1I) evidenciou-se a superioridade estatística do fungicida Thiram sobre os demais tratamentos, com exceção do Tiofana-to metílico; os tratamentos Testemunha e Captan apresentaram percentagem intermediária de germinação, não diferindo entre si, mas superando Thiram + Benomyl. Na segunda época (E2I), somente foi verificada a superioridade da média referente ao fungi-

<table>
<thead>
<tr>
<th>Lotes</th>
<th>Causas de variação</th>
<th>Germinação</th>
<th>Envelhecimento acelerado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Tratamentos (T)</td>
<td>21,53 **</td>
<td>8,27 **</td>
</tr>
<tr>
<td></td>
<td>Epocas (E)</td>
<td>67,55 **</td>
<td>115,63 **</td>
</tr>
<tr>
<td></td>
<td>Interação T x E</td>
<td>4,92 **</td>
<td>2,90 **</td>
</tr>
<tr>
<td>2</td>
<td>Tratamentos (T)</td>
<td>13,95 **</td>
<td>38,34 **</td>
</tr>
<tr>
<td></td>
<td>Epocas (E)</td>
<td>28,55 **</td>
<td>268,27 **</td>
</tr>
<tr>
<td></td>
<td>Interação T x E</td>
<td>3,28 **</td>
<td>7,41 **</td>
</tr>
<tr>
<td>3</td>
<td>Tratamentos (T)</td>
<td>8,15 **</td>
<td>34,76 **</td>
</tr>
<tr>
<td></td>
<td>Epocas (E)</td>
<td>43,12 **</td>
<td>427,80 **</td>
</tr>
<tr>
<td></td>
<td>Interação T x E</td>
<td>1,79</td>
<td>7,45 **</td>
</tr>
</tbody>
</table>

(**): significativo ao nível de 1% de probabilidade.
cida Captan em relação à Testemunha; não ocorrendo diferenças entre os tratamentos restantes. Na terceira época (E₃I) destacou-se, a superioridade do Thiram sobre a Testemunha e Benomyl; estes dois tratamentos não diferiram entre si e nem dos demais fungicidas. Na quarta época (E₄I) evidenciou-se, novamente a superioridade estatística do Thiram em relação aos demais tratamentos, com exceção do Thiram + Benomyl. Os tratamentos Testemunha e Tiofanato metílico tiveram menores valores de germinação, não diferiram entre si, mas mostraram-se inferiores a Captan.

Com relação as variações ocorridas nos resultados dos diferentes tratamentos ao longo das épocas verificou-se uma tendência generalizada de queda de germinação na quarta época (E₄I), principalmente para a Testemunha, Tiofanato metílico e Benomyl.

4.1.2.1.b. Envelhecimento acelerado

Os resultados referentes aos efeitos de tratamentos, épocas e interação tratamentos x épocas e os coeficientes de variação se encontram na Tabela 10. Não foram verificadas diferenças estatísticas significativas entre os tratamentos na primeira e segunda épocas (E₁I e E₂I). Na terceira época (E₃I) o tratamento Captan foi superior à Testemunha e Benomyl não diferindo dos demais fungicidas; estes, por sua vez, não diferiram entre si mas apresentaram superioridade estatística em relação à Testemunha. Na quarta época (E₄I) os fungicidas Thiram e Captan diferiram estatisticamente dos demais tra-

<table>
<thead>
<tr>
<th>Epocas</th>
<th>Tratamentos</th>
<th>E1I Jul/83</th>
<th>E2I Set/83</th>
<th>E3I Nov/83</th>
<th>E4I Fev/84</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Testemunha</td>
<td>77 Ab</td>
<td>78 Ab</td>
<td>85 Ab</td>
<td>55 Bc</td>
<td>74 c</td>
</tr>
<tr>
<td></td>
<td>Thiram</td>
<td>90 ABa</td>
<td>86 Bab</td>
<td>94 Aa</td>
<td>83 Ba</td>
<td>88 a</td>
</tr>
<tr>
<td></td>
<td>Tiofanato metílico</td>
<td>85 Aab</td>
<td>83 Aab</td>
<td>89 Aab</td>
<td>56 Bc</td>
<td>78 bc</td>
</tr>
<tr>
<td></td>
<td>Thiram + Benomyl</td>
<td>64 Bc</td>
<td>85 Aab</td>
<td>86 Aab</td>
<td>75 Bab</td>
<td>78 c</td>
</tr>
<tr>
<td></td>
<td>Captan</td>
<td>78 Bb</td>
<td>89 ABa</td>
<td>90 Aab</td>
<td>70 Cb</td>
<td>82 b</td>
</tr>
<tr>
<td></td>
<td>Benomyl</td>
<td>76 ABbc</td>
<td>81 Aab</td>
<td>84 Ab</td>
<td>65 Bbc</td>
<td>77 c</td>
</tr>
<tr>
<td>Médias</td>
<td></td>
<td>78 C</td>
<td>84 B</td>
<td>88 A</td>
<td>67 D</td>
<td></td>
</tr>
<tr>
<td>CV (%)</td>
<td>Tratamentos: 5,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epocas: 5,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Epocas</th>
<th>Tratamentos</th>
<th>E1I Jul/83</th>
<th>E2I Set/83</th>
<th>E3I Nov/83</th>
<th>E4I Fev/84</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Testemunha</td>
<td>54 Aa</td>
<td>58 Aa</td>
<td>21 Bc</td>
<td>11 Bc</td>
<td>36 bc</td>
</tr>
<tr>
<td></td>
<td>Thiram</td>
<td>51 ABa</td>
<td>59 Aa</td>
<td>43 Bab</td>
<td>26 Ca</td>
<td>45 a</td>
</tr>
<tr>
<td></td>
<td>Tiofanato metílico</td>
<td>54 Aa</td>
<td>48 ABa</td>
<td>37 Bab</td>
<td>13 Cbc</td>
<td>38 abc</td>
</tr>
<tr>
<td></td>
<td>Thiram + Benomyl</td>
<td>55 Aa</td>
<td>47 ABa</td>
<td>40 Bab</td>
<td>23 Cab</td>
<td>41 ab</td>
</tr>
<tr>
<td></td>
<td>Captan</td>
<td>55 Aa</td>
<td>51 Aa</td>
<td>44 Aa</td>
<td>28 Ba</td>
<td>45 a</td>
</tr>
<tr>
<td></td>
<td>Benomyl</td>
<td>42 ABa</td>
<td>52 Aa</td>
<td>29 Bbc</td>
<td>12 Cbc</td>
<td>34 c</td>
</tr>
<tr>
<td>Médias</td>
<td></td>
<td>52 A</td>
<td>53 A</td>
<td>36 B</td>
<td>19 C</td>
<td></td>
</tr>
<tr>
<td>CV (%)</td>
<td>Tratamentos: 10,73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epocas: 11,86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
tamentos, excluindo-se o Thiram + Benomyl; os tratamentos Testemunha, Tiofanato metílico e Benomyl apresentaram as menores médias, mas não diferiram entre si.

Os valores médios obtidos em todos os tratamentos nas duas primeiras épocas (E_1 e E_2) não diferiram entre si; os fungicidas Thiram, Tiofanato metílico, Thiram + Benomyl e Benomyl apresentaram valores médios decrescentes na terceira (E_3) e quarta (E_4) épocas e, o Captan apenas na quarta época (E_4). Os dados da Testemunha decresceram da segunda para a terceira época (E_2 para E_3), não ocorrendo alterações na última época (E_4).

4.1.2.2. Lote 2

4.1.2.2.a. Germinação

Na análise da variância apesar da interação tratamentos x épocas ter sido significativa, no desdobramento dos graus de liberdade de tratamentos dentro de épocas não foi constatada significância entre as médias.

O exame das médias de tratamentos (Tabela 11) não revela diferenças estatísticas entre os efeitos dos fungi-
cidas Thiram e Captan e mostra a superioridade das médias referentes a esses tratamentos em relação à Testemunha e Tiofanato mítico, que apresentaram as menores porcentagens de germinação. O fungicida Captan, por sua vez, não diferiu do Thiram + Benomyl e Benomyl que foram superiores ao Tiofanato mítico, mas semelhantes à Testemunha.

Com relação às épocas dentro de tratamento, verifica-se que as médias da segunda e terceira épocas (E2I e E3I) foram significativamente superiores às da primeira e quarta épocas (E1I e E4I).

4.1.2.2.b. Envelhecimento acelerado

Pela Tabela 12 pode-se observar os valores obtidos para efeitos de tratamentos, épocas e da interação entre tratamentos x épocas e os coeficientes de variação. Verificou-se, na primeira época (E1I), que a média do Captan superou a dos fungicidas Tiofanato mítico, Thiram + Benomyl e Benomyl, cujos resultados não diferiram entre si; os tratamentos Testemunha e Thiram apresentaram valores médios intermediários não mostrando diferenças em relação ao Captan e nem aos demais fungicidas. Na segunda época (E2I) as médias obtidas com Thiram, Thiram + Benomyl e Captan superaram as obtidas com Tiofanato mítico e Benomyl, não diferindo da Testemunha. Na terceira época (E3I), apenas, evidenciou-se a superioridade de Captan em relação ao Tiofanato mítico e Benomyl, não havendo diferenças entre os demais tratamentos. Verificou-se, ainda, na quarta época (E4I) que as médias de Thiram e Captan superaram

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I Jul/83</th>
<th>E₂I Set/83</th>
<th>E₃I Nov/83</th>
<th>E₄I Fev/84</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testemunha</td>
<td>86 BCa</td>
<td>95 Aa</td>
<td>91 ABa</td>
<td>80 Ca</td>
<td>88 cd</td>
</tr>
<tr>
<td>Thiram</td>
<td>95 Aa</td>
<td>93 Aa</td>
<td>94 Aa</td>
<td>90 Aa</td>
<td>93 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>81 Ba</td>
<td>93 Aa</td>
<td>90 ABa</td>
<td>74 Ca</td>
<td>85 d</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>83 Ba</td>
<td>93 Aa</td>
<td>93 Aa</td>
<td>87 ABa</td>
<td>89 bc</td>
</tr>
<tr>
<td>Captan</td>
<td>84 Ba</td>
<td>95 Aa</td>
<td>95 Aa</td>
<td>91 ABa</td>
<td>91 ab</td>
</tr>
<tr>
<td>Benomyl</td>
<td>84 Ba</td>
<td>92 Aa</td>
<td>92 Aa</td>
<td>90 ABa</td>
<td>90 bc</td>
</tr>
</tbody>
</table>

Médias
86 B 94 A 93 A 85 B

CV (%)

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Jul/83</th>
<th>Set/83</th>
<th>Nov/83</th>
<th>Fev/84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testemunha</td>
<td>65 Aab</td>
<td>69 Aab</td>
<td>64 Aab</td>
<td>52 c</td>
</tr>
<tr>
<td>Thiram</td>
<td>69 ABab</td>
<td>78 Aa</td>
<td>67 Bab</td>
<td>45 Ca</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>64 Ab</td>
<td>58 Abc</td>
<td>57 Ab</td>
<td>20 Bbc</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>61 Bb</td>
<td>74 Aa</td>
<td>67 AAb</td>
<td>30 Cb</td>
</tr>
<tr>
<td>Captan</td>
<td>76 Aa</td>
<td>72 Aa</td>
<td>70 Aa</td>
<td>52 Ba</td>
</tr>
<tr>
<td>Benomyl</td>
<td>59 Ab</td>
<td>55 Ac</td>
<td>58 Ab</td>
<td>11 Bc</td>
</tr>
</tbody>
</table>

Médias
66 A 68 A 64 A 28 B

CV (%)

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I Jul/83</th>
<th>E₂I Set/83</th>
<th>E₃I Nov/83</th>
<th>E₄I Fev/84</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testemunha</td>
<td>65 Aab</td>
<td>69 Aab</td>
<td>64 Aab</td>
<td>11 Bc</td>
<td>52 c</td>
</tr>
<tr>
<td>Thiram</td>
<td>69 ABab</td>
<td>78 Aa</td>
<td>67 Bab</td>
<td>45 Ca</td>
<td>65 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>64 Ab</td>
<td>58 Abc</td>
<td>57 Ab</td>
<td>20 Bbc</td>
<td>50 c</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>61 Bb</td>
<td>74 Aa</td>
<td>67 AAb</td>
<td>30 Cb</td>
<td>58 b</td>
</tr>
<tr>
<td>Captan</td>
<td>76 Aa</td>
<td>72 Aa</td>
<td>70 Aa</td>
<td>52 Ba</td>
<td>68 a</td>
</tr>
<tr>
<td>Benomyl</td>
<td>59 Ab</td>
<td>55 Ac</td>
<td>58 Ab</td>
<td>11 Bc</td>
<td>46 c</td>
</tr>
</tbody>
</table>

Médias
66 A 68 A 64 A 28 B

CV (%)

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Jul/83</th>
<th>Set/83</th>
<th>Nov/83</th>
<th>Fev/84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testemunha</td>
<td>65 Aab</td>
<td>69 Aab</td>
<td>64 Aab</td>
<td>11 Bc</td>
</tr>
<tr>
<td>Thiram</td>
<td>69 ABab</td>
<td>78 Aa</td>
<td>67 Bab</td>
<td>45 Ca</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>64 Ab</td>
<td>58 Abc</td>
<td>57 Ab</td>
<td>20 Bbc</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>61 Bb</td>
<td>74 Aa</td>
<td>67 AAb</td>
<td>30 Cb</td>
</tr>
<tr>
<td>Captan</td>
<td>76 Aa</td>
<td>72 Aa</td>
<td>70 Aa</td>
<td>52 Ba</td>
</tr>
<tr>
<td>Benomyl</td>
<td>59 Ab</td>
<td>55 Ac</td>
<td>58 Ab</td>
<td>11 Bc</td>
</tr>
</tbody>
</table>

Médias
66 A 68 A 64 A 28 B

CV (%)

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
os demais resultados, que Tiofanato metílico e Thiram + Benomyl apresentaram valores médios intermediários e que a Testemunha e Benomyl mostraram resultados estatisticamente inferiores.

Considerando-se as variações entre as épocas de tratamentos observou-se comportamento semelhante entre as médias obtidas com a Testemunha, Tiofato metílico, Captan e Benomyl, cujos valores apresentaram decréscimos apenas na quarta época (E₄I). O uso do Thiram proporcionou queda nos valores observados da terceira para a quarta época (E₃I para E₄I), enquanto que para o Thiram + Benomyl observaram-se valores inferiores na primeira (E₁I) e quarta (E₄I) épocas.

4.1.2.3. Lote 3

4.1.2.3.a. Germinação

As médias das porcentagens de germinação referentes aos efeitos de tratamentos e de épocas e os respectivos coeficientes de variação podem ser encontrados na Tabela 13.

Com relação às médias de germinação observou-se que não foram constatadas diferenças significativas entre os tratamentos Testemunha e Thiram; este, superou as médias dos demais fungicidas utilizados enquanto que, a Testemunha, não apresentou diferenças estatísticas em relação a estes. Durante o armazenamento verificou-se a superioridade dos valores médios obtidos na terceira época (E₃I) sobre as demais.
4.1.2.3.b. Envelhecimento acelerado

Na Tabela 14 encontram-se os valores obtidos para efeitos de tratamentos, épocas e da interação tratamentos x épocas e os coeficientes de variação.

Verificou-se, na primeira época (E₁), semelhança estatística dos resultados médios obtidos com os diferentes fungicidas utilizados que, com exceção do Benomyl, superaram a Testemunha. Na segunda época (E₂) os tratamentos não apresentaram diferenças estatísticas entre suas médias. Na terceira época (E₃), notou-se a superioridade dos resultados quando se utilizaram os fungicidas Thiram e Captan, em relação à Testemunha e Benomyl; os demais fungicidas somente apresentaram diferenças significativas em relação ao Benomyl. Na quarta época (E₄), a exceção de Captan, Thiram mostrou-se superior a todos os demais tratamentos; as médias da Testemunha, Tiofanato metílico e Benomyl, não diferentes entre si, apresentaram os menores valores.

Com referência aos resultados obtidos entre épocas, constatou-se que, o tratamento Testemunha apresentou sua máxima porcentagem de germinação na segunda época (E₂); os resultados da primeira e terceira épocas (E₁ e E₃), não diferentes entre si, foram inferiores aos da segunda época (E₂) e superiores aos da quarta época (E₄). Os resultados de Thiram e Captan não apresentaram diferenças significativas entre as três primeiras épocas (E₁, E₂ e E₃); na quarta época (E₄) obtiveram-se resultados estatisticamente inferiores. Os trata

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E1I Jul/83</th>
<th>E2I Set/83</th>
<th>E3I Nov/83</th>
<th>E4I Fev/84</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testemunha</td>
<td>97</td>
<td>94</td>
<td>97</td>
<td>89</td>
<td>94 ab</td>
</tr>
<tr>
<td>Thiaram</td>
<td>95</td>
<td>97</td>
<td>99</td>
<td>94</td>
<td>96 a</td>
</tr>
<tr>
<td>Tiofanato metilico</td>
<td>93</td>
<td>96</td>
<td>97</td>
<td>88</td>
<td>94 ab</td>
</tr>
<tr>
<td>Thiaram + Benomyl</td>
<td>88</td>
<td>95</td>
<td>97</td>
<td>88</td>
<td>92 b</td>
</tr>
<tr>
<td>Captan</td>
<td>93</td>
<td>97</td>
<td>98</td>
<td>85</td>
<td>93 b</td>
</tr>
<tr>
<td>Benomyl</td>
<td>84</td>
<td>96</td>
<td>97</td>
<td>85</td>
<td>91 b</td>
</tr>
</tbody>
</table>

Médias

| CV (%) | Tratamentos: 3,57 | Epocas: 4,88 |

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E1I Jul/83</th>
<th>E2I Set/83</th>
<th>E3I Nov/83</th>
<th>E4I Fev/84</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testemunha</td>
<td>67 Bb</td>
<td>85 Aa</td>
<td>59 Bbc</td>
<td>4 Cc</td>
<td>54 c</td>
</tr>
<tr>
<td>Thiaram</td>
<td>86 Aa</td>
<td>82 Aa</td>
<td>76 Aa</td>
<td>41 Ba</td>
<td>71 a</td>
</tr>
<tr>
<td>Tiofanato metilico</td>
<td>84 Aa</td>
<td>83 Aa</td>
<td>69 Bab</td>
<td>7 Cc</td>
<td>61 b</td>
</tr>
<tr>
<td>Thiaram + Benomyl</td>
<td>82 Aa</td>
<td>75 A Ba</td>
<td>68 Bab</td>
<td>27 Cb</td>
<td>63 b</td>
</tr>
<tr>
<td>Captan</td>
<td>85 Aa</td>
<td>79 Aa</td>
<td>79 Aa</td>
<td>35 Bab</td>
<td>70 a</td>
</tr>
<tr>
<td>Benomyl</td>
<td>78 Aab</td>
<td>78 Aa</td>
<td>52 Cc</td>
<td>7 Cc</td>
<td>54 c</td>
</tr>
</tbody>
</table>

Médias

| CV (%) | Tratamentos: 7,02 | Epocas: 8,56 |

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
mentos Tiofanato metílico, Thiram + Benomyl e Benomyl que não mostraram diferenças significativas entre as duas primeiras épocas (E₁I e E₂I), onde foram obtidos os resultados estatisticamente superiores aos demais, apresentaram decréscimos significativos de germinação da segunda para a terceira época (E₂I para E₃I) e da terceira para a quarta época (E₃I para E₄I).

4.1.3. Comparação entre épocas de tratamentos

Os valores de F obtidos nas análises de variância dos lotes 1, 2 e 3, para sementes tratadas nas épocas correspondentes às semeaduras "das águas" e "da seca", no primeiro ano experimental, são apresentados na Tabela 15.

A comparação do tratamento inicial das sementes com o tratamento na época correspondente à semeadura "das águas", revelou valores de F significativos, ao nível de 1% de probabilidade, para os lotes 1, 2 e 3, respectivamente, na germinação e envelhecimento acelerado; envelhecimento acelerado e germinação; ao nível de 5% de probabilidade, no envelhecimento acelerado para o lote 3.

Comparando-se o tratamento das sementes antes do início do armazenamento com o efetuado na época correspondente à semeadura "da seca" obtiveram-se valores de F significativos, ao nível de 1% de probabilidade, para os lotes 1 e 2 na germinação e envelhecimento acelerado e, para o lote 3, no envelhecimento acelerado; os valores foram significativos, ao nível de 5% de probabilidade, para o lote 3 no teste de germinação.
4.1.3.1 Lote 1
4.1.3.1 a. Germinação

As médias obtidas para efeitos de tratamentos e os respectivos coeficientes de variação podem ser observados na Tabela 16.

A utilização do Tiofanato metílico, na época correspondente à semeadura "das águas" (E₂A), superou as médias obtidas com os tratamentos Testemunha, Tiofanato metílico e Benomyl, aplicados antes do início do armazenamento (E₂I); estes, por sua vez, não diferentes entre si, apresentaram os menores valores médios observados. Todos os fungicidas utilizados na época correspondente à semeadura "das águas" (E₂A) e, também, o Captan quando foi aplicado antes do início do armazenamento, apresentaram médias intermediárias e superaram o tratamento Testemunha.

Na quarta época (E₄I e E₄S) o uso de Thiram, Thiram + Benomyl e Captan, antes do início do armazenamento (E₄I), superou a média obtida com a Testemunha; de maneira semelhante, todos os fungicidas aplicados no momento da execução das análises (E₄S) proporcionaram o mesmo efeito. Nessa época, evidenciaram-se os valores médios obtidos para Thiram, aplicado antes do início do armazenamento, e para Thiram + Benomyl aplicados no momento da semeadura.

4.1.3.1.b. Envelhecimento acelerado

O exame dos dados contidos na Tabela 17, para a segunda época (E₂I e E₂A), somente permite destacar a superioridade estatística do uso do Thiram + Benomyl (em E₂A) em rela...
ção aos fungicidas Tiofanato metílico e Thiram + Benomyl (em E₂I); os demais tratamentos não apresentaram diferenças estatísticas entre si e nem em relação aos tratamentos destacados anteriormente.

Com relação à quarta época (E₄I e E₄S), considerando os tratamentos efetuados antes do início do armazenamento (E₄I), Thiram e Captan superaram as médias obtidas com a Testemunha e Benomyl, não apresentando diferenças significativas em relação aos demais. A aplicação de fungicidas, correspondendo à época de semeadura "da seca" (E₄S), apresentou resultados numericamente inferiores aos obtidos em E₄I e todos próximos aos observados com o tratamento Testemunha.

4.1.3.1.c. Emergência das plântulas

Pela Tabela 18, pode-se observar, que não foram encontradas diferenças estatisticamente significativas entre todos os tratamentos considerados na segunda e quarta épocas, respectivamente E₂I e E₂A e E₄I e E₄S.

4.1.3.1.d. Sanidade das sementes

Os diferentes microorganismos e as porcentagens em que foram encontrados em associação com as sementes do lote 1, do primeiro ano experimental, podem ser observados nas Tabelas 19, 20, 21, 22 e 23; apesar dos dados não terem sido submetidos à análise estatística procurou-se verificar as principais tendências.

<table>
<thead>
<tr>
<th>Lotes</th>
<th>E2I e E2A</th>
<th>E4I e E4S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Germ.</td>
<td>Env.acel.</td>
</tr>
<tr>
<td>1</td>
<td>6,13**</td>
<td>3,59**</td>
</tr>
<tr>
<td>2</td>
<td>0,42</td>
<td>7,21**</td>
</tr>
<tr>
<td>3</td>
<td>3,75**</td>
<td>2,61*</td>
</tr>
</tbody>
</table>

(*): significativo ao nível de 5% de probabilidade
(**): significativo ao nível de 1% de probabilidade

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Epocas</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Setembro/83*</td>
<td>Fevereiro/84*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2I</td>
<td>E2A</td>
<td>E4I</td>
</tr>
<tr>
<td>Testemunha</td>
<td>78 d</td>
<td>-</td>
<td>55 d</td>
</tr>
<tr>
<td>Thiram</td>
<td>86 abcd</td>
<td>91 abc</td>
<td>83 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>83 bcd</td>
<td>93 a</td>
<td>56 cd</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>85 abcd</td>
<td>92 ab</td>
<td>75 ab</td>
</tr>
<tr>
<td>Captan</td>
<td>89 abc</td>
<td>90 abc</td>
<td>70 b</td>
</tr>
<tr>
<td>Benomyl</td>
<td>81 cd</td>
<td>90 abc</td>
<td>65 bcd</td>
</tr>
</tbody>
</table>

CV (%): 4,77
CV (%): 5,68

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
Tabela 17. Envelhecimento acelerado de sementes de feijoeiro, cv. Rio Vermelho, lote 1: médias (%) obtidas para efeitos de tratamento antes e durante o armazenamento (segunda e quarta épocas) e coeficientes de variação. Piracicaba, 1983/84.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Épocas</th>
<th>Setembro/83*</th>
<th>Fevereiro/84*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₂I</td>
<td>E₂A</td>
<td>E₄I</td>
</tr>
<tr>
<td>Testemunha</td>
<td>58 ab</td>
<td>-</td>
<td>11 bcd</td>
</tr>
<tr>
<td>Thiram</td>
<td>59 ab</td>
<td>56 ab</td>
<td>26 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>48 b</td>
<td>58 ab</td>
<td>13 bc</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>47 b</td>
<td>64 a</td>
<td>23 ab</td>
</tr>
<tr>
<td>Captan</td>
<td>51 ab</td>
<td>57 ab</td>
<td>28 a</td>
</tr>
<tr>
<td>Benomyl</td>
<td>52 ab</td>
<td>56 ab</td>
<td>12 bcd</td>
</tr>
</tbody>
</table>

CV (%): 6,36

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Épocas</th>
<th>Setembro/83*</th>
<th>Fevereiro/84*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₂I</td>
<td>E₂A</td>
<td>E₄I</td>
</tr>
<tr>
<td>Testemunha</td>
<td>81 a</td>
<td>-</td>
<td>83 a</td>
</tr>
<tr>
<td>Thiram</td>
<td>87 a</td>
<td>86 a</td>
<td>85 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>80 a</td>
<td>89 a</td>
<td>89 a</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>88 a</td>
<td>85 a</td>
<td>84 a</td>
</tr>
<tr>
<td>Captan</td>
<td>89 a</td>
<td>90 a</td>
<td>83 a</td>
</tr>
<tr>
<td>Benomyl</td>
<td>84 a</td>
<td>87 a</td>
<td>78 a</td>
</tr>
</tbody>
</table>

CV (%): 8,92

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
De maneira geral, para todos os tratamentos e épocas considerados, verificou-se que o método do papel de filtro com congelamento (c/c) permitiu uma maior recuperação de *Alternaria* sp., *Arpergillus* spp., *Fusarium* spp. e *Rhizopus* sp.; para *Penicilium* spp. o método do papel de filtro sem congelamento (s/c) mostrou-se mais eficiente.

Pela Tabela 19, pode-se verificar os resultados obtidos com os tratamentos e as influências que exerceram sobre a associação do fungo *Alternaria* sp. com as sementes armazenadas; observou-se diminuição nas porcentagens de incidência do fungo com o decorrer do primeiro ano experimental. Os fungicidas *Thiram, Thiram + Benomyl e Captan*, utilizados antes do início do armazenamento, proporcionaram controle mais efetivo nas duas épocas consideradas (*E₂I e E₄I*). *Tiofanato metílico* e *Benomyl* apresentaram valores médios superiores de recuperação do fungo, mas não suplantaram a Testemunha.

Os resultados referentes a *Aspergillus* spp., encontram-se na Tabela 20. Considerando-se o tratamento Testemunha, ocorreu aumento na incidência deste microorganismo da segunda (*E₂I e E₂A*) para a quarta época (*E₄I e E₄S*). A utilização de Tiofanato metílico, *Thiram + Benomyl* e *Captan* não permitiu a recuperação deste fungo em todas as épocas analisadas; o mesmo não ocorreu quando do uso do *Thiram* e do *Benomyl*.

A incidência de *Fusarium* spp. pode ser observada na Tabela 21. Verificou-se um decréscimo na recuperação deste fungo com o armazenamento. De modo geral, todos os fungicidas apresentaram controle eficiente, principalmente, na se

<table>
<thead>
<tr>
<th>Epocas</th>
<th>Tratamentos</th>
<th>E₁I</th>
<th>E₂I</th>
<th>E₂A</th>
<th>E₄I</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>66,0</td>
<td>40,5</td>
<td>37,0</td>
<td>23,5</td>
<td>37,0</td>
<td>23,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>4,0</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>3,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>15,0</td>
<td>1,0</td>
<td>2,0</td>
<td>0,5</td>
<td>1,5</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>1,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Captan</td>
<td>3,5</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>2,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>12,5</td>
<td>2,0</td>
<td>3,5</td>
<td>1,0</td>
<td>4,0</td>
<td>0,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epocas</th>
<th>Tratamentos</th>
<th>E₁I</th>
<th>E₂I</th>
<th>E₂A</th>
<th>E₄I</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>12,5</td>
<td>12,5</td>
<td>9,5</td>
<td>5,5</td>
<td>9,5</td>
<td>5,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,5</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>2,5</td>
<td>1,5</td>
<td>2,0</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epocas</th>
<th>Tratamentos</th>
<th>E₁I</th>
<th>E₂I</th>
<th>E₂A</th>
<th>E₄I</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>9,5</td>
<td>3,5</td>
<td>10,0</td>
<td>1,0</td>
<td>10,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Thiram</td>
<td>2,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>1,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>1,0</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>
gunda época (E₂I e E₂A) quando a incidência era ainda elevada; na quarta época (E₄I e E₄S), embora tenha ocorrido decréscimo acentuado na porcentagem deste fungo, o controle foi total com todos os fungicidas usados.

As porcentagens de *Penicillium* spp. associadas às sementes do lote 1, apresentaram acréscimos da primeira (E₁I) para a segunda época (E₂I e E₂A) e desta, para a quarta época (E₄I e E₄S); o que pode ser observado pelos dados contidos na Tabela 22. Os fungicidas Captan e Thiram + Benomyl não permitiram a ocorrência deste microorganismo durante todo o período considerado (exceção de E₄S para Thiram + Benomyl); os demais produtos apresentaram menor recuperação quando comparados à Testemunha; apenas, Thiram na quarta época, aplicado antes do início do armazenamento (E₄I) apresentou controle total.

De acordo com os dados contidos na Tabela 23, pode-se verificar, que a ocorrência de *Rhizopus* sp. nos tratamentos Testemunha, Tiofanato metílico e Benomyl ao longo das épocas manteve-se em níveis semelhantes e superiores à dos demais fungicidas; dentre estes, houve destaque para Thiram utilizado na segunda e quarta épocas e antes do início do armazenamento (E₂I e E₄I); para Thiram + Benomyl e Captan, ambos, utilizados na segunda época, no momento correspondente à semeadura "das águas" (E₂A) e na quarta época utilizados respectivamente no momento da semeadura "da seca" (E₄S) e antes do início do armazenamento (E₄I).

<table>
<thead>
<tr>
<th>Epocas</th>
<th>E₁I</th>
<th>E₂I</th>
<th>E₂A</th>
<th>E₄I</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamentos</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>7,0</td>
<td>9,0</td>
<td>2,5</td>
<td>13,0</td>
<td>2,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,5</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
<td>2,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epocas</th>
<th>E₁I</th>
<th>E₂I</th>
<th>E₂A</th>
<th>E₄I</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamentos</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>10,5</td>
<td>18,5</td>
<td>13,0</td>
<td>5,5</td>
<td>13,0</td>
</tr>
<tr>
<td>Thiram</td>
<td>2,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,5</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>10,0</td>
<td>2,5</td>
<td>2,5</td>
<td>7,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>3,5</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,5</td>
</tr>
<tr>
<td>Benomyl</td>
<td>16,0</td>
<td>3,5</td>
<td>4,0</td>
<td>4,5</td>
<td>4,0</td>
</tr>
</tbody>
</table>
4.1.3.2. Lote 2

4.1.3.2.a. Germinação

Observando-se os resultados da Tabela 24 verificou-se que, não ocorreram diferenças estatísticas significativas entre os tratamentos na segunda época (E₂I e E₂A).

Na quarta época de testes (E₄I e E₄S) as médias correspondentes a Thiram, Captan e Benomyl, antes do início do armazenamento (em E₄I), superaram as obtidas para a Testemunha e Tiofanato metílico; porém, no momento correspondente a época de semeadura "da seca" (E₄S) somente o fungicida Thiram mostrou superioridade em relação à Testemunha, Tiofanato metílico e Benomyl.

4.1.3.2.b. Envelhecimento acelerado

Pelo exame da Tabela 25 pode-se observar que, para as sementes tratadas antes do início do armazenamento, os testes efetuados na segunda época (E₂I) com os fungicidas Thiram, Thiram + Benomyl e Captan revelaram que os resultados superaram os obtidos com o uso de Tiofanato metílico e Benomyl; nesta época, a Testemunha somente diferiu significativamente do Benomyl. No momento correspondente à semeadura "das águas" (E₂A) não foram constatadas diferenças significativas entre os tratamentos.

Na quarta época (E₄I e E₄S) o fungicida Captan, apresentou média estatisticamente superior a todos os tratamentos, excetuando-se Thiram; os tratamentos Testemunha, Tio-

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Setembro/83*</th>
<th>Fevereiro/84*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₂I</td>
<td>E₂A</td>
</tr>
<tr>
<td>Testemunha</td>
<td>95 a</td>
<td>-</td>
</tr>
<tr>
<td>Thiram</td>
<td>33 a</td>
<td>94 a</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>93 a</td>
<td>94 a</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>93 a</td>
<td>95 a</td>
</tr>
<tr>
<td>Captan</td>
<td>95 a</td>
<td>94 a</td>
</tr>
<tr>
<td>Benomyl</td>
<td>92 a</td>
<td>95 a</td>
</tr>
</tbody>
</table>

CV (%): 4,86

CV (%): 4,73

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Setembro/83*</th>
<th>Fevereiro/84*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₂I</td>
<td>E₂A</td>
</tr>
<tr>
<td>Testemunha</td>
<td>69 ab</td>
<td>-</td>
</tr>
<tr>
<td>Thiram</td>
<td>78 a</td>
<td>74 a</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>58 bc</td>
<td>72 a</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>74 a</td>
<td>74 a</td>
</tr>
<tr>
<td>Captan</td>
<td>72 a</td>
<td>74 a</td>
</tr>
<tr>
<td>Benomyl</td>
<td>55 c</td>
<td>75 a</td>
</tr>
</tbody>
</table>

CV (%): 5,70

CV (%): 14,43

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
fanato metílico e Benomyl, não diferentes entre si, apresentaram valores médios inferiores. Quando o tratamento, na quarta época, foi efetuado por ocasião das análises (E₄S), notou-se superioridade estatística do Thiram e Thiram + Benomyl em relação a Tiofanato metílico e Benomyl, cujas médias não diferiram de maneira significativa da Testemunha (que apresentou a menor média).

4.1.3.2.c. Emergência das plântulas

Os valores médios das porcentagens de emergência de plântulas na segunda (E₂I e E₂A) e quarta (E₄I e E₄S) épocas e os respectivos coeficientes de variação encontram-se na Tabela 26.

Verificou-se, na segunda época (E₂I e E₂A), a superioridade estatística do tratamento com Thiram + Benomyl em relação à Testemunha, quando este foi aplicado no momento da execução das análises (E₂A); os demais resultados não diferiram entre si.

Com relação à quarta época (E₄I e E₄S), não foram constatadas diferenças significativas entre os tratamentos.

4.1.3.2.d. Sanidade das sementes

Os valores médios referentes à qualidade sanitária das sementes do lote 2 podem ser observados pelo exame das Tabelas 27, 28, 29, 30 e 31. Não foi efetuada a análise estatística destes resultados; portanto, serão comentadas as tendências que mais se evidenciaram.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Setembro/83*</th>
<th>Fevereiro/84*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₂I</td>
<td>E₂A</td>
</tr>
<tr>
<td>Testemunha</td>
<td>86 b</td>
<td>-</td>
</tr>
<tr>
<td>Thiram</td>
<td>89 ab</td>
<td>94 ab</td>
</tr>
<tr>
<td>Tiófanato metílico</td>
<td>93 ab</td>
<td>94 ab</td>
</tr>
<tr>
<td>Thiram + Benomy1</td>
<td>97 ab</td>
<td>91 a</td>
</tr>
<tr>
<td>Captan</td>
<td>88 ab</td>
<td>92 ab</td>
</tr>
<tr>
<td>Benomy1</td>
<td>91 ab</td>
<td>88 ab</td>
</tr>
</tbody>
</table>

CV (%): 8,44

CV (%): 8,79

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
Os fungos dos gêneros *Alternaria*, *Aspergillus*, *Fusarium* e *Rhizopus*, puderam ser melhor detectados através do método do papel de filtro com congelamento (c/c); para *Penicillium* obtiveram-se porcentagens mais elevadas de recuperação através do método do papel de filtro sem congelamento (s/c).

Pela Tabela 27, examinando-se o tratamento Testemunha, percebe-se um decréscimo na ocorrência de *Alternaria* sp. da primeira (E₁I) para a quarta época (E₄I e E₄S). Na segunda época (E₂I e E₂A) o fungicida Thiram + Benomyl não permitiu a recuperação deste microorganismo; Thiram, quando aplicado no momento correspondente à semeadura "das águas" (E₂A), exerceu controle semelhante. Na quarta época (E₄I e E₄S) o uso de Thiram, Thiram + Benomyl e Captan impediu a incidência de *Alternaria* sp.; os fungicidas Tiofanato metílico e Benomyl apresentaram resultados semelhantes ao da Testemunha.

Na Tabela 28, encontram-se as porcentagens médias de incidência de *Aspergillus* spp. presentes nas sementes do lote 2. Pode-se verificar, através das porcentagens observadas para Testemunha, que o uso dos diferentes fungicidas não permitiu a recuperação do fungo durante todo o período experimental, exceção feita ao Tiofanato metílico em E₄I (quarta época, com tratamento antes do início do armazenamento) e ao Benomyl na segunda e quarta épocas quando a aplicação do produto se deu no momento das análises (E₂A e E₄S).

A incidência de *Fusarium* spp. pode ser observada na Tabela 29. Não foi constatada a presença deste fungo em nenhuma das épocas analisadas quando se utilizaram os fungicidas Thiram, Thiram + Benomyl, Captan e Benomyl.
Tabela 27. Incidência de *Alternaria* sp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 2. Piracicaba, 1983/84.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E1I</th>
<th>E2I</th>
<th>E2A</th>
<th>E4I</th>
<th>E4S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>44,5</td>
<td>30,0</td>
<td>18,5</td>
<td>10,5</td>
<td>18,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>12,5</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>16,5</td>
<td>0,0</td>
<td>7,5</td>
<td>0,5</td>
<td>4,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>1,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>5,5</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>12,0</td>
<td>2,0</td>
<td>3,5</td>
<td>0,0</td>
<td>8,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E1I</th>
<th>E2I</th>
<th>E2A</th>
<th>E4I</th>
<th>E4S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>3,0</td>
<td>1,0</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E1I</th>
<th>E2I</th>
<th>E2A</th>
<th>E4I</th>
<th>E4S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>4,0</td>
<td>0,5</td>
<td>2,5</td>
<td>0,0</td>
<td>2,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Os dados relativos a *Penicillium* spp. encontram-se na Tabela 30. Destacou-se a ação de Captan no controle exercido durante todo o período experimental. Na segunda época (E₂I e E₂A) a aplicação de Thiram, Thiram + Benomyl, Captan e Benomyl antes do início do armazenamento das sementes (em E₂I) impediu a ocorrência de *Penicillium* spp.; a mesma ação foi obtida quando se utilizou Thiram, Tiofanato metílico ou Captan no momento correspondente à semeadura "das águas" (E₂A). Na última época analisada (E₄I e E₄S), em E₄I somente os tratamentos Testemunha e Tiofanato metílico apresentaram recuperação deste microorganismo; por outro lado, quando a aplicação de fungicidas se deu por ocasião das análises, apenas Captan mostrou-se totalmente efetivo no controle deste fungo.

Examinando-se os valores médios contidos na Tabela 31, observa-se que o controle de *Rhizopus* sp. foi conseguido com a utilização dos fungicidas Thiram, na segunda e na quarta épocas com sementes tratadas antes do início do armazenamento (E₂I e E₄I), e com Thiram + Benomyl na segunda e quarta épocas quando o tratamento se deu, respectivamente, no momento correspondente à semeadura "das águas" (E₂A) e antes do início do armazenamento (E₄I). Os fungicidas Tiofanato metílico, Captan e Benomyl apresentaram resultados semelhantes aos obtidos com a Testemunha.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I</th>
<th>E₂I</th>
<th>E₂A</th>
<th>E₄I</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>2,5</td>
<td>3,0</td>
<td>1,5</td>
<td>9,0</td>
<td>1,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,5</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I</th>
<th>E₂I</th>
<th>E₂A</th>
<th>E₄I</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>27,5</td>
<td>9,0</td>
<td>8,2</td>
<td>5,0</td>
<td>8,2</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>12,5</td>
<td>2,0</td>
<td>3,0</td>
<td>4,0</td>
<td>2,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,5</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,0</td>
<td>0,0</td>
<td>10,5</td>
<td>0,0</td>
<td>2,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>3,5</td>
<td>3,5</td>
<td>17,0</td>
<td>4,0</td>
<td>6,5</td>
</tr>
</tbody>
</table>
4.1.3.3. Lote 3

4.1.3.3.a. Germinação

Os dados contidos na Tabela 32, referem-se às porcentagens médias de germinação obtidas com o lote 3, na segunda (E₂I e E₂A) e quarta (E₄I e E₄S) épocas do primeiro ano experimental.

Na segunda época (E₂I e E₂A) evidenciou-se a superioridade de Thiram, Captan e Benomyl, quando utilizados antes do início do armazenamento das sementes (E₂I), em relação ao Thiram quando este foi aplicado às sementes no momento correspondente à semeadura "das águas" (E₂A); os demais tratamentos não apresentaram diferenças significativas entre si, nem em relação aos produtos já citados.

Na quarta época (E₄I e E₄S) somente ocorreram diferenças significativas entre Thiram, aplicado antes do início do armazenamento (em E₄I) e Benomyl, utilizado por ocasião das análises (E₄S), embora o maior valor médio tenha sido observado para Thiram (E₄I).

4.1.3.3.b. Envelhecimento acelerado

Na Tabela 33 encontram-se os resultados obtidos para efeito de épocas de aplicação dos fungicidas e os coeficientes de variação. Ficou destacada a superioridade do Thiram, quando aplicado no momento correspondente à semeadura "das águas" (E₂A), sobre Thiram + Benomyl quando este foi utilizado antes do armazenamento (E₂I); os demais tratamentos não

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Setembro/83*</th>
<th>Fevereiro/84*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E2I</td>
<td>E2A</td>
</tr>
<tr>
<td>Testemunha</td>
<td>94 ab</td>
<td>-</td>
</tr>
<tr>
<td>Thiram</td>
<td>97 a</td>
<td>90 b</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>96 ab</td>
<td>94 ab</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>95 ab</td>
<td>92 ab</td>
</tr>
<tr>
<td>Captan</td>
<td>97 a</td>
<td>92 ab</td>
</tr>
<tr>
<td>Benomyl</td>
<td>96 a</td>
<td>94 ab</td>
</tr>
</tbody>
</table>

CV (%): 3,82
CV (%): 4,76

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Setembro/83*</th>
<th>Fevereiro/84*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E2I</td>
<td>E2A</td>
</tr>
<tr>
<td>Testemunha</td>
<td>85 ab</td>
<td>-</td>
</tr>
<tr>
<td>Thiram</td>
<td>82 ab</td>
<td>89 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>83 ab</td>
<td>78 ab</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>75 b</td>
<td>87 ab</td>
</tr>
<tr>
<td>Captan</td>
<td>79 ab</td>
<td>84 ab</td>
</tr>
<tr>
<td>Benomyl</td>
<td>78 ab</td>
<td>83 ab</td>
</tr>
</tbody>
</table>

CV (%): 5,84
CV (%): 16,62

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
diferentes entre si, apresentaram médias estatisticamente seme
lhantes a estes dois fungicidas.

Na quarta época (E₄I e E₄S), o fungicida Thiram, aplicado antes do início do armazenamento (E₄I), não apre
sentou diferenças significativas em relação ao mesmo trata
mento quando utilizado por ocasião da execução das análises
(E₄S) e nem em relação a Thiram + Benomyl e Captan, independen
temente do momento de utilização destes produtos; os trata
mentos Testemunha, Tiofanato metílico (em qualquer dos momentos
de aplicação) e Benomyl (em E₄I), não foram diferentes entre
si, mas apresentaram as menores médias.

4.1.3.3.c. Emergência das plântulas

De acordo com os resultados da Tabela 34, pode
se verificar que não ocorreram efeitos significativos entre as
porcentagens de emergência das plântulas, em função da aplic
ção de fungicidas, na segunda e quarta épocas testadas (E₂I,
E₂A e E₄I e E₄S).

4.1.3.3.d. Sanidade das sementes

As porcentagens médias, relativas aos principais fungos detectados durante o armazenamento das sementes do
lote 3, podem ser observadas pelo exame das Tabelas 35, 36,
37, 38 e 39.

As maiores porcentagens de recuperação, obtidas com a utilização do método do papel de filtro com congela
mento (c/c) foram conseguidas para *Alternaria* sp., *Fusarium* spp.
Tabela 34. Emergência das plântulas, sementes de feijoeiro, cv. Rio Vermelho, lote 3: médias (%) obtidas para efeito de tratamentos antes e durante o armazenamento (segunda e quarta épocas) e coeficientes de variação. Piracicaba, 1983/84.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Setembro/83*</th>
<th>Fevereiro/84*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{2I}</td>
<td>E_{2A}</td>
</tr>
<tr>
<td>Testemunha</td>
<td>92 a</td>
<td>-</td>
</tr>
<tr>
<td>Thiram</td>
<td>92 a</td>
<td>94 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>90 a</td>
<td>94 a</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>92 a</td>
<td>91 a</td>
</tr>
<tr>
<td>Captan</td>
<td>87 a</td>
<td>92 a</td>
</tr>
<tr>
<td>Benomyl</td>
<td>90 a</td>
<td>88 a</td>
</tr>
</tbody>
</table>

CV (%): 8,85
CV (%): 5,27

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
e *Rhizopus* sp.; de forma semelhante, para o mesmo método, sem congelamento (s/c), recuperou-se *Aspergillus* spp. e *Penicillium* spp. (com algumas exceções).

Pode-se observar pela Tabela 35 que a incidência de *Alternaria* sp. decresceu com o decorrer do período de armazenamento. Na segunda época (*E₂I* e *E₂A*), o uso de Thiram+Benomyl e Captan (em *E₂I*) e de Thiram (em *E₂A*) não permitiu a recuperação deste microorganismo; nos demais tratamentos ocorreram porcentagens mais elevadas de recuperação, principalmente com relação à Testemunha, Tiofanato metílico (em *E₂I* e *E₂A*) e Benomyl (em *E₂A*). Na quarta época (*E₄I* e *E₄S*) não foi constatada a presença de *Alternaria* em nenhum dos tratamentos, com exceção de Tiofanato metílico aplicado antes do início do armazenamento (*E₄I*).

As porcentagens de *Aspergillus* spp. associadas às sementes do lote 3, podem ser observadas na Tabela 36. Da primeira época de testes (*E₁I*) para a segunda (*E₂I* e *E₂A*) houve aumento de incidência deste fungo; na quarta época (*E₄I* e *E₄S*), os valores encontrados foram inferiores aos das duas primeiras épocas. A presença de *Aspergillus* spp. foi apenas constatada na segunda época (*E₂I* e *E₂A*) nos tratamentos Testemunha e Tiofanato metílico (em *E₂I*, sementes tratadas desde o início) e na quarta época (*E₄I* e *E₄S*) nos tratamentos Testemunha e Thiram (em *E₄S*, sementes tratadas por ocasião das análises).

Tabela 35. Incidência de Alternaria sp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 3. Piracicaba, 1983/84.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁</th>
<th>E₂</th>
<th>E₂A</th>
<th>E₄</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>c/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>22,5</td>
<td>8,0</td>
<td>11,5</td>
<td>3,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>6,5</td>
<td>0,0</td>
<td>1,5</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>16,5</td>
<td>1,0</td>
<td>5,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>4,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>5,0</td>
<td>1,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>9,0</td>
<td>2,0</td>
<td>0,5</td>
<td>3,5</td>
<td>0,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁</th>
<th>E₂</th>
<th>E₂A</th>
<th>E₄</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>c/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁</th>
<th>E₂</th>
<th>E₂A</th>
<th>E₄</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>c/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>0,5</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Na Tabela 38, podem ser observadas as médias de ocorrência de *Penicillium* spp. nos tratamentos aplicados às sementes do lote 3. Na segunda época (E₂I e E₂A), o tratamento Testemunha foi o único a apresentar este fungo quando as sementes foram tratadas com fungicidas antes do início do armazenamento (E₂I); quando se efetuou o tratamento por ocasião dos testes (E₂A), Thiram + Benomyl e Captan superaram os demais tratamentos no controle exercido. Na última época analisada (E₄I e E₄S), não foi detectada a presença de *Penicillium* spp., nas sementes tratadas com Thiram, Thiram + Benomyl, Captan e Benomyl antes do início do armazenamento (E₄I) e nas tratadas com Tiofanato metílico, Thiram + Benomyl e Captan no momento correspondente à semeadura "da seca" (E₄S).

Com relação a *Rhizopus* sp. (Tabela 39), na segunda época (E₂I e E₂A) o tratamento com Thiram + Benomyl, antes do início do armazenamento (E₂I) superou a todos os demais tratamentos, inclusive aqueles efetuados no momento da execução das análises (E₂A). Já, na quarta época (E₄I e E₄S) os melhores resultados foram obtidos com o uso de Thiram (independentemente do momento de sua utilização: E₄I ou E₄S) e Thiram + Benomyl e Captan (aplicados antes do início do armazenamento: E₄I). Os fungicidas Tiofanato metílico e Benomyl apresentaram porcentagens superiores à Testemunha.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I</th>
<th>E₂I</th>
<th>E₂A</th>
<th>E₄I</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>2,0</td>
<td>4,0</td>
<td>4,0</td>
<td>1,5</td>
<td>4,0</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,0</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I</th>
<th>E₂I</th>
<th>E₂A</th>
<th>E₄I</th>
<th>E₄S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>36,5</td>
<td>10,5</td>
<td>5,5</td>
<td>5,0</td>
<td>5,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
<td>0,5</td>
<td>3,5</td>
<td>0,0</td>
<td>1,5</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>53,0</td>
<td>2,0</td>
<td>8,0</td>
<td>2,5</td>
<td>2,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>2,5</td>
<td>1,0</td>
<td>0,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>9,0</td>
<td>2,0</td>
<td>19,5</td>
<td>3,5</td>
<td>1,5</td>
</tr>
</tbody>
</table>
4.2. Segundo Ano Experimental

4.2.1. Umidade

O exame da Tabela 40, onde são apresentados os valores médios do grau de umidade das sementes dos lotes 1A, 2A e 3A, do segundo ano experimental, mostra a superioridade de dos valores obtidos na quarta (dezembro) e quinta (fevereiro) épocas, em relação às demais.

4.2.2. Tratamento fungicida antes do início do armazenamento

Os valores de F obtidos nas análises de variância dos lotes 1A, 2A e 3A, para sementes tratadas desde antes do início do armazenamento, no segundo ano experimental, são apresentados na Tabela 41.

Para o lote 1A verificou-se efeitos significativos, ao nível de 1% de probabilidade, para épocas e a interação tratamentos x épocas sobre a germinação; para tratamentos, épocas e interação tratamentos x épocas, no teste de envelhecimento acelerado. Com respeito aos lotes 2A e 3A, observaram-se efeitos significativos (nível de 1% de probabilidade) de tratamentos e de épocas, para a germinação e no teste de envelhecimento acelerado ocorreram efeitos significativos, ao nível de 1% de probabilidade, para tratamentos, épocas e para a interação.

<table>
<thead>
<tr>
<th>Lotes</th>
<th>Tratamentos</th>
<th>Epocas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E1I1 Mai/84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>10,6</td>
<td>11,2</td>
</tr>
<tr>
<td>Thiram</td>
<td>-</td>
<td>11,4</td>
</tr>
<tr>
<td>1A Tiof. met.</td>
<td>-</td>
<td>11,4</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>10,9</td>
<td>11,0</td>
</tr>
<tr>
<td>Captan</td>
<td>-</td>
<td>11,3</td>
</tr>
<tr>
<td>Benomyl</td>
<td>-</td>
<td>11,3</td>
</tr>
<tr>
<td>Testemunha</td>
<td>11,0</td>
<td>10,4</td>
</tr>
<tr>
<td>Thiram</td>
<td>-</td>
<td>10,9</td>
</tr>
<tr>
<td>2A Tiof. met.</td>
<td>-</td>
<td>10,8</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>11,0</td>
<td>11,2</td>
</tr>
<tr>
<td>Captan</td>
<td>-</td>
<td>11,1</td>
</tr>
<tr>
<td>Benomyl</td>
<td>-</td>
<td>11,1</td>
</tr>
<tr>
<td>Testemunha</td>
<td>9,7</td>
<td>11,0</td>
</tr>
<tr>
<td>Thiram</td>
<td>-</td>
<td>11,0</td>
</tr>
<tr>
<td>3A Tiof. met.</td>
<td>-</td>
<td>11,3</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>11,5</td>
<td>11,7</td>
</tr>
<tr>
<td>Captan</td>
<td>-</td>
<td>11,4</td>
</tr>
<tr>
<td>Benomyl</td>
<td>-</td>
<td>11,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lotes</th>
<th>Causas de variação</th>
<th>Germinação</th>
<th>Envelhecimento acelerado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tratamentos (T)</td>
<td>0,55</td>
<td>26,03 **</td>
</tr>
<tr>
<td>1A</td>
<td>Epocas (E)</td>
<td>19,06 **</td>
<td>162,83 **</td>
</tr>
<tr>
<td></td>
<td>Interação T x E</td>
<td>3,06 **</td>
<td>2,37 **</td>
</tr>
<tr>
<td></td>
<td>Tratamentos (T)</td>
<td>17,03 **</td>
<td>35,82 **</td>
</tr>
<tr>
<td>2A</td>
<td>Epocas (E)</td>
<td>19,55 **</td>
<td>422,83 **</td>
</tr>
<tr>
<td></td>
<td>Interação T x E</td>
<td>1,51</td>
<td>3,85 **</td>
</tr>
<tr>
<td></td>
<td>Tratamentos (T)</td>
<td>9,67 **</td>
<td>13,95 **</td>
</tr>
<tr>
<td>3A</td>
<td>Epocas (E)</td>
<td>16,80 **</td>
<td>411,89 **</td>
</tr>
<tr>
<td></td>
<td>Interação T x E</td>
<td>1,70</td>
<td>3,52 **</td>
</tr>
</tbody>
</table>

(**): significativo ao nível de 1% de probabilidade.
4.2.2.1. Lote 1A

4.2.2.1. a. Germinação

Na Tabela 42 encontram-se as médias obtidas para os efeitos de tratamentos, épocas e interação tratamentos x épocas e os coeficientes de variação.

Constatou-se, na primeira época (E₁₁) a superioridade do Thiram em relação a Captan; os demais tratamentos não diferiram entre si como, também, não apresentaram diferenças significativas em relação aos dois fungicidas já citados. Na segunda época (E₂₁), o tratamento testemunha mostrou-se superior aos demais. Na terceira e quinta épocas (E₃₁ e E₅₁) não foram constatadas diferenças significativas entre os tratamentos. Na quarta época (E₄₁) somente Thiram diferiu de maneira significativa de Benomyl, não havendo diferenças estatísticas entre os tratamentos restantes.

Com relação ao comportamento dos tratamentos, ao longo das épocas, não ocorreram variações significativas da primeira (E₁₁) para a quinta (E₅₁), com o uso de Tiofanato metílico, Thiram + Benomyl e Captan. A testemunha apresentou superioridade da média obtida na segunda época (E₂₁) em relação às demais, valores intermediários na primeira (E₁₁), terceira (E₃₁) e quarta (E₄₁) épocas e, na quinta época (E₅₁) o menor valor. Benomyl e Thiram apresentaram valores médios inferiores, respectivamente, na quarta e quinta épocas (E₄₁ e E₅₁), em relação às épocas anteriores.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I₁</th>
<th>E₂I₁</th>
<th>E₃I₁</th>
<th>E₄I₁</th>
<th>E₅I₁</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mai/84</td>
<td>Jul/84</td>
<td>Out/84</td>
<td>Dez/84</td>
<td>Fev/85</td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>62 BCab</td>
<td>80 Aa</td>
<td>65 Ba</td>
<td>66 Bab</td>
<td>53 Ca</td>
<td>65</td>
</tr>
<tr>
<td>Thiram</td>
<td>7a Aa</td>
<td>70 Ab</td>
<td>67 Aa</td>
<td>68 Aa</td>
<td>55 Ba</td>
<td>66</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>67 Aab</td>
<td>68 Ab</td>
<td>68 Aa</td>
<td>63 Aab</td>
<td>58 Aa</td>
<td>65</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>64 Aab</td>
<td>67 Ab</td>
<td>71 Aa</td>
<td>62 Aab</td>
<td>63 Aa</td>
<td>65</td>
</tr>
<tr>
<td>Captan</td>
<td>60 Ab</td>
<td>71 Ab</td>
<td>69 Aa</td>
<td>68 Aab</td>
<td>62 Aa</td>
<td>66</td>
</tr>
<tr>
<td>Benomyl</td>
<td>71 Aab</td>
<td>67 ABBb</td>
<td>68 ABa</td>
<td>57 Bb</td>
<td>57 Ba</td>
<td>64</td>
</tr>
<tr>
<td>Médias</td>
<td>66 B</td>
<td>71 A</td>
<td>68 AB</td>
<td>64 B</td>
<td>58 C</td>
<td></td>
</tr>
</tbody>
</table>

CV (%):
- Tratamentos: 5,82
- Epocas: 5,97

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si pelo teste de Tukey, ao nível de 5% de probabilidade.

** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
4.2.2.1.b. Envelhecimento acelerado

Pela observação dos dados contidos na Tabela 43, pode-se verificar que, na primeira época (E_1), não ocorreram diferenças significativas entre os tratamentos; na segunda época (E_2) o fungicida Captan superou as médias da Testemunha, Tiofanato metílico e Benomyl (não diferentes entre si). Na terceira época (E_3), Thiram, Thiram + Benomyl e Captan superaram os valores médios obtidos com Tiofanato metílico e Benomyl, não diferindo da Testemunha. Na quarta época (E_4) somente foram observadas diferenças significativas do tratamento Testemunha com relação ao Thiram e Captan. Na última época (E_5), destacou-se a superioridade do Thiram em relação à Testemunha, Tiofanato metílico e Benomyl.

Ainda, em relação a Tabela 43 verificou-se, para os efeitos de épocas, que Thiram e Captan apresentaram média inferior apenas na quinta época (E_5); os tratamentos Tiofanato metílico e Benomyl, Testemunha e Thiram + Benomyl apresentaram valores médios decrescentes a partir, respectivamente, da segunda (E_2), terceira (E_3) e quarta (E_4) épocas.

4.2.2.2. Lote 2A

4.2.2.2.a. Germinação

De acordo com os resultados da Tabela 44, foram observados efeitos significativos para médias de tratamentos e entre épocas de tratamentos.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I₁</th>
<th>E₂I₁</th>
<th>E₃I₁</th>
<th>E₄I₁</th>
<th>E₅I₁</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mai/84</td>
<td>Jul/84</td>
<td>Out/84</td>
<td>Dez/84</td>
<td>Fev/85</td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>50 Aa</td>
<td>40 ABbc</td>
<td>36 Bab</td>
<td>32 Bb</td>
<td>11 Cc</td>
<td>34 bc</td>
</tr>
<tr>
<td>Thiram</td>
<td>51 Aa</td>
<td>47 Aab</td>
<td>46 Aa</td>
<td>44 Aa</td>
<td>24 Ba</td>
<td>42 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>52 Aa</td>
<td>36 BCc</td>
<td>29 Cb</td>
<td>41 Bab</td>
<td>15 Dbc</td>
<td>35 bc</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>49 Aa</td>
<td>42 Ababc</td>
<td>39 ABa</td>
<td>35 Bab</td>
<td>18 Cabc</td>
<td>37 b</td>
</tr>
<tr>
<td>Captan</td>
<td>52 Aa</td>
<td>51 Aa</td>
<td>44 Aa</td>
<td>44 Aa</td>
<td>21 Bab</td>
<td>42 a</td>
</tr>
<tr>
<td>Benomyl</td>
<td>48 Aa</td>
<td>37 Bbc</td>
<td>27 Cb</td>
<td>40 ABab</td>
<td>11 Dc</td>
<td>33 c</td>
</tr>
<tr>
<td>Médias</td>
<td>50 A</td>
<td>42 B</td>
<td>37 C</td>
<td>39 BC</td>
<td>17 D</td>
<td></td>
</tr>
</tbody>
</table>

CV (%):
Tratamentos: 6,69
Epocas: 8,29

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E1I1</th>
<th>E2I1</th>
<th>E3I1</th>
<th>E4I1</th>
<th>E5I1</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mai/84</td>
<td>Jul/84</td>
<td>Out/84</td>
<td>Dez/84</td>
<td>Fev/85</td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>78</td>
<td>76</td>
<td>83 bc</td>
</tr>
<tr>
<td>Tiamometol</td>
<td>91</td>
<td>93</td>
<td>89</td>
<td>88</td>
<td>83 a</td>
<td>89 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>88</td>
<td>85</td>
<td>83</td>
<td>81</td>
<td>84</td>
<td>84 bc</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>85</td>
<td>85</td>
<td>80</td>
<td>80</td>
<td>77</td>
<td>81 cd</td>
</tr>
<tr>
<td>Captan</td>
<td>92</td>
<td>89</td>
<td>84</td>
<td>86</td>
<td>80</td>
<td>86 ab</td>
</tr>
<tr>
<td>Benomyl</td>
<td>82</td>
<td>80</td>
<td>77</td>
<td>76</td>
<td>74</td>
<td>78 d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Médias</th>
<th>87 A</th>
<th>86 AB</th>
<th>84 BC</th>
<th>82 CD</th>
<th>79 D</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CV (%)</th>
<th>Tratamentos: 4,93</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Epocas: 4,44</td>
</tr>
</tbody>
</table>

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferem entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
Pode-se verificar que a média de Thiram superou as demais, excetuando-se Captan. Os tratamentos Testemunha e Tiofanato metílico, não diferentes entre si, apresentaram valores médios intermediários e superaram Benomyl, que acarretou a obtenção da menor germinação.

Os valores médios observados entre épocas analisadas, mostraram a superioridade estatística da primeira época (E₁₁₁) em relação à terceira, quarta e quinta épocas (E₃₁₁₁, E₄₁₁₁ e E₅₁₁₁), não diferindo da segunda (E₂₁₁₁); esta, por sua vez, mostrou-se superior à quarta e quinta épocas (E₄₁₁₁ e E₅₁₁₁).

4.2.2.2.b. Envelhecimento acelerado

Pelos dados contidos na Tabela 45, verificaram-se efeitos significativos para tratamentos, épocas de análises e para a interação entre ambos.

Não foram observadas diferenças estatísticas entre os tratamentos na primeira época (E₁₁₁₁). Na segunda (E₂₁₁₁), verificou-se que Thiram, apesar de apresentar a maior média, superou apenas os fungicidas Thiram + Benomyl e Benomyl. Na terceira época (E₃₁₁₁) houve destaque de Thiram sobre todos os demais tratamentos (exceção de Captan). Na quarta época (E₄₁₁₁) destacaram-se Thiram e Captan, cujas médias superaram as da Testemunha, Tiofanato metílico e Benomyl. Na quinta época (E₅₁₁₁), Captan mostrou-se superior aos demais fungicidas; estes apresentaram valores intermediários e não diferiram entre si, mas superaram o tratamento Testemunha.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I₁</th>
<th>E₂I₁</th>
<th>E₃I₁</th>
<th>E₄I₁</th>
<th>E₅I₁</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mai/84</td>
<td>Jul/84</td>
<td>Out/84</td>
<td>Dez/84</td>
<td>Fev/85</td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>55 Ba</td>
<td>68 Aabc</td>
<td>28 Cbc.</td>
<td>15 Dcd</td>
<td>4 Ec</td>
<td>34 c</td>
</tr>
<tr>
<td>Thiram</td>
<td>64 Ba</td>
<td>78 Aa</td>
<td>47 Ca</td>
<td>40 Ca</td>
<td>14 Db</td>
<td>49 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>58 Aa</td>
<td>67 Aabc</td>
<td>30 Bbc</td>
<td>24 Bbc</td>
<td>7 Cbc</td>
<td>37 bc</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>55 Aa</td>
<td>62 Abc</td>
<td>30 Bbc</td>
<td>30 Bab</td>
<td>13 Cb</td>
<td>38 bc</td>
</tr>
<tr>
<td>Captan</td>
<td>63 Aa</td>
<td>71 Aab</td>
<td>39 Bab</td>
<td>41 Ba</td>
<td>25 Ca</td>
<td>48 b</td>
</tr>
<tr>
<td>Benomyl</td>
<td>55 Aa</td>
<td>58 Ac</td>
<td>23 Bc</td>
<td>14 BCD</td>
<td>10 Cb</td>
<td>32 c</td>
</tr>
<tr>
<td>Médias</td>
<td>58 B</td>
<td>67 A</td>
<td>33 C</td>
<td>26 D</td>
<td>12 E</td>
<td></td>
</tr>
</tbody>
</table>

CV (%) Tratamentos: 9,21
Epocas: 9,05

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
Com relação aos valores encontrados entre as épocas de análises para os diferentes tratamentos, constatou-se de maneira geral, nas duas primeiras épocas (E₁₁ e E₂₁), superioridade dos resultados em relação às demais (E₃₁, E₄₁ e E₅₁); na terceira e quarta épocas (E₃₁ e E₄₁), os valores médios foram superiores aos da quinta época (E₅₁).

4.2.2.3. **Lote 3A**

4.2.2.3.a. Germinação

O exame da Tabela 46, com relação aos efeitos de tratamentos, mostrou que o fungicida Thiram superou as demais médias, com exceção da Testemunha e Captan; estes, por outro lado, não diferiram entre si e nem de Thiram + Benomyl e de Benomyl mas, superaram o fungicida Tiofanato metílico.

Ocorreu superioridade estatística da primeira e segunda épocas (E₁₁ e E₂₁), não diferentes entre si, em relação às demais (E₃₁, E₄₁ e E₅₁). A terceira e quarta épocas (E₃₁ e E₄₁) superaram os valores médios observados na última época (E₅₁).

4.2.2.3.b. Envelhecimento acelerado

De acordo com os dados da Tabela 47, verificou-se que ocorreram efeitos significativos para todos os parâmetros analisados.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I₁</th>
<th>E₂I₁</th>
<th>E₃I₁</th>
<th>E₄I₁</th>
<th>E₅I₁</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mai/84</td>
<td>Jul/84</td>
<td>Out/84</td>
<td>Dez/84</td>
<td>Fev/84</td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>92</td>
<td>94</td>
<td>88</td>
<td>92</td>
<td>90</td>
<td>91 ab</td>
</tr>
<tr>
<td>Thiram</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>95</td>
<td>89</td>
<td>93 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>94</td>
<td>94</td>
<td>84</td>
<td>83</td>
<td>80</td>
<td>87 c</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>90</td>
<td>93</td>
<td>91</td>
<td>90</td>
<td>83</td>
<td>89 bc</td>
</tr>
<tr>
<td>Captan</td>
<td>94</td>
<td>94</td>
<td>92</td>
<td>93</td>
<td>89</td>
<td>92 ab</td>
</tr>
<tr>
<td>Benomyl</td>
<td>96</td>
<td>93</td>
<td>87</td>
<td>89</td>
<td>83</td>
<td>90 bc</td>
</tr>
<tr>
<td>Médias</td>
<td>93 A</td>
<td>94 A</td>
<td>89 B</td>
<td>90 B</td>
<td>86 C</td>
<td></td>
</tr>
</tbody>
</table>

CV (%):
- Tratamentos: 4,43
- Epocas: 5,28

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Epocas</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_1I_1</td>
<td>E_2I_1</td>
<td>E_3I_1</td>
<td>E_4I_1</td>
<td>E_5I_1</td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>Mai/84</td>
<td>Jul/84</td>
<td>Out/84</td>
<td>Dez/84</td>
<td>Fev/85</td>
<td></td>
</tr>
<tr>
<td>74 Aa</td>
<td>81 Aa</td>
<td>62 Bc</td>
<td>27 Cc</td>
<td>21 Dab</td>
<td>53 b</td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>76 Aa</td>
<td>79 Aa</td>
<td>78 Aa</td>
<td>47 Ba</td>
<td>31 Ca</td>
<td>62 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>71 ABa</td>
<td>79 Aa</td>
<td>65 Bbc</td>
<td>25 Cc</td>
<td>22 Cab</td>
<td>52 b</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>73 Aa</td>
<td>62 Bb</td>
<td>66 ABbc</td>
<td>40 Cab</td>
<td>18 Db</td>
<td>52 b</td>
</tr>
<tr>
<td>Captan</td>
<td>78 Aa</td>
<td>80 Aa</td>
<td>75 Aab</td>
<td>50 Ba</td>
<td>26 Cab</td>
<td>62 a</td>
</tr>
<tr>
<td>Benomyl</td>
<td>73 Aa</td>
<td>74 Aa</td>
<td>63 Abc</td>
<td>30 Bbc</td>
<td>18 Cb</td>
<td>52 b</td>
</tr>
</tbody>
</table>

Médias | 74 A | 76 A | 68 B | 37 C | 23 D | |

CV (%) | Tratamentos: 7,99 |
| | Epocas: 7,45 |

* Na mesma coluna, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

** Na mesma linha, médias seguidas pela mesma letra maiúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
Não foram observadas diferenças significativas entre os tratamentos, na primeira época \((E_1I_1)\). Na segunda \((E_2I_1)\), a mistura Thiram + Benomyl apresentou média inferior à dos demais tratamentos. Na terceira, quarta e quinta épocas \((E_3I_1, E_4I_1 e E_5I_1)\) destacou-se, respectivamente, a superioridade do Thiram, Thiram e Captan e do Thiram em relação aos outros tratamentos, a inferioridade da Testemunha na terceira e quarta épocas \((E_3I_1 e E_4I_1)\) e de Tiofanato metílico na quarta época \((E_4I_1)\).

Com relação às diferentes épocas analisadas, ocorreram médias decrescentes de maneira, estatisticamente significativa para os fungicidas Thiram, Captan e Benomyl a partir da quarta época \((E_4I_1)\), para os tratamentos Testemunha e Tiofanato metílico, a partir da terceira época \((E_3I_1)\), e para Thiram+ Benomyl, a partir da segunda época \((E_2I_1)\).

4.2.3. Comparação entre épocas de tratamentos

A Tabela 48 apresenta os valores de \(F\) obtidos nas análises de variância dos lotes 1A, 2A e 3A, para sementes tratadas com fungicidas nas épocas correspondentes às semeaduras "das águas" \((E_3I_1 e E_3A_1)\) e "da seca" \((E_5I_1 e E_5S_1)\) do segundo ano experimental.

Quando se compararam os tratamentos efetuados antes do início do armazenamento com os correspondentes à época de semeadura "das águas", obtiveram-se valores de \(F\), significativos ao nível de 1% de probabilidade, para o lote 1A no enve-
Tabela 48. Valores de F obtidos nas análises de variância dos dados referentes às determinações estuda-
das durante o armazenamento de três lotes de sementes de feijoeiro, cv. Rio Vermelho, quando efetuaram-se os tratamentos fungicidas por ocasião das análises (E,3;1, E,3;1; E,5;1; E,5;1). Pi-
racicaba, 1984/85.

<table>
<thead>
<tr>
<th>Lotes</th>
<th>Germ. Env. acelerado</th>
<th>Emerg. plantulas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1A</td>
<td>4,69**</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td>3,93**</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>3,08**</td>
</tr>
</tbody>
</table>

(*) significativo ao nível de 5% de probabilidade
(**) significativo ao nível de 1% de probabilidade.

(*): significativo ao nível de 5% de probabilidade
(**): significativo ao nível de 1% de probabilidade.
lhecimento acelerado, e para os lotes 2A e 3A na germinação e envelhecimento acelerado.

A utilização de fungicidas antes do início do armazenamento, comparada com a aplicação no momento correspondente à época de semeadura "da seca", revelou valores de F significativos, ao nível de 1% de probabilidade, para o lote 1A, no envelhecimento acelerado; para o lote 2A na germinação e envelhecimento acelerado e para o lote 3A, na germinação. Os lotes 1A e 3A apresentaram nível de significância de 5% de probabilidade, respectivamente, na germinação e no envelhecimento acelerado.

4.2.3.1. Lote 1A

4.2.3.1.a. Germinação

Na Tabela 49 encontram-se as médias obtidas para efeitos de tratamentos e os coeficientes de variação. Não foram verificadas diferenças estatisticamente significativas entre os tratamentos efetuados antes do início do armazenamento e os realizados no momento correspondente à época de semeadura "das águas" (E_{3I_1} e E_{3A_1}).

Quando se compararam os tratamentos iniciais (E_{5I_1}) com os efetuados em época correspondente à semeadura "da seca" (E_{5S_1}), somente foi constatada a superioridade de Thiram em relação a Benomyl, quando ambos foram utilizados no momento da execução das análises (E_{5S_1}); os demais resultados não diferiram entre si como, também, não se diferenciaram de Thiram e nem de Benomyl.
4.2.3.1.b. Envelhecimento acelerado

Os resultados obtidos com o lote 1A, na terceira (E₃I₁ e E₃A₁) e quinta (E₅I₁ e E₅S₁) épocas e os respectivos coeficientes de variação, encontram-se na Tabela 50.

Na terceira época, sementes tratadas antes do início do armazenamento (em E₃I₁) com Thiram e com Captan, apresentaram médias superiores às tratadas com Tiofanato metílico e Benomyl; os demais tratamentos não mostraram diferenças entre si. A aplicação dos fungicidas no momento correspondente à semeadura "das águas" (E₃A₁) não revelou diferenças entre as médias; porém, o tratamento com Benomyl na época "das águas" superou o tratamento inicial.

Ainda, examinando-se a Tabela 50 observa-se que, na quinta época, o tratamento com Thiram, antes do início do armazenamento (em E₅I₁) superou as médias obtidas com a Testemunha, Tiofanato metílico e Benomyl, que apresentaram os menores valores; Captan, que não diferiu de Thiram nem de Thiram + Benomyl, também superou a Testemunha e o Benomyl. Os tratamentos efetuados no momento da execução das análises (E₅S₁) mostraram valores semelhantes ao da Testemunha e inferiores aos obtidos com as sementes que estavam tratadas com Thiram e Captan desde a fase inicial.

4.2.3.1.c. Emergência das plântulas

A Tabela 51 contém os resultados referentes a terceira e quinta épocas (E₃I₁, E₃A₁ e E₅I₁, E₅S₁) e os respectivos coefficients de variação. A observação dos dados mos
Tabela 49. Germinação de sementes de feijoeiro, cv. Rio Vermelho, lote 1A: médias (%) obtidas para efeito de tratamentos, antes e durante o armazenamento (terceira e quinta épocas) e coeficientes de variação. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Outubro/84*</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₃I₁</td>
<td>E₃A₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>65 a</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>67 a</td>
<td>61 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiofanato metálico</td>
<td>68 a</td>
<td>63 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>71 a</td>
<td>66 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>69 a</td>
<td>64 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>68 a</td>
<td>62 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CV (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5,80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Fevereiro/85*</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₅I₁</td>
<td>E₅S₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>53 ab</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>55 ab</td>
<td>63 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiofanato metálico</td>
<td>58 ab</td>
<td>58 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>63 ab</td>
<td>63 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>62 ab</td>
<td>59 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>57 ab</td>
<td>50 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Em cada época, médias seguidas pela mesma letra minúscula, não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

Tabela 50. Envelhecimento acelerado de sementes de feijoeiro, cv. Rio Vermelho, lote 1A: médias (%) obtidas para efeito de tratamento antes e durante o armazenamento (terceira e quinta épocas) e coeficientes de variação. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Outubro/84*</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₃I₁</td>
<td>E₃A₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>36 abc</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>46 a</td>
<td>47 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiofanato metálico</td>
<td>29 bc</td>
<td>41 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>39 abc</td>
<td>46 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>44 a</td>
<td>42 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>27 c</td>
<td>45 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CV (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Fevereiro/85*</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₅I₁</td>
<td>E₅S₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>11 cde</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>24 a</td>
<td>10 de</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiofanato metálico</td>
<td>15 bcd</td>
<td>6 e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>18 abc</td>
<td>15 bcd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>21 ab</td>
<td>9 de</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>11 cde</td>
<td>8 e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Em cada época, médias seguidas pela mesma letra minúscula, não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Outubro/84*</th>
<th></th>
<th></th>
<th>Fevereiro/85*</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E3I₁</td>
<td>E3A₁</td>
<td>E5I₁</td>
<td>E5S₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>67 a</td>
<td>-</td>
<td>50 a</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>66 a</td>
<td>61 a</td>
<td>51 a</td>
<td>61 a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>64 a</td>
<td>59 a</td>
<td>50 a</td>
<td>48 a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>69 a</td>
<td>60 a</td>
<td>50 a</td>
<td>55 a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>63 a</td>
<td>63 a</td>
<td>56 a</td>
<td>57 a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>67 a</td>
<td>59 a</td>
<td>48 a</td>
<td>53 a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV (%): 8,32 CV (%): 9,35

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
tra que não ocorreram efeitos significativos entre os tratamentos em função das épocas analisadas, embora deva ser destacado que, em E₅, os valores numéricos foram, em geral, inferiores aos obtidos em E₃.

4.2.3.1.d. Sanidade das sementes

De maneira semelhante ao primeiro ano experimental, não se efetuou análise estatística dos dados referentes à sanidade das sementes do lote 1A, do segundo ano (Tabelas 52, 53, 54, 55 e 56).

Foi observada maior porcentagem de recuperação dos microorganismos Alternaria sp., Aspergillus spp. e Fusarium sp. utilizando-se o método do papel de filtro com congeloamento (c/c), enquanto que, para Penicillium spp. e Rhizopus sp., de uma maneira geral, o método sem congeloamento (s/c) pareceu mais eficiente.

O exame da Tabela 52 revela um decréscimo na incidência de Alternaria sp. com o decorrer do armazenamento. Na terceira (E₃₁₁ e E₃ₐ₁) e na quinta épocas (E₅₁₁ e E₅ₛ₁), observaram-se valores inferiores na recuperação deste fungo com o uso do Thiram e do Thiram + Benomyl; os fungicidas Tiofanato metílico, Captan e Benomyl apresentaram resultados semelhantes aos obtidos com a Testemunha.

Os dados relativos a Aspergillus spp. podem ser observados na Tabela 53. Ocorreu aumento da incidência do fungo, na Testemunha, da primeira para a terceira época (de E₁ᵢ₁ para E₃ᵢ₁ e E₃ₐ₁) e decrescimo desta para a quinta época E₅ᵢ₁ e Eₛ₃₁, embora nesta última os valores médios tenham superado os da primeira época (E₁ᵢ₁). O fungicida Thiram + Benomyl desta-
cou-se dos demais no controle exercido, tanto na terceira como na quinta época (em E₃I₁, E₃A₁ e E₅I₁ e E₅S₁); o uso de Thiram proporcionou controle deficiente considerando que seus resultados foram próximos aos obtidos com o tratamento Testemunha.

De acordo com a Tabela 54 verificou-se aumento da incidência de Fusarium spp., no tratamento Testemunha, da primeira para a terceira época (E₁I₁ para E₃I₁, E₃A₁), decrescendo acentuadamente na última época (E₅I₁ e E₅S₁). Deve-se ressaltar a eficiência de Thiram + Benomyl e Benomyl no controle exercido durante todo o período experimental. Na quinta época, quando os tratamentos foram efetuados no momento das análises (E₅S₁), somente ocorreu recuperação de Fusarium sp. nos tratamentos Testemunha e Captan.

A incidência de Penicillium spp. (Tabela 55) foi elevada em todas as épocas consideradas e para todos os tratamentos estudados, exceção feita ao fungicida Captan, principalmente quando aplicado às sementes antes do início do armazenamento (em E₃I₁ e E₅I₁).

As porcentagens médias de recuperação de Rhizopus sp. (Tabela 56) foram elevadas nos tratamentos Testemunha, Tiofanato metílico e Benomyl, a partir da primeira época (E₁I₁). Na terceira época, (E₃I₁ e E₃A₁) os fungicidas Thiram, Thiram + Benomyl e Captan, utilizados no momento correspondente à semeadura "das águas" (E₃A₁), apresentaram valores médios semelhantes entre si, mas inferiores aos demais tratamentos. Na quinta época (E₅I₁ e E₅S₁), destacou-se a ação de Thiram pelo controle exercido, independentemente do momento de sua utiliza-
Tabela 52. Incidência de *Alternaria* sp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 1A. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Epocas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₁₁₁</td>
</tr>
<tr>
<td></td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>66,0</td>
</tr>
<tr>
<td>Thiram</td>
<td>9,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>42,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>9,5</td>
</tr>
<tr>
<td>Captan</td>
<td>24,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>32,5</td>
</tr>
</tbody>
</table>

Tabela 53. Incidência de *Aspergillus* spp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 1A. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Epocas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₁₁₁</td>
</tr>
<tr>
<td></td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>17,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>2,5</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,5</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,5</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Tabela 54. Incidência de *Fusarium* spp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 1A. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Epocas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₁₁₁</td>
</tr>
<tr>
<td></td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>9,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>3,5</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>2,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Tabela 55. Incidência de *Penicillium* spp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote IA. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Epocas</th>
<th>(E_1I_1)</th>
<th>(E_3I_1)</th>
<th>(E_3A_1)</th>
<th>(E_5I_1)</th>
<th>(E_5S_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>82,0</td>
<td>75,5</td>
<td>80,5</td>
<td>89,5</td>
<td>80,5</td>
<td>89,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>33,5</td>
<td>60,5</td>
<td>70,0</td>
<td>67,0</td>
<td>81,0</td>
<td>74,5</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>18,5</td>
<td>8,5</td>
<td>72,5</td>
<td>24,5</td>
<td>64,5</td>
<td>55,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>35,0</td>
<td>38,0</td>
<td>53,5</td>
<td>41,5</td>
<td>66,5</td>
<td>86,0</td>
</tr>
<tr>
<td>Captan</td>
<td>3,5</td>
<td>1,0</td>
<td>5,0</td>
<td>5,0</td>
<td>8,0</td>
<td>3,5</td>
</tr>
<tr>
<td>Benomyl</td>
<td>94,5</td>
<td>76,5</td>
<td>83,0</td>
<td>83,5</td>
<td>86,5</td>
<td>96,0</td>
</tr>
</tbody>
</table>

Tabela 56. Incidência de *Rhizopus* sp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote IA. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Epocas</th>
<th>(E_1I_1)</th>
<th>(E_3I_1)</th>
<th>(E_3A_1)</th>
<th>(E_5I_1)</th>
<th>(E_5S_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>1,0</td>
<td>6,5</td>
<td>58,5</td>
<td>31,5</td>
<td>58,5</td>
<td>31,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
<td>3,5</td>
<td>7,0</td>
<td>2,5</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>8,0</td>
<td>5,0</td>
<td>21,0</td>
<td>34,5</td>
<td>5,5</td>
<td>14,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,5</td>
<td>0,0</td>
<td>11,5</td>
<td>2,0</td>
<td>0,5</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>5,0</td>
<td>1,5</td>
<td>5,0</td>
<td>7,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>8,5</td>
<td>8,5</td>
<td>42,0</td>
<td>44,5</td>
<td>9,0</td>
<td>8,0</td>
</tr>
</tbody>
</table>
ção (E_5I_1 e E_5S_1), e de Thiram + Benomyl e Captan, quando aplicados antes do início do armazenamento (E_5I_1).

4.2.3.2. Lote 2A

4.2.3.2.a. Germinação

Na Tabela 57, encontram-se as médias de germinação das sementes quando se comparou o tratamento com inseticidas antes do início do armazenamento, com a aplicação dos mesmos produtos no momento da execução das análises (E_3I_1, E_3A_1 e E_5I_1, E_5S_1) e os coeficientes de variação.

O fungicida Thiram, quando utilizado no momento correspondente à época de semeadura "das águas" (E_3A_1), apresentou porcentagem de germinação superior às médias obtidas com Thiram + Benomyl e Benomyl, quando estes foram aplicados antes do início do armazenamento (em E_3I_1). Os tratamentos restantes apresentaram valores médios intermediários, não se destacando em relação ao Thiram (em E_3A_1).

Na quinta época, as médias de Thiram e Tiofanato metílico (em E_5I_1), não diferentes entre si, apresentaram superioridade estatística em relação às médias de Tiofanato metílico e Benomyl, quando foram aplicados às sementes no momento das análises (E_5S_1); os demais tratamentos não mostraram diferenças significativas entre si, nem em relação aos fungicidas já citados.
4.2.3.2.b. Envelhecimento acelerado

Os resultados referentes ao teste de envelhecimento acelerado para o lote 2A na terceira e quinta épocas (E₃I₁, E₃A₁ e E₅I₁, E₅S₁) e os coeficientes de variação encontram-se na Tabela 58.

Na terceira época (E₃I₁ e E₃A₁) destacou-se a superioridade estatística do Thiram, independentemente do momento de sua utilização, em relação à Testemunha, Tiofanato metílico, Thiram + Benomyl (quando estes foram aplicados às sementes antes do início do armazenamento, em E₃I₁) e Benomyl (considerando os dois momentos de aplicação, em E₃I₁ e E₃A₁). Os demais fungicidas utilizados no momento correspondente às semeaduras "das águas" (Tiofanato metílico, Thiram + Benomyl e Captan) e Captan (aplicado antes do início do armazenamento, em E₃I₁) apresentaram valores médios intermediários e não diferiram de Thiram.

Na quinta época (E₅I₁ e E₅S₁) a média de Captan, utilizado antes de se iniciar o armazenamento (E₅I₁), superou as demais médias.

4.2.3.2.c. Emergência das plântulas

Quando foram comparados os tratamentos com fungicidas realizados antes do início do armazenamento com os aplicados nos momentos correspondentes às semeaduras "das águas" (E₃I₁ e E₃A₁) e "da seca" (E₅I₁ e E₅S₁) não foram observadas diferenças significativas entre as porcentagens de emergência

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Outubro/84*</th>
<th></th>
<th></th>
<th></th>
<th>Fevereiro/85*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₃I₁</td>
<td>E₃A₁</td>
<td></td>
<td></td>
<td>E₅I₁</td>
</tr>
<tr>
<td>Testemunha</td>
<td>88 abc</td>
<td></td>
<td></td>
<td></td>
<td>76 abc</td>
</tr>
<tr>
<td>Thiram</td>
<td>89 ab</td>
<td>91 a</td>
<td></td>
<td></td>
<td>84 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>83 abc</td>
<td>88 abc</td>
<td></td>
<td></td>
<td>84 a</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>80 bc</td>
<td>90 ab</td>
<td></td>
<td></td>
<td>77 abc</td>
</tr>
<tr>
<td>Captan</td>
<td>84 abc</td>
<td>89 abc</td>
<td></td>
<td></td>
<td>80 ab</td>
</tr>
<tr>
<td>Benomyl</td>
<td>77 c</td>
<td>83 abc</td>
<td></td>
<td></td>
<td>74 abc</td>
</tr>
</tbody>
</table>

CV (%): 5,51 CV (%): 5,55

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Outubro/84*</th>
<th></th>
<th></th>
<th></th>
<th>Fevereiro/85*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₃I₁</td>
<td>E₃A₁</td>
<td></td>
<td></td>
<td>E₅I₁</td>
</tr>
<tr>
<td>Testemunha</td>
<td>28 e</td>
<td></td>
<td></td>
<td></td>
<td>4 de</td>
</tr>
<tr>
<td>Thiram</td>
<td>47 a</td>
<td>51 a</td>
<td></td>
<td></td>
<td>14 b</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>30 b c d e</td>
<td>36 abc d e</td>
<td></td>
<td></td>
<td>7 b c d</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>30 b c d e</td>
<td>45 ab</td>
<td></td>
<td></td>
<td>13 b</td>
</tr>
<tr>
<td>Captan</td>
<td>39 ab c d</td>
<td>45 ab</td>
<td></td>
<td></td>
<td>25 a</td>
</tr>
<tr>
<td>Benomyl</td>
<td>23 e</td>
<td>29 c d e</td>
<td></td>
<td></td>
<td>10 b c</td>
</tr>
</tbody>
</table>

CV (%): 10,76 CV (%): 18,85

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Outubro/84*</th>
<th>Fevereiro/85*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_3I_1</td>
<td>E_3A_1</td>
</tr>
<tr>
<td>Testemunha</td>
<td>91 a</td>
<td>-</td>
</tr>
<tr>
<td>Thiram</td>
<td>88 a</td>
<td>91 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>90 a</td>
<td>90 a</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>90 a</td>
<td>82 a</td>
</tr>
<tr>
<td>Captan</td>
<td>92 a</td>
<td>91 a</td>
</tr>
<tr>
<td>Benomyl</td>
<td>83 a</td>
<td>85 a</td>
</tr>
</tbody>
</table>

CV (%): 8,65 \hspace{1cm} CV (%): 6,18

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
das plântulas nas duas épocas citadas; os resultados e os coeficientes de variação podem ser encontrados na Tabela 59.

4.2.3.2.d. Sanidade das sementes

Os valores médios referentes à incidência de Alternaria sp., Aspergillus spp., Fusarium spp., Penicillium spp. e Rhizopus sp. nas sementes do lote 2A, podem ser observados, respectivamente nas Tabelas 60, 61, 62, 63 e 64.

Houve maior recuperação de Alternaria, sp., Aspergillus spp. e Fusarium spp. quando se utilizou o método do papel de filtro com congelamento (c/c); para Penicillium spp. o método sem congelamento (s/c) pareceu ser mais eficiente e, para Rhizopus sp., ocorreram variações em função do tratamento e época considerados.

A Tabela 60 apresenta os valores obtidos para Alternaria sp.. Na terceira época, o tratamento das sementes, com Thiram e Thiram + Benomyl, antes de se iniciar o armazenamento (E3I1), não permitiu a ocorrência deste fungo. Na quinta época, não houve recuperação de Alternaria sp. quando se utilizou Thiram, Thiram + Benomyl ou Captan antes do início do armazenamento (em E5I1) e os fungicidas Tiofanato metílico, Thiram + Benomyl e Benomyl, quando efetuou-se a aplicação destes produtos no momento das análises (E5S1). Considerando-se a Testemunha, verificou-se que, durante o armazenamento, houve queda na ocorrência deste fungo.

De acordo com os dados contidos na Tabela 61, praticamente, não ocorreu alteração na incidência de Aspergil-
lus spp. durante o armazenamento quando se considerou o trata-
mento Testemunha. Na terceira época (E₃₁₁ e E₃₃₁), o uso de
Thiram + Benomyl, de Benomyl (independentes do momento de apli-
cação), de Captan (em E₃₁₁) e de Thiram (em E₃₃₁) não permi-
tiu a recuperação desse microorganismo. Na quinta época (E₅₁₁
et E₅₃₁), nenhum dos fungicidas, considerando os dois momentos
de aplicação, permitiu a recuperação de Aspergillus spp. (ex-
ceção de Thiram em E₅₃₁).

A ocorrência de Fusarium spp. (Tabela 62) somen-
te foi detectada nos tratamentos Testemunha, na quinta época
(E₅₁₁ e E₅₃₁), e com Tiofanato metílico, na terceira época, quando este foi utilizado no momento correspondente à época
de semeadura "das águas" (E₃₃₁).

Na Tabela 63, encontram-se as porcentagens mé-
dias obtidas para a incidência de Penicillium spp. Observou-
se aumento na recuperação do fungo da primeira (E₁₁₁) para a
terceira época (E₃₁₁ e E₃₃₁) e decréscimo desta para a qui-
ta época (E₅₁₁ e E₅₃₁), quando se considerou o tratamento Tes-
temunha. Na terceira época (E₃₁₁ e E₃₃₁), somente Captan (em
E₃₁₁) não permitiu a recuperação do fungo. Na quinta época
(E₅₁₁ e E₅₃₁), o mesmo resultado foi obtido com os produtos
Thiram e Captan, ambos utilizados antes do início do armaze-
namiento (em E₅₁₁).

Os dados contidos na Tabela 64 mostram a ocor-
rência de Rhizopus sp. nas sementes do lote 2A, durante o pe-
riodo experimental. Na terceira época (E₃₁₁ e E₃₃₁), os trata-
mentos das sementes, com Thiram e Thiram + Benomyl, no momen-
Tabela 60. Incidência de *Alternaria* sp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 2A. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Epocas</th>
<th>Tratamentos</th>
<th>E₁I₁</th>
<th>E₃I₁</th>
<th>E₃A₁</th>
<th>E₅I₁</th>
<th>E₅S₁</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>41,5 25,5 11,0 10,0 11,0 10,0 1,5 0,0 1,5 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>0,5 0,0 0,0 0,0 1,5 0,0 0,0 0,0 0,0 0,0 0,5 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>8,5 4,0 3,0 0,0 3,5 1,0 0,5 0,0 0,0 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0 0,0 0,0 0,0 0,5 0,5 0,0 0,0 0,0 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>1,5 1,0 1,0 0,0 0,5 0,0 0,0 0,0 1,0 0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>4,0 1,0 1,5 0,5 2,5 0,0 1,5 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epocas</th>
<th>Tratamentos</th>
<th>E₁I₁</th>
<th>E₃I₁</th>
<th>E₃A₁</th>
<th>E₅I₁</th>
<th>E₅S₁</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>4,0 1,0 3,0 0,5 3,0 0,5 2,5 0,5 2,5 0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0 0,0 2,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0 0,0 2,5 0,0 1,5 0,0 0,0 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>0,0 0,0 0,0 0,0 3,0 0,5 0,0 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epocas</th>
<th>Tratamentos</th>
<th>E₁I₁</th>
<th>E₃I₁</th>
<th>E₃A₁</th>
<th>E₅I₁</th>
<th>E₅S₁</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>0,5 0,0 0,0 0,0 0,0 0,0 0,5 0,0 0,5 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0 0,0 0,0 0,0 0,5 0,0 0,0 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 63. Incidência de *Penicillium* spp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 2A. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E<sub>E1</sub></th>
<th>E<sub>E3</sub></th>
<th>E<sub>E3A</sub></th>
<th>E<sub>E5</sub></th>
<th>E<sub>E5S</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c s/c</td>
<td>c/c s/c</td>
<td>c/c s/c</td>
<td>c/c s/c</td>
<td>c/c s/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>3,0 6,0 5,0</td>
<td>30,0 5,0 30,0</td>
<td>3,5 7,5</td>
<td>3,5 7,5</td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0 0,0 0,5</td>
<td>2,0 1,5 1,5</td>
<td>0,0 0,0 0,5</td>
<td>0,0 0,0 0,5</td>
<td></td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0 0,0 0,5</td>
<td>0,5 0,5 0,5</td>
<td>1,5 0,5 1,5</td>
<td>0,0 0,5 0,5</td>
<td></td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0 0,0 27,5</td>
<td>0,0 1,5 1,5</td>
<td>0,5 1,0 1,5</td>
<td>0,0 1,0 0,5</td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>0,0 0,0 0,0</td>
<td>0,0 0,0 0,5</td>
<td>0,0 0,0 0,5</td>
<td>0,0 0,5 0,0</td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0 1,5 1,5</td>
<td>2,5 1,5 1,5</td>
<td>1,0 1,5 0,5</td>
<td>1,0 1,5 0,5</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 64. Incidência de *Rhizopus* sp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 2A. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E<sub>E1</sub></th>
<th>E<sub>E3</sub></th>
<th>E<sub>E3A</sub></th>
<th>E<sub>E5</sub></th>
<th>E<sub>E5S</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c s/c</td>
<td>c/c s/c</td>
<td>c/c s/c</td>
<td>c/c s/c</td>
<td>c/c s/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>9,0 14,0 23,5</td>
<td>10,5 23,5 10,5</td>
<td>9,5 19,0</td>
<td>9,5 19,0</td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0 0,0 0,0</td>
<td>0,0 0,5 1,5</td>
<td>1,0 3,5</td>
<td>0,5 0,5</td>
<td></td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0 0,0 35,0</td>
<td>11,0 6,0 5,0</td>
<td>6,0 11,5</td>
<td>6,0 2,5</td>
<td></td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0 0,0 34,0</td>
<td>14,0 0,5 1,0</td>
<td>0,5 6,5</td>
<td>0,0 0,0</td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>0,0 0,0 29,5</td>
<td>0,0 19,5 7,5</td>
<td>1,0 0,0</td>
<td>1,0 0,0</td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,5 3,0 12,0</td>
<td>44,5 28,5 28,0</td>
<td>6,5 22,0</td>
<td>3,5 2,5</td>
<td></td>
</tr>
</tbody>
</table>
to correspondente à época de semeadura "das águas" (E3A1) e, com Thiram, antes do início do armazenamento (E3I1), superaram os demais; isto ocorreu em razão das elevadas porcentagens de recuperação do fungo até mesmo superiores à Testemunha, obtidas com os demais fungicidas, principalmente, quando foram utilizados antes do início do armazenamento (E3I1). Na quinta época, Thiram e Captan (em E5I1) proporcionaram menor recuperação, quando comparados aos demais fungicidas (principalmente, Tiofanato metílico e Benomyl), que apresentaram valores próximos aos da Testemunha. Da mesma forma, o uso de Thiram, Thiram + Benomyl e Captan em E5S1, proporcionou efeitos semelhantes.

4.2.3.3. **Lote 3A**

4.2.3.3.a. Germinação

Examinando-se a Tabela 65, pode-se verificar que, na terceira época (E3I1 e E3A1), apenas ocorreu superioridade estatística de Thiram (independentemente do momento da aplicação) em relação a Tiofanato metílico, quando este foi utilizado antes do início do armazenamento (E3I1). Os demais tratamentos, não diferiram entre si e nem dos tratamentos com Thiram e Tiofanato metílico.

Na quinta época (E5I1 e E5S1), a média da Testemunha superou as obtidas para Tiofanato metílico e Benomyl (aplicados às sementes no momento correspondente à semeadura "da seca", E5S1). Os demais fungicidas não mostraram diferenças significativas entre si nem com relação à Testemunha.
4.2.3.3.b. Envelhecimento acelerado

Na Tabela 66 encontram-se os valores médios obtidos para efeito de épocas de tratamentos com fungicidas, no teste de envelhecimento acelerado e os respectivos coeficientes de variação.

Na terceira época (E₃I₁ e E₃A₁) o uso de Thiram antes do início do armazenamento (em E₃I₁), superou os tratamentos Testemunha, Tiofanato metílico e Benomyl (tanto em E₃I₁ como em E₃A₁), não apresentando superioridade em relação a Captan nem a Thiram + Benomyl.

Na quinta época (E₅I₁ e E₅S₁), ocorreu diferença estatística significativa entre Thiram, usado antes do início do armazenamento (E₅I₁), e Thiram + Benomyl, aplicado às sementes próximo à execução das análises (E₅S₁). As demais médias não apresentaram diferenças significativas entre si.

4.2.3.3.c. Emergência das plântulas

Através da observação dos resultados da Tabela 67, não foram encontradas diferenças estatísticas significativas entre os tratamentos efetuados na terceira e quinta épocas (E₃I₁, E₃A₁ e E₅I₁, E₅S₁), quando foram comparadas as aplicações de fungicidas antes do início do armazenamento com os efetuados nas épocas de semeadura "das "ágwas" e "da seca".

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Outubro/84*</th>
<th>Fevereiro/85*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E3I1</td>
<td>E3A1</td>
</tr>
<tr>
<td>Testemunha</td>
<td>88 ab</td>
<td>-</td>
</tr>
<tr>
<td>Thiram</td>
<td>94 a</td>
<td>95 a</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>84 b</td>
<td>90 ab</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>91 ab</td>
<td>93 ab</td>
</tr>
<tr>
<td>Captan</td>
<td>92 ab</td>
<td>92 ab</td>
</tr>
<tr>
<td>Benomyl</td>
<td>87 ab</td>
<td>90 ab</td>
</tr>
</tbody>
</table>

CV (%): 4,99

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Outubro/84*</th>
<th>Fevereiro/85*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E3I1</td>
<td>E3A1</td>
</tr>
<tr>
<td>Testemunha</td>
<td>62 cd</td>
<td>-</td>
</tr>
<tr>
<td>Thiram</td>
<td>78 a</td>
<td>74 abc</td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>65 bcd</td>
<td>61 d</td>
</tr>
<tr>
<td>Thiram + Benomyl</td>
<td>66 abcd</td>
<td>73 abcd</td>
</tr>
<tr>
<td>Captan</td>
<td>75 ab</td>
<td>67 abcd</td>
</tr>
<tr>
<td>Benomyl</td>
<td>63 bcd</td>
<td>63 bcd</td>
</tr>
</tbody>
</table>

CV (%): 5,69

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Outubro/84*</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Fevereiro/85*</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_3I_1</td>
<td>E_3A_1</td>
<td>E_5I_1</td>
<td>E_5S_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testemunha</td>
<td>90 a</td>
<td>-</td>
<td>87 a</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram</td>
<td>95 a</td>
<td>90 a</td>
<td>82 a</td>
<td>88 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiofanato metílico</td>
<td>94 a</td>
<td>89 a</td>
<td>87 a</td>
<td>89 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>94 a</td>
<td>90 a</td>
<td>81 a</td>
<td>86 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>93 a</td>
<td>95 a</td>
<td>86 a</td>
<td>88 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>95 a</td>
<td>93 a</td>
<td>81 a</td>
<td>91 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV (%): 7,17

CV (%): 7,26

* Em cada época, médias seguidas pela mesma letra minúscula não diferiram entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.
4.2.3.3.d. Sanidade das sementes

A ocorrência de microorganismos durante o armazenamento das sementes do lote 3A pode ser verificada pelas Tabelas 68, 69, 70, 71 e 72.

Para a detecção dos fungos foi utilizado o método de papel de filtro, com congelamento (c/c) e sem congelamento (s/c); o primeiro, permitiu maior porcentagem de recuperação de *Alternaria* sp., *Aspergillus* spp., *Fusarium* spp. e *Rhizopus* sp., enquanto o segundo método foi mais eficiente para *Penicillium* spp.

A ocorrência de *Alternaria* sp. pode ser observada na Tabela 68. Pelos valores obtidos com o tratamento Testemunha, verificou-se que ocorreu queda acentuada da incidência em função do armazenamento. Na terceira época (*E3I* e *E3A*), Thiram + Benomyl, aplicado antes do início do armazenamento (*E3I*), destacou-se dos demais tratamentos pelo controle exercido; Tiofanato metílico e Benomyl, aplicados no momento da execução das análises (*E3A*), apresentaram resultados semelhantes aos obtidos com a Testemunha. Na quinta época (*E5I* e *E5S*), apenas foi observada recuperação deste fungo nos tratamentos Testemunha e Thiram + Benomyl (quando foi utilizado desde antes do início do armazenamento, em *E5I*).

Observando-se o tratamento Testemunha verificou-se aumento na ocorrência de *Aspergillus* spp. (Tabela 69) da primeira (*E1I*) para a terceira época (*E3I* e *E3A*) e décrescimo desta para a última época (*E5I* e *E5S*). Na terceira época (*E3I* e *E3A*) o uso de Thiram + Beno...
myl, Captan e Benomyl (todos aplicados antes do início do armazenamento, em E3I1) e de Thiram + Benomyl e Benomyl, quando aplicados no momento correspondente à época de semeadura "das águas" (E3A1), superaram os demais tratamentos pelo controle efetuado. Na quinta época (E5I1 e E5S1) Tiofanato metílico (em E5I1), Thiram + Benomyl e Captan, independentemente do momento em que foram utilizados, proporcionaram controle superior aos demais tratamentos.

A incidência de Fusarium spp. (Tabela 70) no lote 3A apenas pode ser detectada no tratamento Testemunha na primeira e terceira épocas (E1I1 e E3I1, E3A1). Na terceira época e com sementes tratadas desde antes de se iniciar o armazenamento (E3I1), os diferentes fungicidas não permitiram a recuperação deste fungo; obteve-se resultado semelhante quando, no momento correspondente à semeadura "das águas" (E3A1), utilizaram-se os fungicidas Thiram + Benomyl e Benomyl. Na quinta época (E5I1 e E5S1), apenas foi detectada a presença de Fusarium spp. com o uso de Thiram e de Captan em sementes tratadas anteriormente à exceção das análises (E5S1).

O exame da Tabela 71, revela valores elevados de ocorrência de Penicillium spp. no tratamento Testemunha, durante todo o segundo ano experimental do lote 3A. Captan destacou-se de todos os demais fungicidas, principalmente quando utilizado antes do início do armazenamento (em E1I1, E3I1 e E5I1).

De acordo com os resultados contidos na Tabela 72, verificou-se que ocorreu elevação acentuada da ocorrência de Rhizopus sp. durante o armazenamento das sementes não trata
das com fungicidas. Na primeira época (E₁₁₁), Thiram e Thiram + Benomyl proporcionaram controle efetivo do microorganismo, o mesmo ocorrendo na quinta época (E₅₁₁ e E₅S₁) com o uso de Thiram + Benomyl e Captan aplicados antes do início do armazenamento (em E₅₁₁).
Tabela 68. Incidência de *Alternaria* sp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 3A. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Epocas</th>
<th>E1I1</th>
<th>E3I1</th>
<th>E3A1</th>
<th>E5I1</th>
<th>E5S1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>44,0</td>
<td>30,5</td>
<td>11,5</td>
<td>6,5</td>
<td>11,5</td>
<td>6,5</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>0,5</td>
<td>1,0</td>
<td>0,5</td>
<td>1,5</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>12,0</td>
<td>1,5</td>
<td>2,5</td>
<td>1,5</td>
<td>9,5</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>1,0</td>
<td>1,5</td>
<td>1,0</td>
<td>4,5</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>5,0</td>
<td>0,5</td>
<td>5,0</td>
<td>1,0</td>
<td>6,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Thiram</td>
<td>1,5</td>
<td>0,5</td>
<td>1,0</td>
<td>0,5</td>
<td>1,5</td>
<td>0,0</td>
</tr>
<tr>
<td>Rio Vermelho, lote 3A. Piracicaba, 1984/85.</td>
<td>1,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,5</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>12,0</td>
<td>1,5</td>
<td>2,5</td>
<td>1,5</td>
<td>9,5</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>1,0</td>
<td>1,5</td>
<td>1,0</td>
<td>4,5</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>5,0</td>
<td>0,5</td>
<td>5,0</td>
<td>1,0</td>
<td>6,5</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Tabela 69. Incidência de *Aspergillus* spp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 3A. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Epocas</th>
<th>E1I1</th>
<th>E3I1</th>
<th>E3A1</th>
<th>E5I1</th>
<th>E5S1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>19,0</td>
<td>2,0</td>
<td>27,5</td>
<td>2,0</td>
<td>27,5</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>0,0</td>
<td>10,0</td>
<td>3,0</td>
<td>7,0</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>2,5</td>
<td>0,0</td>
<td>21,5</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Rio Vermelho, lote 3A. Piracicaba, 1984/85.</td>
<td>1,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,5</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Tabela 70. Incidência de *Fusarium* sp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 3A. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Epocas</th>
<th>E1I1</th>
<th>E3I1</th>
<th>E3A1</th>
<th>E5I1</th>
<th>E5S1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>2,5</td>
<td>0,5</td>
<td>1,0</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,5</td>
<td>0,0</td>
</tr>
<tr>
<td>Rio Vermelho, lote 3A. Piracicaba, 1984/85.</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,5</td>
<td>0,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Tabela 71. Incidência de *Penicillium* spp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 3A. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I₁</th>
<th>E₃I₁</th>
<th>E₃A₁</th>
<th>E₅I₁</th>
<th>E₅S₁</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>96,0</td>
<td>94,5</td>
<td>87,0</td>
<td>100,0</td>
<td>87,0</td>
</tr>
<tr>
<td>Thiram</td>
<td>29,5</td>
<td>65,0</td>
<td>33,5</td>
<td>57,5</td>
<td>69,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>3,5</td>
<td>2,5</td>
<td>17,0</td>
<td>3,5</td>
<td>61,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>2,5</td>
<td>10,0</td>
<td>15,0</td>
<td>10,5</td>
<td>57,5</td>
</tr>
<tr>
<td>Captan</td>
<td>0,5</td>
<td>0,0</td>
<td>0,5</td>
<td>0,5</td>
<td>5,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>57,5</td>
<td>59,5</td>
<td>70,0</td>
<td>75,5</td>
<td>82,0</td>
</tr>
</tbody>
</table>

Tabela 72. Incidência de *Rhizopus* sp.: médias (%) obtidas para efeitos de tratamentos antes e durante o armazenamento de sementes de feijoeiro, cv. Rio Vermelho, lote 3A. Piracicaba, 1984/85.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>E₁I₁</th>
<th>E₃I₁</th>
<th>E₃A₁</th>
<th>E₅I₁</th>
<th>E₅S₁</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
<td>s/c</td>
<td>c/c</td>
</tr>
<tr>
<td>Testemunha</td>
<td>10,0</td>
<td>5,0</td>
<td>71,0</td>
<td>54,0</td>
<td>71,0</td>
</tr>
<tr>
<td>Thiram</td>
<td>0,0</td>
<td>0,0</td>
<td>7,0</td>
<td>2,5</td>
<td>10,0</td>
</tr>
<tr>
<td>Tiof. met.</td>
<td>40,0</td>
<td>7,0</td>
<td>69,0</td>
<td>38,0</td>
<td>58,0</td>
</tr>
<tr>
<td>Thiram+Benomyl</td>
<td>0,0</td>
<td>0,0</td>
<td>4,5</td>
<td>1,0</td>
<td>8,0</td>
</tr>
<tr>
<td>Captan</td>
<td>0,5</td>
<td>0,5</td>
<td>6,0</td>
<td>0,0</td>
<td>3,0</td>
</tr>
<tr>
<td>Benomyl</td>
<td>17,0</td>
<td>10,0</td>
<td>28,0</td>
<td>33,5</td>
<td>20,0</td>
</tr>
</tbody>
</table>
5. DISCUSSÃO

Foram discutidos separadamente os efeitos dos fungicidas aplicados às sementes antes do início do armazenamento e a comparação desses tratamentos com a sua utilização em épocas correspondentes às semeaduras "das águas" e "da seca". Como nos dois anos experimentais utilizaram-se lotes de sementes de feijoeiro com níveis de qualidade relativamente semelhantes, estes foram agrupados para se obter melhor avaliação dos resultados.

Pôde-se observar que o grau de umidade das sementes dos seis lotes estudados não apresentou variações em função dos tratamentos fungicidas utilizados, acompanhando as oscilações da umidade relativa e temperatura do ar reinantes nos respectivos períodos. O grau de umidade das sementes situou-se entre 10,0 e 14,0% durante os dois anos experimentais, sendo a variação considerada uniforme dentro de cada época analisada.

Desta maneira, as condições ambientais foram sa-
tisfatórias para a manutenção da viabilidade das sementes até o final de cada período experimental, respectivamente de sete e nove meses, principalmente para os lotes que apresentavam qualidade inicial superior (por exemplo, os lotes 2, 3, 2A e 3A). FREIRE et alii (1978) e ZINK et alii (1979) também verificaram manutenção da germinação de sementes de feijão armazenadas com grau de umidade inferior a 13,0%, em ambiente não controlado. No presente trabalho, de forma semelhante à observada por ZINK et alii (1976, 1979), o vigor das sementes decresceu mais rapidamente que a germinação.

Embora a umidade relativa do ar predominante, nos dois anos experimentais, tenha sido adequada para a invasão e/ou aumento na quantidade dos fungos *Aspergillus* spp. e *Penicillium* spp., ou seja, umidade relativa superior a 65% (CHRISTENSEN e LÓPEZ, 1963; CHRISTENSEN e KAUFMANN, 1969; NEERGAARD, 1977 e CHRISTENSEN, 1978), este fator não pareceu responsável por variações acentuadas nas incidências destes fungos. Talvez, essa ocorrência se deva ao fato das temperaturas médias mensais observadas terem se situado entre 18 e 28°C, no primeiro ano e 20 e 25°C no segundo ano; de acordo com NEERGAARD (1977) a temperatura ótima para desenvolvimento desses microorganismos está em torno de 30 - 33°C. Por outro lado, as condições de ambiente não provocaram a inviabilidade destes fungos, uma vez que os níveis de incidência nos tratamentos Testemunha permaneceram praticamente constantes considerando-se todos os lotes avaliados.

5.1. Tratamento Fungicida Antes do Início do Armazenamento

Os lotes 1 (primeiro ano experimental) e 1A (segundo ano) foram considerados como os de pior qualidade. Estes lotes apresentaram maior resposta aos tratamentos fungicidas, o que era, de certa forma, esperado face às considerações efetuadas por CARVALHO e NAKAGAWA (1983).

Os resultados demonstraram, para o lote 1, que o tratamento das sementes antes do início do armazenamento beneficiou a qualidade fisiológica das sementes, principalmente, com o uso de Thiram que preservou a germinação durante os sete meses e de Captan, Thiram e Thiram + Benomyl que permitiram a manutenção do vigor até quatro meses de armazenamento.

As sementes do lote 1A não mostraram efeitos do uso de fungicidas dentro de cada época mas, ao final do período de nove meses, pode-se observar que os fungicidas Tiofanato metílico, Thiram + Benomyl e Captan mantiveram os níveis iniciais de germinação; podem-se destacar os efeitos de Thiram
e Captan na preservação do vigor até sete meses de armazenamen
to.

Respostas ao uso de fungicidas em sementes de qualidade inferior, também foram observadas por ELLIS et alii (1976b). Por outro lado alguns pesquisadores destacaram que o uso de Thiram proporcionou maiores porcentagens de germina-
ção em comparação com sementes não tratadas (MAEDA et alii, 1976 e MENTEN e MENDES, 1982) e valores superiores de germina-
ção e vigor (MARCOS FILHO e PERRY JUNIOR, 1977). Ainda, TANA-
KA e CORRÊA (1981) concluíram que a utilização de Captan e Car-
bedazin, beneficiou a preservação da qualidade de sementes ar-
mazenadas de feijão.

Com relação às sementes dos lotes 2 e 2A, respectiva-
temente do primeiro e segundo anos experimentais, considera-
das como sendo de classe intermediária de qualidade, foi veri-
ficada menor variação de comportamento em função dos produtos
utilizados. As médias de germinação revelaram, para esses dois lotes, a superioridade do fungicida Thiram, aplicado an-
tes do início do armazenamento, em relação aos demais tratamen-
tos (exceção de Captan); constatou-se para o lote 2, que as me-
nores médias corresponderam aos tratamentos Testemunha e Tiofa-
nato metílico e, para o lote 2A, Testemunha, Thiram + Benomyl
e Benomyl.

Vantagens da aplicação de fungicidas antes de se
iniciar o armazenamento das sementes foram também constatadas
por SHERWIN et alii (1948); SOULEYRETTE (1970); MAEDA et alii (1976, 1977); CIA et alii (1980); CARVALHO (1981); TANAKA e CORRÊA (1981); MARCOS FILHO e SOUZA (1983); MORENO-MARTINEZ et alii (1985); MORENO-MARTINEZ e RAMIREZ (1985) e QUEIROGA e BARREIRO NETO (1985).

O vigor das sementes (envelhecimento acelerado) do lote 2, não mostrou efeito das aplicações de fungicidas até quatro meses de armazenamento mas, aos sete meses, evidenciou-se o pior desempenho das sementes não tratadas (Testemunha) e das tratadas com Tiofanato metílico, Thiram + Benomyl e Benomyl em relação ao Thiram e Captan. Para o lote 2A, as diferenças entre os tratamentos também foram se acentuando à medida que decorreu o período de armazenamento; desta forma, a partir de cinco meses, os tratamentos iniciais com Thiram e Captan apresentaram as maiores médias enquanto a Testemunha e Benomyl, médias decrescentes.

Em pesquisas conduzidas por TANAKA e CORRÊA (1981); MARCOS FILHO e SOUZA (1983) e MORENO-MARTINEZ e RAMIREZ (1985) foram observados efeitos mais pronunciados da aplicação de fungicidas à medida que os períodos de armazenamento evoluíram.

Com relação aos lotes de alta qualidade fisiológica (3 e 3A), não foram observados benefícios das aplicações dos diferentes fungicidas, antes do início do armazenamento, em relação à germinação das sementes. ELLIS et alii (1976b) e
BOLKAN et alii (1976), de forma semelhante, não encontraram vantagens da aplicação de fungicidas sobre a viabilidade de sementes de feijão com alta qualidade.

No entanto, observaram-se diferenças significativas com o uso de Thiram em relação aos demais fungicidas (para o lote 3) e maior variação entre produtos testados, para o lote 3A. Assim, verificou-se para este lote, que Thiram superou as demais médias (com exceção do Captan) e que Tiofanato metílico apresentou a menor média.

Por outro lado, ocorreu manutenção do vigor das sementes (envelhecimento acelerado) dos lotes 3 e 3A, respectivamente por quatro e cinco meses, quando foram utilizados os fungicidas Thiram e Captan. MARCOS FILHO e SOUZA (1983) também verificaram que a aplicação de fungicidas em sementes de soja, antes do início do armazenamento, pode beneficiar a conservação do vigor.

5.2. Comparação Entre Épocas de Tratamentos

A aplicação de fungicidas às sementes do lote 1, após dois meses de armazenamento (na época de semeadura "das águas"), proporcionou vantagens na porcentagem de germinação em relação às sementes do tratamento Testemunha; nessa mesma ocasião, apenas com a utilização de Captan antes do início do armazenamento, ocorreu benefício semelhante. Após sete meses de armazenamento (correspondendo à época de semeadura "da seca")
também foram observados benefícios da aplicação de fungicidas no momento das análises e do tratamento com Thiram, Thiram + Benomyl e Captan antes do período experimental.

Para o lote 1A (do segundo ano experimental), não foram constatadas diferenças significativas entre as médias de germinação, em função das épocas de aplicação dos fungicidas.

Com relação ao vigor (envelhecimento acelerado), não foram verificados efeitos significativos das aplicações de fungicidas nas sementes destes dois lotes, nos momentos correspondentes às épocas de semeadura "das águas" embora, para o lote 1A, as médias dos fungicidas aplicados por ocasião das análises e de Thiram e Captan, antes de se iniciar o armazenamento, tenham se destacado em relação às demais. Aos sete meses (lote 1) e nove meses (lote 1A) de armazenamento, apesar dos valores terem apresentado redução acentuada, pôde-se observar que as aplicações de Thiram e Captan no início dos períodos experimentais, tenderam a uma maior eficiência.

Para as sementes do lote 2, não foram verificados benefícios do uso de fungicidas em relação à germinação e vigor, até o momento correspondente à época de semeadura "das águas" (dois meses de armazenamento). Mas, após sete meses de armazenamento, foram observadas respostas favoráveis; assim ob tiveram-se valores superiores de germinação com o uso de Thiram (independente do momento de aplicação), de Captan e de Benomyl aplicados desde o início do período experimental e, de vigor,
quando o tratamento inicial foi efetuado com os fungicidas Thiram e Captan.

Quanto à germinação das sementes do lote 2A, não foram constatadas diferenças significativas entre as médias obtidas com a aplicação de fungicidas e as da Testemunha nas diferentes épocas; porém, observou-se, no final do período considerado (aos nove meses), tendência de melhor desempenho das sementes que foram tratadas antes do início do armazenamento, com Thiram, Tiofanato metílico e Captan. No entanto, o vigor das sementes foi favorecido (até o quinto mês de armazenamento) pela aplicação de Thiram + Benomyl e Captan no momento correspondente à época de semeadura "das águas" e, pelo uso de Thiram tanto neste momento, como quando aplicado antes do início do armazenamento.

Os resultados relativos à germinação das sementes dos lotes 3 e 3A (primeiro e segundo anos experimentais) não indicaram efeitos significativos das aplicações de fungicidas nas épocas correspondentes aos momentos de semeadura. É possível porém, destacar para o lote 3, que a aplicação de Thiram antes das sementes serem armazenadas proporcionou, durante todo o período, a manutenção da média de germinação próxima aos níveis iniciais.

Com respeito ao efeito do emprego de fungicidas sobre o vigor das sementes observou-se, para o lote 3, que não foram encontradas vantagens da utilização destes produtos até
dois meses de armazenamento; na última época (aos sete meses de armazenamento) embora, houvesse ocorrido queda no nível de vigor destas sementes, pode-se verificar que a aplicação de Thiram (antes de se iniciar o armazenamento) proporcionou a maior média. Para o lote 3A verificou-se, no momento correspondente à época de semeadura "das águas" (após cinco meses de armazenamento), que os fungicidas Thiram e Captan, aplicados antes do início do armazenamento, preservaram o vigor destas sementes em comparação às sementes da Testemunha; já os tratamentos por ocasião das análises (após um período de nove meses) não foram eficientes para a manutenção do vigor.

Quanto ao momento mais adequado para a utilização de fungicidas, observou-se que o tratamento das sementes antes do armazenamento trouxe maiores benefícios, principalmente em períodos mais prolongados o que vem confirmar observações efetuadas anteriormente. Apenas as sementes do lote 1 apresentaram respostas favoráveis da aplicação dos diferentes produtos, no momento correspondente à época de semeadura "das águas" (menor período de armazenamento); estes resultados discordaram dos obtidos por CARVALHO e JACINTO (1979) e HENNING et alii (1981) que não encontraram vantagens da aplicação de fungicidas em sementes de soja, em diferentes períodos de armazenamento.

Os resultados obtidos para as porcentagens de emergência de plântulas em campo, para os seis lotes estudados, de maneira geral acompanharam os resultados de germinação em
laboratório, mas não mostraram respostas em função das épocas de aplicações de fungicidas. Estes resultados não concordaram com os obtidos por ELLIS et alii (1976b); GUERREIRO (1976); PEREIRA et alii (1981) e GILIOLI et alii (1981); no entanto, outros pesquisadores, como MEHTA (1979) e BOLKAN et alii (1976), também não encontraram vantagens da utilização de fungicidas sobre a emergência das plântulas.

5.3. Sanidade das Sementes

A qualidade sanitária das sementes nos dois anos experimentais, foi avaliada pelo método do papel de filtro (NEERGAARD, 1977). Este método é recomendado para diversas espécies e tem-se mostrado eficiente na detecção de microorganismos associados a sementes de feijoeiro (LASCA, 1978).

Por ser um método de utilização mais recente nas nossas condições, há necessidade de estudos mais detalhados para se conseguir maior recuperação dos microorganismos presentes, tanto quantitativa como qualitativamente. Portanto, no presente trabalho o método foi conduzido sem a supressão da germinação (método do papel de filtro) e com a inibição da germinação das sementes pelo congelamento (método do papel de filtro com congelamento).

Desta maneira, observou-se que, quando a germinação das sementes foi impedida ocorreu maior recuperação da
maioria dos gêneros de fungos associados às sementes dos lotes estudados tais como, Alternaria, Aspergillus, Fusarium e Rhizopus. Contudo, a incidência de Penicillium ocorreu com maior frequência e em valores superiores quando foi utilizado o método do do papel de filtro sem congelamento; FURLAN (1986) chegou a resultado semelhante.

Os resultados obtidos nas análises sanitárias permitiram verificar que, de maneira geral, as aplicações dos fungicidas proporcionaram menor incidência de microorganismos em relação as sementes dos tratamentos Testemunha. Observou-se grande variação de respostas em função dos produtos utilizados e dos fungos detectados. Resultados semelhantes foram obtidos por diversos pesquisadores (ELLIS et alii, 1975; BOLKAN et alii, 1976; TANAKA e CORRÊA, 1981; KHARE, 1985; RESTREPO, 1985; MORENO-MARTINEZ e RAMIREZ, 1985 e MORENO-MARTINEZ et alii, 1985). Porém, pode-se verificar que alguns produtos exerceram melhor controle e com maior frequência sobre determinados microorganismos.

Desta maneira, o controle de Alternaria sp. foi mais constante com a aplicação de Thiram + Benomyl, antes das sementes serem armazenadas; Thiram e Captan também se destacaram. ELLIS et alii (1975) observaram melhor controle de Alternaria em sementes de soja, com a aplicação de Thiram e controle deficiente com Benomyl. MENTEN e MENDES (1982)
verificaram que Thiram promoveu redução na incidência deste fungo, em sementes de feijão.

Não foi observada recuperação de *Aspergillus* spp. nas sementes dos três lotes do primeiro ano experimental, com a utilização dos fungicidas Thiram + Benomyl e Captan e, no segundo ano, controle semelhante somente foi obtido com Thiram + Benomyl, independentemente do momento de sua utilização. CARVALHO (1981), destacou o melhor controle destes fungos com a aplicação de fungicidas sistêmicos (Tiofanato metílico e Benomyl). De forma semelhante, KHARE (1985); MORENO-MARTINEZ et alii (1985) e MORENO-MARTINEZ e RAMIREZ (1985) observaram a eficiência de Benomyl no controle de *Aspergillus*. Ainda, verificou-se o pior desempenho de Thiram no lote 1A e de Thiram e Tiofanato metílico no lote 3A; ELLIS et alii (1975) destacaram que Thiram foi o fungicida de menor eficiência no controle de *Aspergillus*, em sementes de soja.

A ocorrência de *Fusarium* spp. foi mais elevada nos lotes 1 (primeiro ano experimental) e 1A (do segundo ano). Desta forma, destacaram-se, principalmente, os fungicidas Thiram + Benomyl e Benomyl pelo controle efetuado, independentemente do momento em que foram aplicados às sementes. Menores níveis de incidência de *Fusarium* spp. foram conseguidos por outros pesquisadores com a utilização de Thiram + Benomyl, em sementes de feijão (RESTREPO, 1985) e, em sementes de algodão com Benomyl e Captan (FURLAN et alii, 1985).
Com relação a *Penicillium* spp., destacou-se a ação do fungicida Captan pelo controle total exercido, independente do momento de aplicação no primeiro ano experimental e, pelo controle mais eficiente, principalmente quando as sementes receberam o tratamento antes de serem armazenadas, no segundo ano. Assim, em trabalhos conduzidos por TANAKA e CORRÊA (1981) e MORENO-MARTINEZ e RAMIREZ (1985) também foi verificado controle deste fungo com Captan.

Ocorreu variação no controle de *Rhizopus* sp. entre os fungicidas Thiram, Thiram + Benomyl e Captan em função dos momentos de aplicação mas, de maneira geral, o tratamento das sementes antes de ser iniciado o armazenamento proporcionou melhores resultados. Notou-se que os fungicidas Tiofanato metílico e Benomyl mostraram-se ineficientes para reduzir a incidência deste microorganismo. PHIPPS (1984) recomendou o fungicida Captan e MORAES e MARIOTTO (1985) o emprego de Thiram, Captan e Thiram + Benomyl no controle de *Rhizopus* sp., em sementes de amendoim.

Uma análise geral dos resultados permite sugerir que, em lotes de sementes de feijão com características fisiológicas e sanitárias semelhantes aos estudados, o tratamento com fungicidas, principalmente, Thiram, Thiram + Benomyl ou Captan, antes de se iniciar o armazenamento, mostrou-se eficiente favorecendo a qualidade fisiológica das sementes e reduzindo a quantidade de microorganismos presentes.
6. CONCLUSÕES

A análise dos dados e a interpretação dos resultados do presente trabalho permitiram as seguintes conclusões:

6.1. Os benefícios da aplicação de fungicidas no início do armazenamento de lotes de sementes de feijoeiro dependem da qualidade fisiológica e sanidade das sementes, do produto utilizado e do período durante o qual as sementes permanecem armazenadas. Os efeitos favoráveis se manifestam principalmente em lotes de baixa qualidade de armazenados durante período prolongado.

6.2. Os fungicidas Captan e Thiram + Benomyl, dentre os utilizados, apresentam eficiência destacada no controle de Penicillium spp. e Aspergillus spp., considerados como os principais microorganismos associados às sementes durante o período de armazenamento.
6.3. O método do papel de filtro, com a supressão da germi-
nação das sementes por congelamento, é eficiente para
a recuperação de fungos associados às sementes de fei-
jão, com vantagem em relação ao método sem congelamen-
to.
REFERÊNCIAS BIBLIOGRÁFICAS

ANEXOS
Anexo 1. Temperatura (média, máxima e mínima) e umidade relativa média dos decêndios, durante o armazenamento de três lotes de sementes de feijoeiro, cv. Rio Vermelho. Piracicaba, 1983/84.

<table>
<thead>
<tr>
<th>Mês</th>
<th>Decêndio</th>
<th>Temperatura - °C</th>
<th>Umidade relativa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Média</td>
<td>Máxima</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul/83</td>
<td>01 a 10/07/83</td>
<td>20,7</td>
<td>22,7</td>
</tr>
<tr>
<td></td>
<td>11 a 20/07/83</td>
<td>19,5</td>
<td>21,7</td>
</tr>
<tr>
<td></td>
<td>21 a 31/07/83</td>
<td>19,1(19,8)</td>
<td>20,8(21,7)</td>
</tr>
<tr>
<td>Ago/83</td>
<td>01 a 10/08/83</td>
<td>16,3</td>
<td>18,7</td>
</tr>
<tr>
<td></td>
<td>11 a 20/08/83</td>
<td>20,8</td>
<td>23,4</td>
</tr>
<tr>
<td></td>
<td>21 a 31/08/83</td>
<td>21,4(19,5)</td>
<td>24,3(22,1)</td>
</tr>
<tr>
<td>Set/83</td>
<td>01 a 10/09/83</td>
<td>18,3</td>
<td>20,2</td>
</tr>
<tr>
<td></td>
<td>11 a 20/09/83</td>
<td>17,8</td>
<td>19,2</td>
</tr>
<tr>
<td></td>
<td>21 a 30/09/83</td>
<td>21,1(19,1)</td>
<td>23,5(21,0)</td>
</tr>
<tr>
<td>Out/83</td>
<td>01 a 10/10/83</td>
<td>23,4</td>
<td>25,2</td>
</tr>
<tr>
<td></td>
<td>11 a 20/10/83</td>
<td>22,2</td>
<td>24,1</td>
</tr>
<tr>
<td></td>
<td>21 a 31/10/83</td>
<td>21,3(22,3)</td>
<td>23,0(24,1)</td>
</tr>
<tr>
<td>Nov/83</td>
<td>01 a 10/11/83</td>
<td>24,0</td>
<td>25,7</td>
</tr>
<tr>
<td></td>
<td>11 a 20/11/83</td>
<td>24,9</td>
<td>26,5</td>
</tr>
<tr>
<td></td>
<td>21 a 30/11/83</td>
<td>24,9(24,6)</td>
<td>26,7(26,3)</td>
</tr>
<tr>
<td>Dez/83</td>
<td>01 a 10/12/83</td>
<td>25,4</td>
<td>26,9</td>
</tr>
<tr>
<td></td>
<td>11 a 20/12/83</td>
<td>23,8</td>
<td>24,9</td>
</tr>
<tr>
<td></td>
<td>21 a 31/12/83</td>
<td>23,6(24,3)</td>
<td>25,2(25,7)</td>
</tr>
<tr>
<td>Jan/84</td>
<td>01 a 10/01/84</td>
<td>26,2</td>
<td>28,1</td>
</tr>
<tr>
<td></td>
<td>11 a 21/01/84</td>
<td>28,9</td>
<td>30,7</td>
</tr>
<tr>
<td></td>
<td>21 a 31/01/84</td>
<td>24,7(26,6)</td>
<td>26,1(28,3)</td>
</tr>
<tr>
<td>Fev/84</td>
<td>01 a 10/02/84</td>
<td>28,0</td>
<td>29,8</td>
</tr>
<tr>
<td></td>
<td>11 a 20/02/84</td>
<td>27,7</td>
<td>29,6</td>
</tr>
<tr>
<td></td>
<td>21 a 28/02/84</td>
<td>29,0(28,2)</td>
<td>30,1(29,8)</td>
</tr>
<tr>
<td>Mar/84</td>
<td>01 a 10/03/84</td>
<td>27,4</td>
<td>29,2</td>
</tr>
<tr>
<td></td>
<td>11 a 20/03/84</td>
<td>26,5</td>
<td>28,8</td>
</tr>
<tr>
<td></td>
<td>21 a 31/03/84</td>
<td>27,9(26,4)</td>
<td>27,4(28,5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mês</th>
<th>Decêndio</th>
<th>Temperatura - °C</th>
<th>Umidade relativa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Média</td>
<td>Máxima</td>
</tr>
<tr>
<td>Mai/84</td>
<td>01 a 10/05/84</td>
<td>22,8</td>
<td>24,2</td>
</tr>
<tr>
<td></td>
<td>11 a 20/05/84</td>
<td>22,1</td>
<td>23,5</td>
</tr>
<tr>
<td></td>
<td>21 a 31/05/84</td>
<td>21,7(22,2)</td>
<td>24,6(24,1)</td>
</tr>
<tr>
<td>Jun/84</td>
<td>01 a 10/06/84</td>
<td>21,1</td>
<td>23,8</td>
</tr>
<tr>
<td></td>
<td>11 a 20/06/84</td>
<td>21,2</td>
<td>24,2</td>
</tr>
<tr>
<td></td>
<td>21 a 30/06/84</td>
<td>19,7(20,7)</td>
<td>22,6(23,5)</td>
</tr>
<tr>
<td>Jul/84</td>
<td>01 a 10/07/84</td>
<td>22,1</td>
<td>25,1</td>
</tr>
<tr>
<td></td>
<td>11 a 20/07/84</td>
<td>22,1</td>
<td>25,2</td>
</tr>
<tr>
<td></td>
<td>21 a 31/07/84</td>
<td>18,6(20,9)</td>
<td>21,5(23,9)</td>
</tr>
<tr>
<td>Ago/84</td>
<td>01 a 10/08/84</td>
<td>22,5</td>
<td>23,7</td>
</tr>
<tr>
<td></td>
<td>11 a 20/08/84</td>
<td>20,0</td>
<td>22,1</td>
</tr>
<tr>
<td></td>
<td>21 a 31/08/84</td>
<td>17,2(19,9)</td>
<td>20,1(22,0)</td>
</tr>
<tr>
<td>Set/84</td>
<td>01 a 10/09/84</td>
<td>18,6</td>
<td>21,1</td>
</tr>
<tr>
<td></td>
<td>11 a 20/09/84</td>
<td>20,3</td>
<td>22,8</td>
</tr>
<tr>
<td></td>
<td>21 a 30/09/84</td>
<td>20,3(19,7)</td>
<td>21,9(21,9)</td>
</tr>
<tr>
<td>Out/84</td>
<td>01 a 10/10/84</td>
<td>23,1</td>
<td>26,4</td>
</tr>
<tr>
<td></td>
<td>11 a 20/10/84</td>
<td>23,5</td>
<td>25,5</td>
</tr>
<tr>
<td></td>
<td>21 a 31/10/84</td>
<td>27,6(24,7)</td>
<td>30,1(27,3)</td>
</tr>
<tr>
<td>Nov/84</td>
<td>01 a 10/11/84</td>
<td>26,2</td>
<td>28,6</td>
</tr>
<tr>
<td></td>
<td>11 a 20/11/84</td>
<td>23,1</td>
<td>24,7</td>
</tr>
<tr>
<td></td>
<td>21 a 30/11/84</td>
<td>23,5(24,3)</td>
<td>25,5(26,3)</td>
</tr>
<tr>
<td>Dez/84</td>
<td>01 a 10/12/84</td>
<td>24,0</td>
<td>26,0</td>
</tr>
<tr>
<td></td>
<td>11 a 20/12/84</td>
<td>23,6</td>
<td>25,6</td>
</tr>
<tr>
<td></td>
<td>21 a 31/12/84</td>
<td>23,7(23,8)</td>
<td>25,4(25,7)</td>
</tr>
<tr>
<td>Jan/85</td>
<td>01 a 10/01/85</td>
<td>23,2</td>
<td>25,1</td>
</tr>
<tr>
<td></td>
<td>11 a 20/01/85</td>
<td>23,9</td>
<td>26,0</td>
</tr>
<tr>
<td></td>
<td>21 a 31/01/85</td>
<td>23,4(23,5)</td>
<td>25,3(25,5)</td>
</tr>
<tr>
<td>Fev/85</td>
<td>01 a 10/02/85</td>
<td>25,1</td>
<td>27,3</td>
</tr>
<tr>
<td></td>
<td>11 a 20/02/85</td>
<td>25,8</td>
<td>28,0</td>
</tr>
<tr>
<td></td>
<td>21 a 28/02/85</td>
<td>23,3(24,7)</td>
<td>24,6(26,6)</td>
</tr>
<tr>
<td>Mar/85</td>
<td>01 a 10/03/85</td>
<td>22,7</td>
<td>24,0</td>
</tr>
<tr>
<td></td>
<td>11 a 20/03/85</td>
<td>23,9</td>
<td>25,8</td>
</tr>
<tr>
<td></td>
<td>21 a 31/03/85</td>
<td>26,1(24,2)</td>
<td>28,0(25,3)</td>
</tr>
<tr>
<td>Abr/85</td>
<td>01 a 10/04/85</td>
<td>25,1</td>
<td>26,7</td>
</tr>
<tr>
<td></td>
<td>11 a 20/04/85</td>
<td>23,4</td>
<td>24,8</td>
</tr>
<tr>
<td></td>
<td>21 a 30/04/85</td>
<td>21,5(23,4)</td>
<td>20,9(24,1)</td>
</tr>
</tbody>
</table>

* Médias mensais entre parênteses.