• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.11.2020.tde-21052020-121330
Document
Author
Full name
Giovanni Galli
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 2020
Supervisor
Committee
Fritsche Neto, Roberto (President)
Cândido, Bernardo Moreira
Gazaffi, Rodrigo
Title in English
High-throughput phenotyping via UAS: the optimization within a breeding program and a new validation method based on simulation
Keywords in English
Aerial imagery
In silico
Phenomics
Sorghum
Structure-from-motion
Abstract in English
High-throughput phenotyping (HTP), or simply phenomics, has drawn the attention of the scientific community as a field with the potential to increase phenotyping cost-effectiveness and accuracy. Nevertheless, the feasibility of this set of approaches is yet to be confirmed. In this sense, two major challenges to its application are optimizing the data-to-decision process and the validation of procedures and pipelines for specific selection scenarios. We add to this matter by reporting on two studies aimed at the optimization and validation of field HTP based on unmanned aerial systems (UAS). In the first, we presented a proof-of-concept investigation using a grain sorghum dataset with the intent of identifying when HTP data should be collected and how it should be processed for the optimization of prediction of two major traits, grain yield and plant health. Our findings suggest that there is no predictive ability increase when combining multiple vegetation indices and flight dates. Additionally, a single index and flight can be used for predicting both traits without expressive accuracy loss. In the second, we presented a new tool for validating aerial image-based HTP approaches with computer simulations. The approach was exemplified with a comprehensive study case of plant height estimation in maize. Our results show that the in silico experiments could be adequately reconstructed with structure-from-motion algorithms using UAS-like rendered images, enabling inference-making about tested factors. This study also brought new insights into the effect of experimental factors over the accuracy of plant height assessment using HTP. At last, we believe that our findings allowed the promotion of a deeper understanding of the HTP practice, enabling breeders to work towards a more reliable and cost-effective selection.
Title in Portuguese
Fenotipagem de alto rendimento via VANTs: a otimização em um programa de melhoramento e um novo método de validação baseado em simulação
Keywords in Portuguese
Fenômica
Imageamento aéreo
In silico
Sorgo
Structure-from-motion
Abstract in Portuguese
A Fenotipagem de alto rendimento (HTP), ou simplesmente fenômica, tem chamado a atenção da comunidade científica como uma área com potencial de aumentar a custo-efetividade e acurácia de fenotipagem. Entretanto, a viabilidade deste conjunto de abordagens ainda precisa confirmação. Neste contexto, dois grandes desafios para a seu emprego são a otimização do uso de dados (data-to-decision) e a validação de procedimentos para cenários específicos de seleção. Nós acrescentamos a este tema reportando resultados de dois estudos que objetivaram a otimização e validação de HTP para experimentos a campo baseada em veículos aéreos não tripulados (VANTs). No primeiro, apresentamos uma prova de conceito usando dados de sorgo granífero com o objetivo de identificar quando os dados de HTP devem ser coletados e como devem ser processados para a otimização da predição de dois caracteres de importância agronômica, produtividade de grãos e sanidade de planta. Nossos resultados sugerem que não há incremento da capacidade preditiva quando múltiplos índices vegetativos e voos são combinados. Adicionalmente, um único índice e voo pode ser usado para predizer ambas características sem perda expressiva de acurácia. No segundo, apresentamos uma nova ferramenta para validação de abordagens de HTP baseadas em imagens aéreas com uso de simulações de computador. A ferramenta foi exemplificada com um estudo de caso de mensuração de altura de plantas em milho. Nossos resultados sugerem que os experimentos gerados in silico podem ser adequadamente reconstruídos com algoritmos de structure-from-motion usando imagens renderizadas, permitindo a realização de inferências sobre os fatores testados. Este estudo também trouxe novos conhecimentos sobre o efeito de fatores experimentais sobre a acurácia da mensuração de altura de plantas usando HTP. Por fim, acreditamos que nossos resultados permitirão a compreensão mais profunda da prática da HTP, auxiliando os melhoristas na busca por uma seleção mais confiável e custo-efetiva.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
There are withheld file due to requirements (data publishing, patents or rights).
Release Date
2022-05-21
Publishing Date
2020-05-22
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.