Universidade de São Paulo Escola Superior de Agricultura "Luiz de Queiroz"

Otimização do uso da água no Perímetro Irrigado Formoso utilizando a técnica da programação linear

Jorge Luis Copquer dos Santos Júnior

Tese apresentada para obtenção do título de Doutor em Ciências. Área de concentração: Irrigação e Drenagem

Piracicaba 2011

Jorge Luis Copquer dos Santos Júnior Engenheiro Agrônomo

Otimização do uso da água no Perímetro Irrigado Formoso utilizando a técnica da programação linear

versão revisada de acordo com a resolução CoPGr 5890 de 2010

Orientador: Prof. Dr. JOSÉ ANTONIO FRIZZONE

Tese apresentada para obtenção do título de Doutor em Ciências. Área de concentração: Irrigação e Drenagem

Piracicaba 2011

Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA E DOCUMENTAÇÃO - ESALQ/USP

Santos Júnior, Jorge Luis Copquer dos Otimização do uso da água no Perímetro Irrigado Formoso, utilizando a técnica da programação linear. - - Piracicaba, 2011. 127 p. : il.

Tese (Doutorado) - - Escola Superior de Agricultura "Luiz de Queiroz", 2011.

1. Água para irrigação - Uso - Otimização 2. Balanço hídrico 3. Programação linear Título

CDD 631.7 S237o

"Permitida a cópia total ou parcial deste documento, desde que citada a fonte – O autor"

Ofereço

À minha esposa Luciana Copquer e à nossa princesinha Sarah Aos meus pais Jorge Luiz Copquer e Denise Weber Às minhas irmãs Daiane Quele e Diane Michele À minha avó Maria de Lourdes Copquer

AGRADECIMENTOS

A Deus, pela dádiva da vida, pelo Seu amor incondicional que me fortalece todos os dias; A Jesus, o mestre dos mestres, pelos ensinamentos que me ajudaram em todos os momentos da vida:

À Escola Superior de Agricultura "Luiz de Queiroz" USP, pela oportunidade de continuar a minha formação;

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela concessão da bolsa estudos, ao Ministério da Ciência e Tecnologia (MCT) e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo apoio financeiro a esta pesquisa, através do Instituto Nacional de Ciência e Tecnologia em Engenharia da Irrigação (INCTEI);

Ao Prof. Dr. José Antonio Frizzone, pelos ensinamentos oferecidos, pela orientação, amizade e incentivo;

Aos Profs. Drs. Tarlei Arriel Botrel, Sérgio Nascimento Duarte e Rubens Duarte Coelho que contribuíram significativamente à minha formação acadêmica durante o curso;

Aos funcionários do Departamento de Engenharia de Biossistemas em especial: Davilmar, Beatriz, Sandra, Antonio, Helio, Luis, Osvaldo e Gilmar pelo grande apoio concedido durante o curso;

Aos Profs. Drs. Vital Pedro da Silva Paz, Aureo Silva de Oliveira e Francisco Adriano Pereira, pelo apoio, amizade e ensinamentos durante os cursos de graduação e pós graduação; A todos os colegas do curso de pós-graduação, em especial a Anthony, Christian, Alexsandro, Pedro, Lígia, Cícero, Pedro, Allan e João Batista pela amizade e companheirismo durante o curso:

Ao amigo e companheiro de curso Lucas Melo Vellame, pela convivência fraterna desde a graduação;

Ao colega, MSc. João Júnior, pela amizade e ajuda indispensável na realização do trabalho; Aos funcionários da 2ª SR CODEVASF pela colaboração na realização deste trabalho, em especial a MSc. Marta Taluana pela confiança, amizade e por permitir a realização do trabalho; Enfim, aos meus amigos, familiares e a todos que direta ou indiretamente contribuíram para a conclusão deste trabalho.

MUITO OBRIGADO!

SUMÁRIO

RESUMO	9
ABSTRACT	11
1 INTRODUÇÃO	13
2 REVISÃO BIBLIOGRÁFICA	15
2.1 Perímetros Irrigados do nordeste	15
2.2 Função de resposta da cultura.	16
2.2.1 Conceitos.	16
2.2.2 Função de resposta da cultura à água	18
2.3 Planejamento de Recursos Hídricos	21
2.3.1 Otimização.	21
2.3.2 Programação Linear	22
2.3.3 Programação não-linear	26
3 MATERIAL E MÉTODOS	29
3.1 Caracterização da área	29
3.1.1 Caracterização Climatológica	31
3.1.2 Solos	31
3.1.3 Disponibilidade Hídrica e Energética	32
3.2 Instrumento analítico	33
3.2.1 Modelo com lâminas de água fixas	34
3.2.2 Modelo com lâminas de água alternativas	35
3.3 Formulação dos modelos	38
3.3.1 Padrão de culturas	38
3.3.2 Função de resposta das culturas à água	39
3.3.3 Estimativa dos coeficientes de requerimento mensal de água	43
3.4 Descrição dos modelos	49
3.5 Solução do Problema	61
4 RESULTADOS E DISCUSSÃO	63
4.1 Análise comparativa entre os modelos LA, LF e Tradicional	63
4.1.1 Padrão de cultivo	63
4.1.2 Utilização da terra	64

4.1.3 Utilização da água	65
4.1.4 Lâminas de água utilizadas	66
4.1.5 Análise de sensibilidade	67
4.1.5.1 Análise de sensibilidade da função objetivo	68
4.1.5.2 Análise de sensibilidade do recurso terra	70
4.1.5.3 Análise de sensibilidade do recurso água	72
4.2 Otimização considerando seis níveis de volumes de água disponível	75
4.2.1 Padrão de cultivo	75
4.2.2 Utilização da terra	77
4.2.3 Utilização da água	78
4.2.4 Lâminas de água utilizadas	80
4.2.5 Análise de sensibilidade	82
4.2.5.1 Análise de sensibilidade da função objetivo	82
4.2.5.2 Analise de sensibilidade do recurso terra	82
4.2.5.3 Análise de sensibilidade do recurso água	82
5 CONCLUSÕES	85
REFERÊNCIAS	87
BIBLIOGRAFIA CONSULTADA	93
APÊNDICE	95
ANEXOS	111

RESUMO

Otimização do uso da água no Perímetro Irrigado formoso, utilizando a técnica da programação linear

A otimização do uso da água é um desafio para os gerenciadores, pois o planejamento da irrigação requer cuidados especiais, a fim de compatibilizar o balanço hídrico com a demanda, tanto no que se refere à quantidade como a sua repartição espacial e temporal. Técnicas de otimização têm sido empregadas nas recentes décadas para tratar problemas de planejamento e manejo de sistemas de recursos hídricos. O objetivo do presente trabalho consistiu em propor planos ótimos de cultivos, utilizando modelos de programação linear que proporcionem a maximização do retorno líquido do Perímetro de Irrigação Formoso, especificamente quanto a área de lotes familiares. Os modelos utilizados neste estudo foram baseados nos dados que compõem os Relatórios de Monitoria Ano Agrícola de 2008 e 2009 da 2ª Superintendência Regional da CODEVASF, Relatório do Distrito de Irrigação do Projeto Formoso e em informações adicionais fornecidas pela referida empresa pública. O modelo estudado é uma formulação-padrão de programação linear, cuja função-objetivo consistiu em maximizar a receita líquida do projeto, utilizando-se as culturas mais cultivadas nessa área, sob regime de irrigação. Com base nas culturas consideradas e suas respectivas funções de resposta à água, nas restrições de área cultivada, nos preços e nos custos de produção, os resultados permitem as seguintes conclusões: A maximização da receita líquida no Perímetro Irrigado Formoso foi obtida com o modelo de lâminas alternativas, com um retorno financeiro de R\$ 68.384.956,53, utilizando o seguinte padrão de cultivo: 30 ha de abóbora, 30 ha de feijão Phaseolus, 977 ha de melancia, 1868 ha de banana, 1200 ha de mamão e 300 ha de limão *Tahiti*, para o volume anual de 79.649.300 m³. Em qualquer nível de volume de água disponível os valores das lâminas de água foram maiores no modelo lâminas fixas do que no modelo lâminas alternativas.

Palavras-chave: Irrigação; Planejamento; Gerenciamento de recursos hídricos; Eficiência econômica

ABSTRACT

Optimization of water use in Formoso Irrigation District using the technique of linear programming

The optimization of water use is a challenge for managers, because the planning of irrigation requires special care to reconcile the water balance with demand, both in terms of quantity as spatial and temporal distribution. Optimization technique have been employed in recent decades to address problems of planning and management of water resources systems. The aim of this study was to propose optimal crop plans, using linear programming models, providing the maximization of net return on Formoso Irrigation District, regarding the area of farming family. The models used in this study were based on data of the Reports Agricultural year 2008 and 2009 of the 2th Regional Superintendent of CODEVASF and additional information submitted by that government department. The studied model is a traditional linear programming formulation, in which the objective function consisted into maximizing the net income of the project using the most cultivated crops in the area, under irrigation conditions. Based on the crops considered and their response functions to water restrictions on acreage, prices and production costs, the results allow the following conclusions: the maximization of net revenue in Formoso Irrigation District was obtained with the model of alternative irrigation depths, with a payback of R \$ 68,384,956.53, using the following crop pattern: 30 ha of squash, 30 ha of Phaseolus beans. 977 ha of watermelon, 1868 ha of banana, 1200 ha of papaya and 300 ha of Tahiti lime, for the annual volume of 79,649,300 m³. At any level of available water the irrigation depths in the model fixed was higher than the irrigation depths in the model alternatives.

Keywords: Irrigation; Planning; Water resource management; Economic efficiency

1 INTRODUÇÃO

A realidade da agricultura irrigada brasileira tem demonstrado que não é raro encontrar-se projetos de irrigação, públicos ou privados, sem o apropriado planejamento e que, depois de implantados, são conduzidos sem a preocupação com o manejo e operações adequadas, resultando em baixa eficiência e comprometendo a expectativa de aumento da produtividade.

Os perímetros irrigados da Companhia de Desenvolvimento do Vale do São Francisco (CODEVASF) exercem papel relevante no cenário econômico do Nordeste, pois além de gerar emprego e renda para a população, contribuem com parte expressiva da receita proveniente da atividade agropecuária.

A agricultura irrigada exige alto investimento que representa importantes custos adicionais, os quais devem ser pagos pelo incremento de produtividade proporcionado pelo fornecimento de água às plantas, definindo-se criteriosamente todos os fatores de custo e receita, esta normalmente variável de acordo com o mercado.

Os sistemas de irrigação têm por objetivo final a reposição da quantidade de água requerida a toda área irrigada, procurando manter elevados os níveis de eficiência, sem comprometer a qualidade dos recursos naturais, e ao menor custo possível. O planejamento da agricultura irrigada é de fundamental importância para a obtenção de rendimento líquido máximo.

A otimização do uso da água é um desafio para os gerenciadores, pois o planejamento da irrigação requer cuidados especiais, a fim de compatibilizar o balanço hídrico com a demanda, tanto no que se refere à quantidade como a sua repartição espacial e temporal.

Para desenvolver estratégias ótimas de irrigação, é necessário utilizar relações entre a água aplicada e a produtividade, denominadas funções de produção água-cultura. Em áreas irrigadas, onde várias culturas em diferentes regimes de irrigação estão competindo por uma quantidade limitada de água, uma maneira de se escolher uma lâmina de água economicamente viável entre diferentes opções de lâminas de água existentes, é a utilização de técnicas que auxiliem na tomada de decisão, e a programação linear (PL) é uma das ferramentas utilizada para a alocação ótima desses recursos.

Aliada ao retorno financeiro, o aperfeiçoamento da agricultura irrigada incidirá positivamente na sustentabilidade ambiental dos projetos da região onde se insere o Projeto de

Irrigação Formoso. A sustentabilidade financeira-ambiental traz, às comunidades envolvidas, a garantia da continuidade do processo produtivo, com a sustentabilidade econômica e social da atividade hidroagrícola.

O objetivo do presente trabalho consistiu em propor planos ótimos de cultivos, utilizando um modelo de programação linear, que proporcionem a maximização do retorno líquido do Perímetro de Irrigação Formoso, especificamente quanto a área de lotes familiares.

2 REVISÃO BIBLIOGRÁFICA

2.1 Perímetros Irrigados no Nordeste

A implementação do programa de irrigação pública no Brasil teve início na década de 60, caracterizando-se pela implantação de projetos públicos de irrigação como fator de dinamização da economia regional, geração de empregos, retenção de migrantes e redução da pobreza. A CODEVASF – Companhia de Desenvolvimento do Vale do São Francisco e Parnaíba e o DNOCS – Departamento Nacional de Obras Contra a Seca foram os principais órgãos públicos federais encarregados da implantação e do gerenciamento desses projetos na região semi-árida do nordeste e norte de Minas Gerais. Dos 129 mil hectares de área irrigável potencial, apesar de todos os esforços empreendidos, foram implantados somente 72 mil hectares, dos quais apenas 26 mil estão em operação (CODEVASF, 2008).

No Nordeste brasileiro, a gestão dos recursos hídricos não tem sido administrada com um planejamento integrado da oferta e da utilização da água. As secas sucessivas aliadas à falta total de planejamento dos órgãos públicos com relação à gestão da água, fazem com que tenhamos plena convicção do colapso iminente desse setor (SUASSUNA, 2002).

Nas bacias hidrográficas do semi-árido do Nordeste brasileiro, onde o recurso hídrico é escasso, a otimização do uso da água é um desafio para os gerenciadores, pois o planejamento da irrigação requer cuidado especial, a fim de compatibilizar o balanço hídrico com a demanda.

Dentre os diversos problemas que entravam o desenvolvimento da irrigação no Nordeste, destacam-se aqueles referentes ao manejo da água e à eficiência dos sistemas, os quais se relacionam, diretamente, ao desenvolvimento científico e tecnológico, à transferência de tecnologia e à capacitação nos diversos níveis, ausência de uma assistência técnica especializada, e falta de planejamento da irrigação (FERREIRA, 1993).

A predominância do baixo índice de eficiência do uso da água para irrigação e da baixa produtividade agrícola são indicativos dos problemas de gerenciamento por que passam os perímetros irrigados, principalmente nos lotes de pequenos produtores. Nestes existe um espaço grande para se ampliar, em muito, a rentabilidade (seja pelo aumento da produção, seja pelo uso racional dos recursos disponíveis), sem a necessidade imediata de investimentos significativos.

Assim, essa racionalização é uma opção possível de ser adotada, tendo em vista a situação atual, no país, de escassez de recursos para novos investimentos.

No atual panorama da irrigação nos perímetros irrigados, o planejamento é indispensável no sentido de compatibilizar os vários usos da água, viabilizando os diferentes setores produtivos, monitorando a quantidade e a qualidade dos recursos hídricos, melhorando os níveis de eficiência global de uso. A otimização do uso da água e busca de melhor rentabilidade da agricultura, devem integrar as tecnologias de irrigação com sistemas de alta eficiência e principalmente, reduzindo custo para o produtor (FRIZZONE, 2009).

2.2 Função de resposta da cultura

2.2.1 Conceitos

Existe uma relação funcional entre os fatores de produção e o rendimento das culturas, que é característica de cada condição ambiental. A exploração ótima do ponto de vista econômico de uma cultura requer a utilização de níveis adequados destes fatores (HEXEM; HEADY, 1978). O termo função de produção é usualmente conceituado como a relação existente entre o rendimento das culturas e os fatores de produção (VALERO; MANÃS, 1993).

Frizzone (1998) define função de resposta ou de produção das culturas como uma relação física entre as quantidades utilizadas de certo conjunto de insumos e as quantidades físicas máximas que se pode obter do produto, para uma dada tecnologia conhecida. Considerando o grande número de variáveis que influencia a produtividade das culturas e a complexidade das relações que afetam a quantidade e a qualidade do produto, a produtividade pode ser expressa exclusivamente em função de um único fator, por exemplo, a água aplicada quando se trata de irrigação, com tanto que os demais fatores da produção permaneçam fixos, em níveis ótimos. Assim, ao se supor que a função de resposta representa o máximo que se pode obter com o uso de cada combinação de insumos, está se definindo uma relação funcional entre os insumos e o produto.

O rendimento de uma cultura agrícola está condicionado a vários fatores referentes ao solo, à planta e ao clima.

Existem diferentes aplicações das funções de produção, como por exemplo, determinar a relação entre a quantidade de água aplicada e os benefícios resultantes, previsão de safra e estudar como diferentes ambientes podem alterar a produção das culturas. A relação entre

o rendimento da cultura e o suprimento de água pode ser determinada quando se puder quantificar, de um lado, as necessidades hídricas da cultura e os efeitos hídricos e, de outro, os rendimentos máximo e real da cultura. Os déficits hídricos nas culturas e o conseqüente estresse hídrico na planta, têm certos efeitos sobre a evapotranspiração e o rendimento da cultura Frizzone (2009).

As funções de resposta podem ser utilizadas para se estimar o rendimento de uma cultura com a utilização de determinados níveis dos fatores de produção, bem como para se estimar os níveis ótimos dos fatores e o respectivo rendimento da cultura (PALÁCIOS, 1981). O uso das funções de resposta das culturas constituem fontes valiosas de informações a serem utilizadas nos modelos de tomada de decisão, permitindo a otimização do uso dos fatores envolvidos na produção.

Muitas funções de produção obtidas pelos pesquisadores são relações lineares. Uma razão provável é que a produtividade é relacionada linearmente com a evapotranspiração (DOORENBOS; KASSAN, 1979). Pode ocorrer também, durante a definição do experimento, que os tratamentos não sejam selecionados de forma a contemplar um domínio suficientemente amplo para permitir a obtenção de funções não lineares. Neste caso, é explorada a região da curva cuja resposta é linear.

Para se realizar um estudo econômico de uma cultura ao uso de determinados insumos é interessante delimitar a região de produção racional que mostra as diversas combinações dos fatores e dos respectivos rendimentos que permitem a obtenção dos melhores resultados econômicos (FRIZZONE, 1993).

Quando, experimentalmente, se trabalha com uma maior amplitude nos níveis dos fatores de produção, o rendimento das culturas e a lâmina de água aplicada tem sido melhor representada por uma relação do tipo quadrática (DANTAS NETO, 1994).

2.2.2 Função de resposta da cultura à água

A quantidade de água aplicada às culturas durante os períodos de irrigação tem um grande impacto no crescimento de uma cultura e sobre seu rendimento. Cada cultura tem quantidade ideal de água que resulta em crescimento máximo e rendimento máximo. A relação entre o rendimento da cultura e o suprimento de água pode ser determinada quando se puder quantificar, de um lado, as necessidades hídricas da cultura e os efeitos hídricos e, de outro, os

rendimentos máximo e real da cultura. Os déficits hídricos nas culturas e o consequente estresse hídrico na planta, têm certos efeitos sobre a evapotranspiração e o rendimento da cultura.

Um manejo eficiente da irrigação requer informações relacionadas às necessidades de água das culturas e da função de produção das culturas à água. O uso das funções de resposta permite encontrar-se soluções úteis na otimização do uso da água e dos fertilizantes, obtendo-se o máximo do produto com determinado custo de produção (SOARES et al., 2002).

Para Palácios (1981) e Vaux Júnior e Pruitt (1983), nos estudos econômicos relativos ao planejamento da irrigação, são indispensáveis as funções de resposta das culturas à água, conhecidas como função de produção água-cultura. O problema é encontrar a solução ótima para a combinação insumo-produto, que possa maximizar a receita líquida sujeita às restrições de recursos pré-fixadas para uma determinada tecnologia e estrutura de preços.

O conhecimento da função de resposta das culturas à água permite ao administrador melhor utilizar o recurso água, aumentando assim a eficiência econômica da empresa agrícola, pela flexibilidade da aplicação da lâmina de irrigação.

A função de resposta da cultura à água constitui-se no elemento básico utilizado nos estudos econômicos relativos ao planejamento da irrigação, uma vez que a cultura apresenta comportamento produtivo diferenciado em razão da quantidade e freqüência de irrigação durante o ciclo fenológico. A questão é encontrar a solução ótima para determinada combinação insumo-produto, que maximiza a receita líquida sujeita às restrições de recursos pré-fixadas, em face da estrutura de preços vigentes e o nível de tecnologia adotado no sistema de produção (ANDRADE JÚNIOR, 2001).

Frizzone (1987) menciona que as variáveis da função de produção água-cultura podem ser expressas de diferentes maneiras: a variável independente água pode ser representada pela transpiração, evapotranspiração, lâmina de água aplicada durante o ciclo, dentre outras. Ao usuário da irrigação é mais interessante utilizar como variável independente a lâmina de água aplicada à parcela, mesmo que apenas parte dela seja usada no processo de evapotranspiração. Em geral a variável dependente refere-se à produtividade agrícola comercial de grãos, frutos, matéria verde ou seca.

Frizzone (1998) afirma que as funções de produção água-cultura deveriam se basear na evapotranspiração, em vez de relacionar a produtividade com a água aplicada, porque seriam mais independentes do sistema de irrigação, do solo e de outros fatores locais que

influenciam a forma da curva. Mas, na prática, os irrigantes controlam a lâmina aplicada e não a evapotranspiração.

Para desenvolver estratégias ótimas de irrigação é necessário, portanto, utilizar relações entre a água aplicada e a produtividade. Para baixos níveis de irrigação, inferiores a cerca de 50% da irrigação plena, a produção tende a variar linearmente com a água aplicada (VAUX; PRUITT, 1983; HARGREAVES; SAMANI, 1984). Além desse ponto, a relação se torna curvilínea com o aumento da quantidade de água aplicada, como conseqüência das perdas por percolação profunda, escoamento superficial e evaporação, até atingir um máximo. Para quantidades de irrigação superiores a esse ponto de máxima produção, ocorre um decaimento da curva, refletindo perdas de produção devido a condições anaeróbicas nas raízes, doenças e lixiviação de nutrientes associadas ao uso excessivo de água.

Geralmente, as funções de produção água-cultura apresentam duas tendências: uma ascendente, na qual o rendimento é crescente com o aumento da quantidade de água aplicada até um limite máximo, o que corresponde ao ponto máximo da curva, e a outra descendente, na qual o rendimento diminui com a quantidade crescente de lâmina aplicada (FRIZZONE, 1998).

Segundo Dantas Neto (1994), o comportamento ascendente da curva é associado ao déficit de produção devido à quantidade insuficiente do insumo água. A perda do rendimento das culturas na fase descendente decorre do aumento no nível de infestação de fungos no solo, asfixia do sistema radicular e a lixiviação de nutrientes. Além dessas considerações fitotécnicas, há as perdas por percolação profunda com o aumento da lâmina total, o que ocasiona as baixas eficiências de água aplicada.

As funções de produção água - cultura são particularmente importantes para as análises de produção agrícola quando a água é escassa. Para o processo de planejamento, essas funções constituem o elemento básico de decisão dos planos de desenvolvimento e, relativamente à operação de projetos de irrigação, permitem tomar decisões sobre planos ótimos de cultivo e ocupação de área para produção econômica com base na água disponível.

Determinando a função de produção do melão aos níveis de água e nitrogênio no Vale do Curu, Ceará, utilizando irrigação por sulcos, Barros (1999) verificou que o modelo polinomial de segundo grau representou melhor a variação do rendimento da cultura em função das lâminas de água e das doses de nitrogênio, sem contudo ser significativa a interação entre os fatores água e nitrogênio.

Em pesquisa objetivando estimar uma função de produção da melancia à água e ao nitrogênio no Vale do Curu, irrigada por sulcos, Soares (2000) obteve uma relação quadrática entre lâminas de água infiltrada e doses de nitrogênio e a produtividade da melancia, entretanto, não constatou interação significativa entre água e nitrogênio.

Mousinho (2002) buscando a estimativa da função de resposta da melancia à aplicação de água e nitrogênio para as condições edafoclimáticas de Fortaleza, Ceará, utilizando irrigação por gotejamento, constatou um comportamento quadrático da produtividade em relação aos fatores estudados, permitindo estimar uma máxima produtividade de 30.806 kg ha⁻¹, a ser obtido com o emprego de 693,5 mm de água e 222,1 kg ha⁻¹ de nitrogênio.

Para a cultura do feijão, vários pesquisadores (FRIZZONE; OLITTA, 1987; SILVEIRA; MOREIRA, 1990) verificaram aumento na produtividade com o incremento da lâmina de água aplicada. Rezende et al. (2004) obtiveram produtividade média de 935 kg ha⁻¹ para cultivo sem irrigação suplementar e 1.239 kg ha⁻¹ com irrigação suplementar. Para a cultura do milho, Berconci et al. (2001) em experimento em quatro safras (1993/94; 1994/95; 1995/96; 1996/97) obtiveram produtividades com uso da irrigação correspondentes a 11.950 kg ha⁻¹, 7.444 kg ha⁻¹, 10.496 kg ha⁻¹ e 10.002 kg ha⁻¹, respectivamente. Nestas mesmas safras sem a utilização da irrigação obtiveram 4.384 kg ha⁻¹, 6.905 kg ha⁻¹, 8.945 kg ha⁻¹ e 3.773 kg ha⁻¹, respectivamente.

2.3 Planejamento de Recursos Hídricos

2.3.1 Otimização

A otimização da rentabilidade constitui o principal objetivo da empresa agrícola, e está associada ao uso racional dos recursos disponíveis no processo de produção de forma a se obterem os mais altos níveis de rendimento econômico. A produção agrícola tem como fatores complementares na rentabilidade econômica a água e os nutrientes, fatores preponderantes para o êxito da agricultura. Além disso, as maiores variações no rendimento da cultura em questão é a resposta às mudanças nos níveis desses dois recursos, expressando a alta sensibilidade do rendimento aos níveis desses fatores de produção (SOARES et al., 2002).

As técnicas de otimização buscam identificar a solução que otimize uma determinada função objetivo, que representa matematicamente os objetivos de um sistema a serem melhorados, ordenando-os em relação a sua atratividade. Elas têm, entre suas restrições, a

representação do modelo matemático que simula o comportamento do sistema. Para Hazell e Norton (1986), os modelos permitem um elo entre teoria econômica e os dados, por um lado, e apreciações práticas do problema e orientações políticas por outro. Eles são abstrações imperfeitas, mas por virtude da sua estrutura consistentemente lógica eles podem dar ao analista e/ou tomador de decisões políticas uma representação econômica importante do setor e tornar-se um laboratório de teste de idéias e propostas políticas.

Técnicas de otimização têm sido empregadas nas recentes décadas para tratar problemas de planejamento e manejo de sistemas de recursos hídricos. Os modelos de otimização são baseados em algum tipo de técnica de programação matemática, que incluem uma variedade de algoritmos, cuja escolha depende das características do sistema a ser analisado, da disponibilidade de dados e dos objetivos e restrições do problema (YEH, 1985). Pardolos e Resende (2002) e Winston (2004) trazem uma extensa revisão das técnicas de otimização típicas e Yeh (1985), Simonovic (1992), Wurbs (1993), Male e Mueller (1992); Belaineh et al. (1999); Paul et al. (2000); Barlow et al. (2003); Devi et al. (2005) fornecem exemplos do uso de vários métodos de otimização e seus modelos correspondentes.

Segundo Simonovic (1992), a função objetivo de um problema de otimização representa uma forma de valoração do nível de desempenho obtido por mudanças específicas num conjunto de variáveis de decisão, as quais definem como um sistema está para ser operado. Muitos aspectos podem ser inseridos em sua definição, como:

- custos e prejuízos;
- lucros, benefícios diretos ou indiretos;
- indicadores econômicos e de desenvolvimento;
- funções estritamente matemáticas, como erros e desvios, calibração de parâmetros e modelos;
 - indicadores sociais; etc.

As restrições, representadas também por expressões matemáticas, têm a finalidade de forçar o modelo de otimização a obedecer a leis físicas, exigências operacionais, socioeconômicas e políticas, entre outras. Em geral, o modelo de otimização é constituído por uma função objetivo, em que se deseja maximizar ou minimizar, e de funções de restrição que, determinam a região viável das variáveis de decisão.

2.3.2 Programação Linear (PL)

A PL é a técnica de otimização que mais se desenvolveu e uma das mais aplicadas em gerenciamento de recursos hídricos, além de ser considerada por alguns autores como um dos mais importantes avanços científicos da segunda metade do século XX (BARBOSA, 2002; SIMONOVIC, 1992). Consiste na maximização ou minimização de uma função linear, denominada função-objetivo, respeitando-se um sistema linear de igualdades ou desigualdades que recebem o nome de restrições do modelo. As restrições representam normalmente limitações de recursos disponíveis (capital, mão-de-obra, recursos minerais ou fatores de produção) ou, então, exigências e condições que devem ser cumpridas no problema. Essas restrições do modelo determinam uma região à qual dá-se o nome de conjunto das soluções viáveis. A melhor das soluções viáveis, isto é, aquela que maximiza ou minimiza a função objetivo denomina-se soluções viáveis, isto é, aquela que maximiza ou minimiza a função objetivo denomina-se soluções ótima (BREGALDA et al., 1988).

. Revelle (1999) enfoca o uso de modelos de programação linear pelo fato de serem fáceis de formular e resolver, além de se encontrar com facilidade programas computacionais adaptáveis para qualquer problema prático e de considerarem objetivos múltiplos na análise.

O termo linear, como o próprio nome diz, refere-se à necessidade de haver relações lineares entre as variáveis, traduzidas pelas equações que caracterizam o problema. Mesmo quando as relações são não-lineares, a programação linear tem sido empregada com o auxílio de processos de linearização de funções ou através de um procedimento iterativo.

Em áreas irrigadas, onde várias culturas em diferentes regimes de irrigação estão competindo por uma quantidade limitada de água, uma maneira de se escolher uma lâmina de água economicamente viável entre diferentes opções de lâminas de água existentes, é a utilização de técnicas que auxiliem na tomada de decisão, e a programação linear é um excelente instrumento para a alocação ótima desses recursos (DANTAS NETO, 1994).

Segundo English et al. (1990), pode-se obter aumento na receita líquida total por unidade de volume de água aplicada quando o volume de água disponível é limitante à produção, sendo a água economizada pela irrigação com déficit utilizada no aumento da área irrigada.

O problema de otimização é mais complexo quando múltiplas áreas e culturas devem ser irrigadas com suprimento limitado de água. A escassez de água implica uma análise de custo de oportunidade e o tomador de decisão deve considerar todas as áreas e culturas e todo o uso alternativo da água simultaneamente, alocando uma quantidade maior de água para culturas

mais rentáveis, ou até disponibilizando água para usos externos à propriedade. Análises desses casos levam à utilização de técnicas de programação matemática para a otimização das atividades, possibilitando quantificar, de forma otimizada, o uso dos recursos para satisfazer determinado objetivo, seja a maximização da receita líquida ou a minimização dos custos, sob restrições na disponibilidade dos recursos (DUDLEY; HOWELL; MUSGRAVI, 1971; KUMAR; KHEPAR, 1980; FRIZZONE; BOTREL; ARCE, 1994; DANTAS NETO; AZEVEDO; FRIZZONE, 1997; RODRIGUES et al., 2000; GORANTIWAR; SMOUT, 2003).

Carvalho et al. (2000) selecionaram culturas e os meses de plantio que proporcionassem a maximização da renda do agricultor e da utilização de recursos hídricos do perímetro irrigado do Gorutuba, utilizando-se um modelo de programação linear, cuja função objetivo visou maximizar as receitas líquidas mensais em função da área cultivada com as culturas normalmente utilizadas na região.

Kuo et al. (2003) fizeram um estudo de comparação de três técnicas de otimização para o planejamento de um projeto de irrigação. Essas três técnicas são aplicadas para o planejamento de um projeto de irrigação de 394,6 ha na região de Delta, Utah, para otimização de benefícios econômicos, simulação da demanda de água, e estimativa da porcentagem da área irrigada.

Dantas Neto (1994) apresentou, em sua tese de doutorado, um trabalho sobre modelos de programação linear que teve como objetivo desenvolver e comparar dois sistemas de equações matemáticas baseados na resposta das culturas à água. Para tal, empregou-se a formulação padrão da programação linear, utilizando dois modelos, onde um considera a lâmina de água fixa e o outro as lâminas de água alternativas. A função objetivo utilizada neste trabalho foi a maximização da receita líquida de projeto e as restrições utilizadas foram as limitações de área, água e produção das culturas.

Curi et al. (2004) aplicaram a técnica de programação linear para a maximização da receita líquida sob condições de variações hídricas e econômicas em um perímetro irrigado no sertão da Paraíba, considerando, inclusive, a interferência do custo da água bruta na viabilidade da produção das culturas.

A PL foi utilizada no desenvolvimento de trabalhos para otimizar sistemas de produção agrícola, considerando cultivo único ou múltiplos, submetidos ou não a programas de

irrigação específicos (MATANGA; MARIÑO, 1979; KUMAR; KHEPAR, 1980; MANNOCCHI; MECARELLI, 1994; ARCE, 1990; OLIVEIRA; LANNA, 1997).

Yeh (1985) e Labadie (2004) apontam as seguintes vantagens da PL: (i) a habilidade para se ajustar e resolver problemas de grandes dimensões; (ii) atinge valores ótimos globais; (iii) teoria da dualidade bem desenvolvida para a análise de sensibilidade; (iv) a existência de pacotes computacionais prontos para resolução de problemas.

Todo problema de programação linear caracteriza-se pelo estabelecimento de relações lineares, ou seja, todas as equações envolvidas são necessariamente representadas por relações lineares entre as variáveis. Um problema de programação linear pode ser abordado da seguinte forma: considere n variáveis não-negativas X_j (j=1,2,3...n) e uma função linear Z destas variáveis que deve ser maximizada, segundo a forma das equações (1), (2) e (3):

MAX
$$Z = C_1X_1 + C_2X_2 + ... + C_nX_n$$
 (1)
Sujeito a:

$$\begin{vmatrix}
a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n \le b_1 \\
a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n \le b_2 \\
a_{m1}X_1 + a_{m2}X_2 + \dots + a_{mn}X_n \le b_m
\end{vmatrix}$$
(2)

$$\{X_1 \ge 0 \; ; \; X_2 \ge 0 \; ; \; \ldots \; X_n \ge 0 \; ;$$
 (3)

Para Baltra (1982), os modelos de programação linear nos projetos de irrigação podem ser utilizados no planejamento econômico para otimização de planos de culturas, e uso dos recursos, podendo-se utilizar como função objetivo:

- a) maximização do lucro;
- b) minimização do uso da mão-de-obra;
- c) otimização do uso da água;
- d) otimização do uso das máquinas agrícolas.

O modelo usa as restrições:

- a) volume de água disponível;
- b) demanda de água pelas culturas;
- c) custo de produção;
- d) disponibilidade de terra;
- e) receita líquida;
- f) custos de mercado.

Barbosa (1997) afirma que a programação linear é a técnica de otimização mais empregada na área de recursos hídricos, devido:

- a) flexibilidade para adaptação a uma grande variedade de problemas;
- b) maior facilidade de entendimento, comparada a outras técnicas de otimização;
- c) capacidade de tratar problemas de grande porte;
- d)disponibilidade de pacotes computacionais, à nível comercial, para pronta utilização.

A desvantagem é a sua limitação quanto à exigência da linearidade das funções, pois a maioria dos problemas envolvendo recursos hídricos apresenta funções não lineares.

Uma das formas de superar essa dificuldade é trabalhar com a linearização das funções objetivos não - lineares por partes, através do artifício denominado Artifício de Linearização por Segmentos. Este artifício é empregado para funções objetivo não - lineares convexas, para problemas de minimização, ou côncavas, para problemas de maximização.

2.3.3 Programação não-linear

A programação não linear caracteriza-se por não possuir um método geral de resolução dos seus problemas, tal qual o método simplex na programação linear. Seu processo de otimização é usualmente lento, requerendo maior tempo de processamento, quando comparado com outros métodos, uma vez que a matemática envolvida nos modelos não lineares é muito mais complicada do que nos casos de programação linear (YEH, 1985). Outra característica é a inexistência de critérios absolutos para comparação entre os vários algoritmos existentes. O que

se faz é comparar algumas características não definidas precisamente, tais como: simplicidade computacional, tempo de máquina necessário para atingir um ponto ótimo a partir de um ponto inicial qualquer, memória necessária para rapidez de convergência, sensibilidade a erros computacionais, etc (MATEUS et al., 1986). A grande vantagem do método de programação não-linear é a capacidade de representar matematicamente a física do sistema de forma mais realista, com menos hipóteses simplificadoras como ocorre na programação linear.

Segundo Cirilo (2002), a PNL pode ser classificada quanto aos métodos utilizados na solução dos problemas em:

- técnicas analíticas as soluções ótimas são obtidas pela resolução de sistemas de equações, com apoio de derivadas, podendo a otimização ser reduzida à procura das raízes desses sistemas:
- técnicas de busca numérica esses métodos usam informações passadas em um processo interativo, para gerar melhores soluções no processo de otimização. Esse tipo de técnica de otimização permite ainda o emprego de métodos numéricos para resolver problemas dos quais não se conhece a solução analítica.

Os problemas práticos de otimização frequentemente envolvem comportamento não-linear que deve ser levado em consideração. Entretanto, esta função pode ser linearizada através da técnica de linearização por partes e o modelo, tratado como um problema de programação linear separável (McMILLAN Jr., 1970).

Carvallo et al. (1998) desenvolveram um modelo de otimização não linear para a determinação de um melhor padrão de cultivo em agricultura irrigada. Os resultados mostram que alterações de preços de produtos exportáveis e o custo da água têm um grande impacto nos padrões de cultivo e no lucro.

Frizzone et al. (1997) desenvolveram um modelo de programação linear separável, para estudar a alocação de água de irrigação no Projeto Senador Nilo Coelho, localizado em Petrolina – PE, com o objetivo de maximizar a receita líquida. Assumiu-se que as funções de produção água-cultura disponíveis representavam adequadamente as relações água-produção. Tais funções, não lineares, foram incorporadas ao modelo de programação linear, que considera um conjunto de fatores técnicos que influenciam a rentabilidade do projeto de irrigação. As funções não lineares foram aproximadas por funções lineares por partes, possibilitando a

utilização do método Simplex para a solução. Explicitaram-se restrições na disponibilidade de água, de área e de mercado.

A programação não-linear, na sua formulação, é semelhante à formulação geral da programação linear, consiste em uma função objetivo e um conjunto de restrições. A programação não-linear, caracteriza-se por não ter requisitos de linearidade que a programação linear exige.

3 MATERIAL E MÉTODOS

3.1 Caracterização da área

O Perímetro Irrigado de Formoso agrupa dois projetos de irrigação da CODEVASF, o Projeto Formoso A e o Projeto Formoso H, está localizado no oeste do estado da Bahia, aproximadamente 30 km da cidade de Bom Jesus da Lapa - BA, em área compreendida entre a margem esquerda do rio São Francisco, margem direita do rio Corrente e a estrada BR - 349, que liga Bom Jesus da Lapa a Santa Maria da Vitória - BA.

O Perímetro possui uma área total de 19.471,5 ha, sendo 12.100 ha irrigáveis, conforme previsto no Projeto original, assim distribuídos:

- Lotes familiares: 913, totalizando 4.700 ha
- Lotes empresariais: 249, totalizando 7.400 ha

O projeto Formoso A possui área de 8.373 ha, encontrando-se em final de implantação e início do processo de ocupação. A divisão da área do projeto está compreendida em 705 lotes de pequenos produtores e 112 lotes empresariais. Em 1998, uma área de 2.615 ha já tinha sido ocupada por 620 pequenos irrigantes, 3.084 ha por 68 empresas e 58 ha por 12 técnicos em ciências agrárias, e uma área de 70 ha ocupada pelo Projeto Amanhã.

O projeto Formoso H abrange uma área de 4.343 ha, encontrando-se em fase final de implantação e ocupação. A divisão da área do projeto estabelece 218 lotes para pequenos irrigantes, 52 lotes para técnicos em ciências agrárias, 25 lotes para microempresas e 43 lotes para empresas. Há uma área de 39 ha reservada para a implantação de mercado do produtor, packing house e agroindústrias; e 1.730 ha constituem reserva legal e preservação permanente.

A principal fonte hídrica desse projeto é o rio Corrente. O projeto teve início de funcionamento em 1989 e início da co-gestão com o Distrito de Irrigação de Formoso (DIF) no mesmo ano.

Nas Figuras 1 e 2 estão apresentados os croquis das áreas dos Perímetros Irrigados de Formoso A e Formoso H com a distribuição das áreas irrigáveis, de preservação permanente, de reservas legal, inundáveis e áreas construídas.

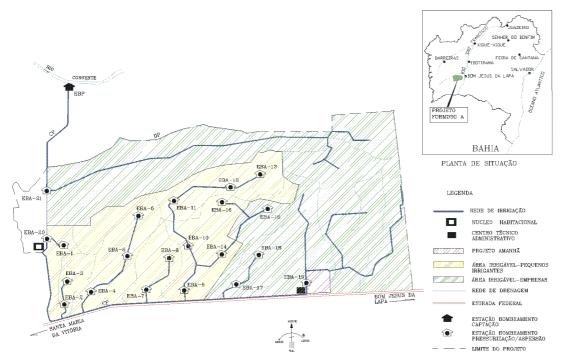


Figura 1 – Croqui do Perímetro Irrigado de Formoso A

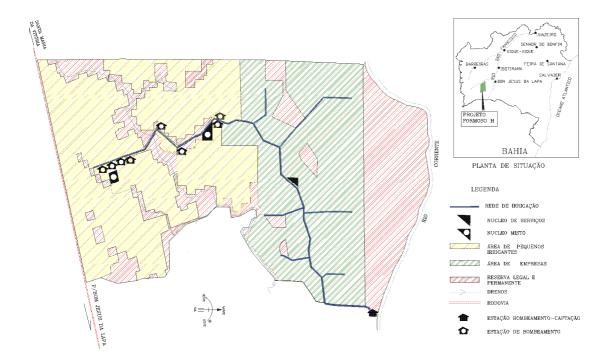


Figura 2 – Croqui do Perímetro Irrigado de Formoso H

3.1.1 Caracterização Climatológica

A caracterização climática da região, segundo Thornthwaite, é semi-árido, identificada como uma região que apresenta estiagens prolongadas, com índices de pluviosidade médias anuais de 830,5 mm, com as chuvas intensas, concentradas ao longo de 5 meses (de novembro a março). Com uma evapotranspiração potencial média da ordem de 1.880 mm anuais, o déficit hídrico médio é de 1.055 mm/ano (CODEVASF, 2009).

O volume de chuvas que precipita não é suficiente para manter uma vegetação de porte alto, porque uma grande parte evapora e outra se infiltra ao encontrar solos permeáveis, alimentando os lençóis de águas subterrâneas, motivo que contribui para a baixa capacidade de suporte da área, e a intensidade do escoamento superficial associado à forte evaporação (CODEVASF, 2009).

Como conseqüência direta no regime pluvial, ocorre intermitências na maioria dos afluentes que deságuam no rio São Francisco, principal rio da região, que banha a maioria dos municípios, dentre eles Bom Jesus da Lapa, onde fica localizado o Perímetro Formoso. Segundo dados levantados na estação meteorológica do município de Bom Jesus da Lapa, durante o período de 1943 a 2001 foram identificados índices anuais médios em torno de: temperatura média anual de 25,3°C; precipitação anual média de 830,5 mm; índice de aridez de 44,7; índice de umidade de 3,3 e índice hídrico de -23,5 (BRASIL, 2006).

A evapotranspiração de referência no Perímetro, calculada pelo método de Hargreaves, é a seguinte:

Janeiro	174 mm	Julho	129 mm
Fevereiro	150 mm	Agosto	152 mm
Março	152 mm	Setembro	177 mm
Abril	136 mm	Outubro	207 mm
Maio	132 mm	Novembro	180 mm
Junho	121 mm	Dezembro	170 mm

3.1.2 Solos

Os solos da região tem formação a partir de coberturas detríticas, que está relacionada com depressões pediplanas do vão São Francisco com modelados de topografia

aplainada, relevo plano e suave ondulado, onde se desenvolvem os solos classificados como Neossolos Quartzarênicos (CODEVASF, 2008).

Esses solos são excessivamente drenados, muito profundos, essencialmente quartzosos, com textura arenosa ao longo de todo perfil. Devido à constituição essencialmente quartzosa, esses solos são pobres em nutrientes para as plantas, são distróficos, apresentam baixa capacidade de retenção de cátions e água, mas nestes casos a maior oferta de água, pela precipitação pluviométrica ou pela irrigação, e manejo da adubação podem amenizar estas deficiências.

Quanto a retenção de água nos solos existem duas considerações que dependem, primeiro da distribuição de tamanho de partículas do solo, estrutura, mineralogia e matéria orgânica; e segundo, do uso e o manejo do solo que afetam a retenção e o conteúdo de água no solo. Os solos com estas características possuem aptidão para culturas de sistema radicular profundo.

As classes de solo existentes no perímetro Formoso, estão assim distribuídas, conforme CODEVASF (2008):

Latossolos vermelho – amarelos	22,6%
Latossolos vermelhos	3,1%
Argissolos vermelho – amarelos	23,3%
Cambissolos	20,4%
Vertissolos	3,2%
Planossolos	8,8%
Neossolos	8,0%
Plintossolos	3,1%
Nitossolos	3,1%
Luvissolos	4,5%

3.1.3 Disponibilidade Hídrica e Energética

A água utilizada para a irrigação é captada do rio Corrente, por meio de um canal de aproximação com 115 m de extensão, são captadas pela estação de bombeamento principal com capacidade de 4,71 m³s⁻¹.

O sistema é alimentado por 6 motobombas com potência total instalada de 2.206 kW, por 2 adutoras de recalque com diâmetro de 1.200 mm, extensão de 1.650 m e dotadas de chaminé de equilíbrio, chegando ao reservatório de controle, do qual parte o canal principal, com

11,7 km, dividido em quatro segmentos por comportas de setor, conduzindo a água, por gravidade, por todo o perímetro.

A derivação se dá por comportas planas, 28,7 km de canais, 9 km de adutoras de gravidade e reservatórios. Dos reservatórios, oito estações de bombeamento, com vazão máxima de 3,75 m³s⁻¹ e potência instalada de 331 kW cada uma, fornecem água pressurizada aos lotes, através de 103,8 km de tubulações, com diâmetro de 600 a 100 mm. A rede de drenagem tem 21 km e o sistema viário, 66 km. Três núcleos, sendo um de serviços e dois mistos, complementam o projeto (CODEVASF, 2008).

3.2 Instrumento analítico

A técnica analítica que utilizada neste trabalho foi a programação linear, por ser um procedimento amplamente empregado para a solução de problemas referentes à otimização do uso dos recursos. Em termos gerais, a formulação do modelo básico de programação linear, quando se deseja otimizar uma função objetivo, consiste em determinar os valores que devem adquirir as variáveis X1,X2, ..., Xn não negativas, e que satisfaçam às condições de linearidade, que podem tomar a forma de desigualdade (HILLIER; LIEBERMAN, 1988), ou seja:

Função objetivo:

$$MAX Z = \sum_{j=1}^{n} c_{j} X_{j}$$

$$(4)$$

Sujeita às restrições:

$$\sum_{i=1}^{n} a_{ij} X_{j} \leq b_{i} \tag{5}$$

e que:

Z – função objetivo que define o resultado a otimizar;

 X_i – nível ótimo da atividade j (j=1, 2, ..., n);

 c_i – coeficientes técnicos que correspondem aos lucros marginas de cada uma as atividades j;

 a_{ij} – coeficientes técnicos que se supõe constantes, e que indicam as quantidades disponíveis de recurso i (i=1, 2, ...,m), utilizado por unidade da atividade j;

 b_i – parâmetro do modelo que representa a quantidade do recurso i, disponível para as n atividades ($b_i \ge 0$).

A agricultura, frequentemente se defronta com funções não lineares mostrando retornos decrescentes ao fator variável. Estas funções não lineares podem ser tratadas por aproximações lineares e a otimização pode ser feita utilizando-se a técnica de programação separável. Aplicações mais complexas de programação separável podem ser feitas para formulações de modelos que incorporam na função objetivo, funções de respostas de diferentes culturas, com propósito de determinar a quantidade ótima de água a ser utilizada em cada cultivo, a área a ser destinada a cada atividade e os custos de oportunidade, conhecendo-se um conjunto de restrições (água, terra, mercado, capital, etc).

Dois modelos de programação matemática desta natureza desenvolvidos por Frizzone et al. (1996) foram utilizados neste trabalho e são apresentados a seguir.

3.2.1. Modelo com lâminas de água fixas

Neste modelo a função objetivo para a área irrigada foi especificada como a maximização dos retornos líquidos anuais, RL, sujeitos às restrições de disponibilidade de água e outros insumos. Esquematicamente pode ser representado da seguinte forma (Equações 6 ; 7a; 7b e 8)

MAX RL =
$$\sum_{i=1}^{n} P_i X_i Y_i - \sum_{i=1}^{n} \sum_{j=1}^{m} A_{ij} X_i C_j$$
 (6)

Tendo como restrições:

$$\sum_{i=1}^{n} W_{i}X_{i} \le WM_{g} (i = 1..., n; g = 1..., 12)$$
(7a)

$$\sum_{i=1}^{n} W_{i}X_{i} \leq WT \quad (i = 1.., n)$$
 (7b)

$$\sum_{i=1}^{n} \sum_{j=1}^{m} A_{ij} X_{i} \leq S_{j} \quad (i = 1..., n; j = 1..., m)$$
(8a)

$$X_i \ge 0$$
 (8b)

onde:

g – número inteiro representando o mês do ano (g=1, 2,..., 12);

i – número inteiro representando a cultura (i=1, 2,..., n);

j – número inteiro representando outros insumos (j=1, 2,..., m);

P_i – preço unitário do produto da i-ésima cultura;

X_i – área cultivada com a i-ésima cultura;

 $Y_i - f(w_i)$, produtividade obtida da cultura i, quando aplicado w_i unidades de água;

 A_{ij} – quantidade demandada do insumo j pela cultura i;

 C_i – custo unitário do insumo j usado pela cultura i;

 $W_i - quantidade \ de \ \text{\'agua} \ por \ unidade \ de \ \text{\'area} \ para \ irrigar \ a \ i-\text{\'esima} \ cultura \ de \ produtividade \ y_i;$

WT – quantidade total de água disponível;

 S_i – disponibilidade máxima do insumo j;

WM – quantidade mensal de água disponível.

3.2.2 Modelo com lâminas de água alternativas

Este modelo é uma formulação de programação linear, exceto a função objetivo a qual pode tornar-se linear por aproximação da função de respostas em seguimentos lineares. O problema pode ser formulado como um modelo modificado de programação separável. A função objetivo é separável em um somatório de funções convexas de variáveis individuais (HILLIR; LIEBERMAN, 1988).

A seguir, desenvolve-se o modelo de programação linear separável, aproximando-se as funções de produção água-cultura, não-lineares, por funções lineares por partes, possibilitando a utilização do método simplex para a solução. Na Figura 3, apresenta-se uma função de produção água-cultura genérica, linearizada por partes. Tal função foi dividida em k segmentos lineares, sendo k um número inteiro (k = 1, 2, ..., s).

Observa-se, na Figura 3, que uma redução na lâmina de irrigação da cultura i de w_{i0} para w_{i1} (Δw_{i1}) implica uma redução da produtividade de y_{i0} para y_{i1} (Δy_{i1}); uma redução de w_{i1} para w_{i2} (Δw_{i2}) resulta em y_{i1} para y_{i2} (Δy_{i2}) e assim sucessivamente. Generalizando, uma

redução na lâmina de irrigação de $w_{i k-1}$ para w_{ik} (Δw_{ik}) resulta uma redução na produtividade de $y_{i k-1}$ para y_{ik} (Δy_{ik}).

Na função de resposta (Figura 3), são identificados dois pontos de referência:

- (a) y_{i0} , w_{i0} representa a produtividade máxima e a correspondente lâmina de irrigação;
- (b) y_{is} , w_{is} representa a produtividade mínima e a correspondente lâmina de irrigação.

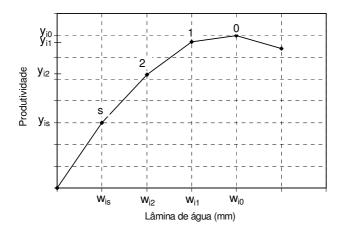


Figura 3 - Representação esquemática de uma função de resposta linearizada por partes

A região entre y_{i0} e y_{is} é a região econômica de produção. Ela inicia onde o produto físico médio é máximo e termina onde o produto físico marginal é zero. A lâmina de irrigação deve ser selecionada em algum ponto entre s e zero, onde a produtividade marginal da água se iguala a seu preço.

O nível ótimo de água a ser usado deve ser relacionado em algum ponto entre s e 0, onde o valor do produto marginal se iguala ao preço da água. Para cada uma das funções foram determinados Δw_{ik} e $i\Delta_{ik}$, que representam os balanços de água e produção para a cultura i no segmento.

Considerando-se os segmentos lineares em que foi dividido a função de resposta da cultura à água e as equações 6, 7 e 8, Frizzone (1996), desenvolveu o modelo cuja função objetivo consistiu em maximizar a renda líquida total da exploração agrícola RL (equação 9), ou seja:

MAX RL =
$$\left[\sum_{i=1}^{n} X_{i0} Y_{i0} - \sum_{i=1}^{n} \sum_{k=1}^{s} X_{ik} \Delta Y_{ik}\right] P_{i} - \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{s} A_{ij} (X_{i0} - X_{ik}) C_{j}$$
(9)

Tendo como restrições (equações 10a; 10b; 11; 12; 13; 14; 15; 16)

$$\sum_{i=1}^{n} X_{i0} W_{i0} - \sum_{i=1}^{n} \sum_{k=1}^{s} X_{ik} \Delta W_{ik} \le WM_{g} (i = 1..., n; k = 1..., s; g = 1..., 12)$$
(10a)

$$\sum_{i=1}^{n} X_{i0} W_{i0} - \sum_{i=1}^{n} \sum_{k=1}^{s} X_{ik} \Delta W_{ik} \le WT_{g} (i = 1..., n; k = 1..., s)$$
(10b)

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{s} A_{ij} (X_{i0} - X_{ik}) \le S_{j} (i = 1..., n; k = 1..., s; j = 1..., m)$$
(11)

$$X_{ii} - X_{i0} \le 0 (i = 1..., ; k = 1..., s)$$
 (12)

$$X_{i} \le X_{max} \tag{13}$$

$$X_i \ge X_{min}$$
 (14)

$$X_{i0} \ge 0 (i = 1.., n; k = 1.., s)$$
 (15)

$$X_{ik} \ge 0 \ (i = 1..., n; k = 1..., s)$$
 (16)

A equação 9 é uma função objetivo linear; as equações 10a e 10b são as restrições da disponibilidade de água, a equação 11 é uma restrição quanto à disponibilidade de recursos diversos; a equação 12 é uma restrição quanto à necessidade de que a área total disponível à irrigação seja igual a área total cultivada sob irrigação; as equações 13 e 14 são restrições de áreas máximas e mínimas cultivadas com a cultura i , representando exigências de mercado, comercialização e capacidade de estocagem; a equações 15 e 16 são restrições de nãonegatividade.

O modelo foi decomposto basicamente em quatro blocos de atividades: atividades de produção, funções de resposta, atividades de venda do produto e atividades de insumos adquiridos. As atividades de produção foram expressas por X_i (i=1...n). Conforme observa-se na Figura 3 estas atividades tem valor máximo disponível em (w_0 , y_0).

As funções de resposta da cultura à água foram incluídas no modelo usando-se o segundo grupo de atividades. Cada função de resposta tem s segmentos. O Δw_{ik} para a i-ésima cultura e o k-ésimo segmento indicam uma economia de água quando a produtividade decresce de uma quantidade Δy_{ik} . Todo volume de água economizado será contabilizado no balanço de água e o decréscimo na produtividade registrado no balanço de produção.

Nas atividades de vendas de produtos e insumos adquiridos, os preços de mercado dos produtos e o custo de água serão considerados fixos. Custos variáveis por unidade de área (exceto custo de água), quantidade de água disponível em diferentes níveis, restrições de área e de mercado foram introduzidos no modelo.

3.3 Formulação dos modelos

Os modelos utilizados neste estudo foram baseados nos dados que compõem os Relatórios de Monitoria Ano Agrícola de 2008 e 2009 da 2ª Superintendência Regional da CODEVASF, Relatório do Distrito de Irrigação do Projeto Formoso e nas informações adicionais fornecidas pelo referido órgão. Assim, procurou-se formular o modelo com as características de exploração da área, que permitisse determinar os melhores planos, adequando-os às finalidades do estudo, mediante uma esquematização matricial própria do instrumento utilizado.

3.3.1. Padrão de Culturas

Neste trabalho foram consideradas sete culturas tradicionalmente cultivadas pelos colonos do Projeto de Irrigação Formoso: abóbora, feijão *Phaseolus*, feijão *Vigna*, melancia, milho, banana, mamão, além do limão que está em fase de estudo. Atualmente no PIF a fruticultura representa 96,6% destacando-se a banana com 96,2% da área e as culturas anuais 3,4%, sobressaindo-se as culturas do milho e feijão, cujo padrão de ocupação mensal encontra-se na Tabela 1.

Tabela 1 – Calendário de cultivo das culturas da área de colonização do Perímetro Irrigado Formoso

			Cultı	ıras				
Mês	Abóbora	Feijão Phaseolus	Feijão Vigna	Melancia	Milho	Banana	Mamão	Limão
Jan					X	X	X	X
Fev	X				X	\mathbf{X}	X	\mathbf{X}
Mar	X	X				\mathbf{X}	\mathbf{X}	\mathbf{X}
Abr	X	X	\mathbf{X}	\mathbf{X}		\mathbf{X}	X	\mathbf{X}
Mai		X	\mathbf{X}	\mathbf{X}		\mathbf{X}	X	\mathbf{X}
Jun	X	X	\mathbf{X}	\mathbf{X}		\mathbf{X}	X	\mathbf{X}
Jul	X	X	\mathbf{X}	\mathbf{X}		\mathbf{X}	X	\mathbf{X}
Ago	\mathbf{X}	\mathbf{X}	X	\mathbf{X}		\mathbf{X}	X	\mathbf{X}
Set			X	X		X	X	\mathbf{X}
Out						\mathbf{X}	X	\mathbf{X}
Nov					X	X	X	\mathbf{X}
Dez					X	X	X	X

3.3.2 Função de resposta das culturas à água

As funções que melhor se ajustaram aos dados disponíveis estão descritas na Tabela 2.

As funções de resposta de todas as culturas estudadas foram divididas em segmentos lineares usando-se a técnica descrita na Figura 3, conforme se observa nas Tabelas 1 a 8 do Apêndice. Os critérios para escolha da zona de alocação de recurso para cada cultura foram: 1) lâmina de água na qual a produtividade era máxima (w₀); 2) lâmina mínima de água abaixo da qual, na área estudada, a planta sofre estresse hídrico e a produtividade é muito reduzida (w₉). As quantidades mínima e máxima de água para se obter produtividades racionais, bem como as produtividades mínima e máxima para cada cultura são dadas na Tabela 3.

Tabela 2 – Função de resposta das culturas à água

CULTURA	EQUAÇÕES	Referência
1- Abóbora	$Y = -1,269 + 0,122W - 0,159x10^{-3}W^{2}$	MAROUELLI (1999)
2-Feijão <i>Phaseolus</i>	$Y = 8,001813x10^{-2}EXP(3,8227x10^{-2}W - 3,507706x10^{-2})$	GOMES (1990a)
3- Feijão Vigna	$Y = 436,3158EXP(2,92035x10^{-3}W - 1,621882x10^{-6}W^{2})$	SILVA (1978)
4- Melancia	$Y = -2301,15 + 81,0895W - 0,0457W^2$	EMBRAPA (1977)
5- Milho	$Y = -8481,9373-20,6859W+1151,92245W^{0,5}$	GOMES (1990b)
6- Banana	$Y = 1E^{-05}W^2 - 0.0304W + 41.916$	COELHO (2004)
7- Mamão	$Y = -1.7 \times 10^{-5} W^2 + 9.4W \cdot 10^{-2}W - 89.1$	ALMEIDA (2004)
8- Limão Tahiti	Y = 0.030W - 31.94	ALVES JÚNIOR (2006)

Y: Produtividade (kg/ha); W: Lâmina de água (mm)

Tabela 3 – Lâminas de água mínima e máxima para cada cultura estudada e respectivas produtividades

	Valor Mínimo de W	Valor Mínimo de Y	Valor Máximo de W	Valor Máximo de Y
Culturas	(mm)	(kg ha ⁻¹)	(mm)	(kg ha ⁻¹)
Abóbora	210	17317	384	22133
Feijão	380	1028	304	22133
Phaseolus			545	2669
Feijão Vigna	330	1178	500	1539
Melancia	350	20482	887	33670
Milho	350	5828	775	7555
Banana	1520	18812	2900	37856
Mamão	800	33405	1400	94784
Limão tahiti	1400	10060	2100	31060

Discretizadas as funções de resposta de cada cultura, Tabelas 1 a 8 do Apêndice, obteve-se os balanços de água e produtividade, assim como os incrementos da renda líquida entre duas lâminas consecutivas (Tabelas 4 a 7).

As colunas K correspondem aos números de segmentos em que foram divididas as funções de resposta. ΔW e ΔY correspondem a diferença entre duas lâminas consecutivas e suas respectivas produtividades, fazendo com que ocorram incrementos de renda líquida ΔRL , que podem apresentar valores nulos, positivos ou negativos.

Assim considerando a cultura do feijão *Phaseolus* quando se utiliza a lâmina 540 mm ao invés de 545 mm, verifica-se que a redução de 5 mm provocou uma redução de produtividade de 2,25 kg ha⁻¹ e uma diminuição da renda líquida de 1,71 R\$.ha⁻¹.

Tabela 4 – Balanços de água e de produtividade com os respectivos incrementos de renda líquida, para as culturas de abóbora e feijão *Phaseolus*

			CULTUI	RAS		
K	Abóbora			F	Feijão <i>Phaseoli</i>	us
K	ΔW	ΔY	ΔRL	$\Delta \mathbf{W}$	ΔΥ	ΔRL
	(mm)	(kg ha ⁻¹)	$(R\$ ha^{-1})$	(mm)	$(kg ha^{-1})$	$(R\$ ha^{-1})$
1	10	16,05	2,87	5	2,25	1,71
2	10	47,85	15,59	10	18,46	25,06
3	14	120,42	43,20	20	36,72	53,36
4	20	280,14	104,97	20	124,80	186,35
5	20	407,34	155,85	20	184,36	278,67
6	20	534,54	206,73	20	229,68	348,91
7	25	847,05	329,96	30	258,40	393,43
8	25	1045,81	409,46	30	404,63	616,54
9	30	1517,32	596,29	40	381,41	580,54

Tabela 5 – Balanços de água e de produtividade com os respectivos incrementos de renda líquida, para as culturas de feijão *Vigna* e melancia

P	ara as cartaras c	ie reijae , igita	CULTU	2 4 5				
K	Feijão <i>Vigna</i>			XAS	Melancia			
K	$\Delta \mathrm{W}$	ΔΥ	ΔRL	ΔW	ΔΥ	ΔRL		
	(mm)	(kg ha ⁻¹)	$(R\$ ha^{-1})$	(mm)	(kg ha ⁻¹)	$(R\$ ha^{-1})$		
1	5	10,03	12,26	27	33,79	0,56		
2	10	20,23	24,77	30	115,70	24,07		
3	10	20,44	25,07	40	282,22	70,48		
4	15	31,03	38,12	40	428,46	114,35		
5	20	41,98	51,68	50	741,22	204,64		
6	20	42,55	52,48	50	969,72	273,19		
7	30	64,63	79,85	100	2624,95	752,03		
8	30	65,23	80,68	100	3538,95	1026,23		
9	30	65,42	80,95	100	4452,95	1300,43		

Tabela 6 – Balanços de água e de produtividade com os respectivos incrementos de renda líquida, para as culturas de milho e banana

			CULTUI	RAS		
K		Milho			Banana	
K	$\Delta ext{W}$	ΔY	ΔRL	$\Delta \mathbf{W}$	ΔY	ΔRL
	(mm)	(kg ha ⁻¹)	$(R\$ ha^{-1})$	(mm)	(kg ha ⁻¹)	$(R\$ ha^{-1})$
1	15	1,56	-4,77	50	1355	669
2	20	6,91	-4,67	50	1305	644
3	40	31,24	-3,25	80	1984	978
4	50	74,33	8,29	100	2300	1132
5	50	117,86	23,52	100	2100	1032
6	50	166,95	40,70	200	3600	1764
7	50	222,91	60,29	200	2800	1364
8	50	287,51	82,90	300	2700	1296
9	100	816,88	250,45	300	900	396

Tabela 7 – Balanços de água e de produtividade com os respectivos incrementos de renda líquida, para as culturas de mamão e limão

P	ara as carraras c	ie mamao e min	40			
			CULTUI	RAS		
K		Mamão			Limão	
K	ΔW	ΔΥ	ΔRL	ΔW	ΔΥ	ΔRL
	(mm)	$(kg ha^{-1})$	$(R\$ ha^{-1})$	(mm)	(kg ha ⁻¹)	$(R\$ ha^{-1})$
1	25	186,82	121,91	25	750,00	478,64
2	25	392,96	266,21	50	1500,00	957,27
3	50	1404,34	965,31	50	1500,00	957,27
4	50	2228,90	1542,50	75	2250,00	1435,91
5	75	4889,40	3395,99	75	2250,00	1435,91
6	75	6744,66	4694,67	75	2250,00	1435,91
7	100	11878,83	8279,72	100	3000,00	1914,54
8	100	15177,07	10588,49	100	3000,00	1914,54
9	100	18475,30	12897,25	150	4500,00	2871,81

3.3.3 Estimativa dos coeficientes de requerimento mensal de água

Um modelo que represente fielmente as condições de irrigação que prevalecem em uma grande área irrigada é necessariamente muito complicado e as informações indispensáveis para sua construção (avaliação dos coeficientes do modelo), em geral, não estão disponíveis na maioria dos projetos.

Nos modelos estudados, as lâminas de água aplicadas considerando-se as funções de resposta, são para todo o ciclo da cultura. Sabe-se, entretanto, que a estimativa dos coeficientes de requerimento mensal de água para cada cultura depende da sua evapotranspiração.

Para o cálculo dos coeficientes mensais de água, procurou-se encontrar um fator F, que ajustasse a lâmina dada pela função de resposta com as necessidades mensais de água de cada cultura.

No presente trabalho, as necessidades mensais de água dos cultivos basearam-se nos seguintes fatores (equações 17 e 18):

- a) os valores da evapotranspiração de referência, foram calculados pelo método de Hargreaves;
- b) os valores mensais de evapotranspiração máxima das culturas estudadas foram calculados com base na evapotranspiração de referência, coeficientes de cultura (K_c) e nos períodos

normais de exploração das culturas. Os valores referentes aos coeficientes de cultura foram obtidos de Doorenbos e Kassam (1979).

$$ETM = ET0 \times Kc \tag{17}$$

Após o cálculo das necessidades mensais de água de cada cultura, calculou-se o fator F, o qual denominou-se porcentagem de utilização de água mensal, cujo valor pode ser determinado pela seguinte relação:

$$F = \frac{ETM_{mensal}}{ETM_{total}}$$
 (18)

onde:

ETM_{mensal} – evapotranspiração máxima da cultura no mês de estudo.

ETM_{total} – evapotranspiração da cultura durante todo o ciclo.

De posse da porcentagem F de água utilizada para cada cultura (Tabelas 9 a 16 do Apêndice), encontrou-se os coeficientes dos modelos estudados em função das lâminas de água disponíveis nas funções de resposta das culturas à água conforme as equações 19a e 19b:

$$CRM(LF) = Wm\acute{a}x \ x \ F$$
 (19a)

$$CRM(LA) = (\Delta W OU Wmin) x F$$
 (19b)

onde:

CRM(LF) – coeficiente de requerimento mensal para o modelo de lâminas fixas.

CRM(LA) – coeficiente de requerimento mensal para o modelo de lâminas alternativas.

Wmáx – lâmina de água correspondente a produção máxima.

Wmin – lâmina de água correspondente a produção mínima.

ΔW – diferença entre duas lâminas de água consecutivas.

Assim, para o modelo de lâminas fixas, tomando-se como exemplo a cultura do feijão *Phaseolus* plantado no junho, tem-se os seguintes coeficientes de requerimento mensal de água: JUNHO = 545 mm x 0,2145 = 116,9 mm; JULHO = 545mm x 0,3812 = 207,8 mm e AGOSTO 545mm x 0,4043 = 220,3 mm. Empregando-se o mesmo raciocínio nas diversas culturas, obtêm os valores apresentados na Tabela 8.

Na determinação dos coeficientes de requerimento mensal de água, no modelo lâminas alternativas, aos invés de se fixar a lâmina máxima, trabalhou-se com a lâmina mínima (W_{min}) (Tabela 3), e com os incrementos ΔW provenientes do balanço de água mostrados nas Tabelas 4 a 7. Assim, considerando-se a cultura do feijão *Phaseolus* plantado no mês de junho utilizando a lâmina mínima de irrigação (W_{min}) de 380 mm e os respectivos valores de F, obtêmse os seguintes coeficientes de requerimento mensal de água: JUNHO = 380 mm x 0,2145 = 81,52 mm; JULHO = 380 mm x 0,3812 = 144,86 mm e AGOSTO 380mm x 0,4043 = 153,62 mm. O processo repeti-se para valores de ΔW . Os valores dos coeficientes mensal de água para as culturas estudadas estão disponíveis nas tabelas 9 a 16.

Tabela 8 – Coeficientes de requerimento mensal de água (em mm) das culturas estudadas para o modelo de lâminas fixas

			Cult	uras				
Meses	Abóbora	Feijão Phaseolus	Feijão Vigna	Melancia	Milho	Banana	Mamão	Limão
Jan					241,8	268,4	129,6	222,4
Fev	131,5				170,6	231,4	111,7	201,3
Mar	133,3	143,7				234,5	113,2	165,1
Abr	119,2	214,2	126,9	238,1		209,8	101,3	139,1
Mai		187,1	184,8	355,6		203,6	98,3	160,3
Jun	115,6	116,9	188,2	293,3		186,6	90,1	108,3
Jul	123,2	207,8	98,9	188,2		199,0	96,1	98,9
Ago	145,2	220,3	174,8	341,2		234,5	113,2	97,1
Set			226,2	357,6		273,0	131,8	124,4
Out						319,3	154,1	304,3
Nov					147,8	277,7	134,0	207,1
Dez					214,8	262,2	126,6	271,6

Tabela 9 – Coeficientes de requerimento mensal de água (em mm) da cultura da abóbora para o modelo de lâminas alternativas

	W _{min} (mm)		Diferença entre lâminas, ΔW (mm)				
Meses	210	30	25	20	14	10	
Fevereiro*	71,92	10,27	8,56	6,85	4,79	3,42	
Março	72,88	10,41	8,68	6,94	4,86	3,47	
Abril	65,21	9,32	7,76	6,21	4,35	3,11	
Junho *	63,21	9,03	7,52	6,02	4,51	3,01	
Julho	67,39	9,63	8,02	6,42	4,81	3,21	
Agosto	79,40	11,34	9,45	7,56	5,67	3,78	

Tabela 10 – Coeficientes de requerimento mensal de água (em mm) da cultura do feijão *Phaseolus* para o modelo de lâminas alternativas

	W _{min} (mm)	Di)		
Meses	380	30	20	10	5
Março*	100,16	7,91	5,27	2,64	1,32
Abril	149,36	11,79	7,86	3,93	1,97
Maio	130,47	10,30	6,87	3,43	1,72
Jun*	81,52	6,99	4,66	2,33	1,16
Jul	144,86	12,42	8,28	4,14	2,07
Ago	153,62	13,17	8,78	4,39	2,19

Tabela 11 – Coeficientes de requerimento mensal de água (em mm) da cultura do feijão *Vigna* para o modelo de lâminas alternativas

	W _{min} (mm)	Diferença entre lâminas, ΔW (mm)				
Meses	330	30	20	15	10	5
Abril*	83,8	7,6	5,1	3,8	2,5	1,3
Maio	122,0	11,1	7,4	5,5	3,7	1,8
Junho	124,2	11,3	7,5	5,6	3,8	1,9
Julho*	65,3	5,9	4,0	3,0	2,0	1,0
Agosto	115,4	10,5	7,0	5,2	3,5	1,7
Setembro	149,3	13,6	9,0	6,8	4,5	2,3

Tabela 12 – Coeficientes de requierimento mensal de água (em mm) da cultura da melancia para o modelo de lâminas alternativas

	W _{min} (mm)	Diferença entre lâminas, ΔW (mm)					
Meses	350	100	50	40	30	27	
Abril*	94,0	26,8	13,4	10,7	8,1	7,2	
Maio	140,3	40,1	20,0	16,0	12,0	10,8	
Junho	115,7	33,1	16,5	13,2	9,9	8,9	
Jul*	188,2	74,3	21,2	10,6	8,5	6,4	
Ago	341,2	134,6	38,5	19,2	15,4	11,5	
Set	357,6	141,1	40,3	20,2	16,1	12,1	

Tabela 13 – Coeficientes de requerimento mensal de água (em mm) da cultura do milho para o modelo de lâminas alternativas

	W _{min} (mm)		Diferença entre lâminas, ΔW (mm)				
Meses	375	100	50	40	20	15	
Nov*	71,5	19,1	9,5	7,6	3,8	2,9	
Dez	103,9	27,7	13,9	11,1	5,5	4,2	
Jan	117,0	31,2	15,6	12,5	6,2	4,7	
Fev	82,5	22,0	11,0	8,8	4,4	3,3	

Tabela 14 – Coeficientes de requerimento mensal de água (em mm) da cultura da banana para o modelo de lâminas alternativas

	W _{min} (mm)	Diferença enti	re lâminas, ΔV	V (mm)		
Meses	1520	300	200	100	80	50
Jan	140,7	27,8	18,5	9,3	7,4	4,6
Fev	121,3	23,9	16,0	8,0	6,4	4,0
Mar	122,9	24,3	16,2	8,1	6,5	4,0
Abr	110,0	21,7	14,5	7,2	5,8	3,6
Mai	106,7	21,1	14,0	7,0	5,6	3,5
Jun	97,8	19,3	12,9	6,4	5,1	3,2
Jul	104,3	20,6	13,7	6,9	5,5	3,4
Ago	122,9	24,3	16,2	8,1	6,5	4,0
Set	143,1	28,2	18,8	9,4	7,5	4,7
Out	167,4	33,0	22,0	11,0	8,8	5,5
Nov	145,5	28,7	19,1	9,6	7,7	4,8
Dez	137,4	27,1	18,1	9,0	7,2	4,5

Tabela 15 – Coeficientes de requerimento mensal de água (em mm) da cultura do mamão para o modelo de lâminas alternativas

	$W_{min}(mm)$ Diferença entre lâminas, ΔW (mm)				
Meses	800	100	75	50	25
Jan	74,0	9,3	6,9	4,6	2,3
Fev	63,8	8,0	6,0	4,0	2,0
Mar	64,7	8,1	6,1	4,0	2,0
Abr	57,9	7,2	5,4	3,6	1,8
Mai	56,2	7,0	5,3	3,5	1,8
Jun	51,5	6,4	4,8	3,2	1,6
Jul	54,9	6,9	5,1	3,4	1,7
Ago	64,7	8,1	6,1	4,0	2,0
Set	75,3	9,4	7,1	4,7	2,4
Out	88,1	11,0	8,3	5,5	2,8
Nov	76,6	9,6	7,2	4,8	2,4
Dez	72,3	9,0	6,8	4,5	2,3

Tabela 16 – Coeficientes de requerimento mensal de água (em mm) da cultura do limão para o modelo de lâminas alternativas

	W _{min} (mm)		Diferença e	ntre lâminas,	ΔW (mm)	
Meses	1400	150	100	75	50	25
Jan	148,3	15,9	10,6	7,9	5,3	2,6
Fev	134,2	14,4	9,6	7,2	4,8	2,4
Mar	110,1	11,8	7,9	5,9	3,9	2,0
Abr	92,7	9,9	6,6	5,0	3,3	1,7
Mai	106,9	11,4	7,6	5,7	3,8	1,9
Jun	72,2	7,7	5,2	3,9	2,6	1,3
Jul	66,0	7,1	4,7	3,5	2,4	1,2
Ago	64,8	6,9	4,6	3,5	2,3	1,2
Set	83,0	8,9	5,9	4,4	3,0	1,5
Out	202,9	21,7	14,5	10,9	7,2	3,6
Nov	138,0	14,8	9,9	7,4	4,9	2,5
Dez	181,1	19,4	12,9	9,7	6,5	3,2

3.4 Descrição dos modelos

Os modelos de programação matemática que foram utilizados neste trabalho consistem de uma função objetivo, sujeita a restrições no uso dos recursos (terra e água) assim como restrições na produção de várias culturas devido a condições de mercado e capacidade de aproveitamento das agroindústrias. Os modelos têm como objetivo a maximização da soma dos benefícios líquidos decorrentes da produção das culturas. Os dois modelos estudados estão descritos a seguir:

1º MODELO COM LÂMINAS DE ÁGUA FIXAS

O modelo é representado pela seguinte função objetivo (Equação 20):

$$MAX RL = 2902,18X10 + 2902,18X20 + 2480,08X30 + 2480,08X40 + 718,29X50 + 718,29X60 + 4511,10X70 + 4511,10X80 + 987,14X90 + 9011,72X100 + 36266,39X110 + 13988,03X120$$
 (20)

onde:

MAX RL – maximização de RL (LUCRO).

X10 – área plantada com abóbora em fevereiro (ha)

X20 – área plantada com abóbora em junho (ha).

X30 – área plantada com feijão *Phaseolus* em março (ha).

X40 – área plantada com feijão *Phaseolus* em junho (ha).

X50 – área plantada com feijão *Vigna* em abril (ha).

X60 – área plantada com feijão *Vigna* em julho (ha).

X70 – área área plantada com melancia em abril (ha).

X80 – área plantada com melancia em julho (ha).

X90 – área plantada com milho em novembro (ha).

X100 – área plantada com banana no 3º ano da cultura (ha).

X110 – área plantada com mamão no 1º ano da cultura (ha).

X120 – área plantada com limão Tahiti no 5° ano da cultura (ha).

Na função objetivo, os coeficientes técnicos das atividades produtivas, áreas plantadas com as diversas culturas estudadas, representam a renda líquida obtida com a maior lâmina de água (Tabelas 1 a 9 do Apêndice).

O modelo está sujeito às restrições de:

A) ÁREA:

Nome:	Equação	
AJAN	$X90 + X100 + X110 + X120 \le 4405$	(21)
AFEV	$X10 + X90 + X100 + X110 + X120 \le 4405$	(22)
AMAR	$X10 + X30 + X100 + X110 + X120 \le 4405$	(23)
AABR	$X10 + X30 + X50 + X70 + X100 + X110 + X120 \le 4405$	(24)
AMAI	$X30 + X50 + X70 + X100 + X110 + X120 \le 4405$	(25)
AJUN	$X40 + X50 + X70 + X100 + X110 + X120 \le 4405$	(26)
AJUL	$X20 + X40 + X60 + X80 + X100 + X110 + X120 \le 4405$	(27)
AAGO	$X20 + X40 + X60 + X80 + X100 + X110 + X120 \le 4405$	(28)
ASET	$X20 + X60 + X80 + X100 + X110 + X120 \le 4405$	(29)
AOUT	$X100 + X110 + X120 \le 4405$	(30)
ANOV	$X90 + X100 + X110 + X120 \le 4405$	(31)
ADEZ	$X90 + X100 + X110 + X120 \le 4405$	(32)
onde:		

AJAN – área irrigada no mês de janeiro

AFEV – área irrigada no mês de fevereiro

ADEZ – área irrigada no mês de dezembro

. As restrições de área (equações 21 a 32), correspondem à combinação das culturas nos 12 meses do ano e determinam que a ocupação da área deve ser menor ou igual a área disponível. Atualmente a área explorada pelos colonos é de 4405 ha .

B) ÁGUA:

```
Nome:
           Equação:
WJAN
           2,418X90 + 2,684X100 + 1,296X110 + 2,224X120 \le 10.833,500 \text{ dm.ha}
                                                                                   (33)
           1,315X10 + 1,706X90 + 2,314X100 + 1,117X110 + 2,013X120 \le 10.833,500
WFEV
                                                                                   (34)
WMAR
           1,333X10 + 1,437X30 + 2,345X100 + 1,132X110 + 1,651X120 \le 10.833,500 (35)
           dm.ha
WABR
           1,192X10 + 2,142X30 + 1,269X50 + 2,381X70 + 2,098X100 + 1,013X110 + (36)
           1,391X120 \le 10.833,500 \text{ dm.ha}
           1,871X30 + 1,848X50 + 3,556X70 + 2,036X100 + 0,983X110 + 1,603X120
WMAI
                                                                                   (37)
           \leq 10.833,500 dm.ha
WJUN
           1,156X20 + 1,169X40 + 1,882X50 + 2,933X70 + 1,866X100 + 0,901X110
                                                                                   (38)
           +1,083X120 \le 10.833,500 dm.ha
WJUL
           1,232X20 + 2,078X40 + 0,989X60 + 1,882X80 + 1,990X100 + 0,961X110
                                                                                   (39)
           +0.989X120 \le 10.833,500 \text{ dm.ha}
           1,452X20 + 2,203X40 + 1,748X60 + 3,412X80 + 2,345X100 + 1,132X110
WAGO
                                                                                   (40)
           +0.971X120 \le 10.833,500 \text{ dm.ha}
WSET
           2,262X60 + 3,576X80 + 2,730X100 + 1,318X110 + 1,244X120 \le (41)
           10.833,500 dm.ha
           3,193X100 + 1,541X110 + 3,043X120 \le 10.833,500 \text{ dm.ha}
WOUT
                                                                                   (42)
WNOV
           1,478X90 + 2,777X100 + 1,340X110 + 2,071X120 \le 10.833,500 dm.ha
                                                                                   (43)
WDEZ
           2,148X90 + 2,622X100 + 1,266X110 + 2,716X120 \le 10.833,500 \text{ dm.ha}
                                                                                   (44)
WTOTAL
          3,84X10 + 3,84X20 + 5,45X30 + 5,45X40 + 5,00X50 + 5,00X60 +
           8,87X70 + 8,87X80 + 7,75X90 + 29,00X100 + 14,00X110 + 21,00X120 (45)
           < 79.649,300 dm.ha
```

onde:

WJAN, WFEV, ..., WDEZ – volume de água mensal, em m³, disponível nos meses de janeiro, fevereiro,... dezembro.

WTOTAL – volume de água total anual disponível no projeto.

WTOTAL – volume total de água disponível, em m³.

As equações 33 a 44, referentes a restrição de água mensal asseguram que em nenhum mês do ano a demanda de água das culturas será maior que a capacidade de derivação de água a área de colonização. Considerou-se como derivação máxima 10.833.500 m³,que foi o maior volume de água mensal fornecido á área irrigada dos colonos, durante o ano de 2009. Os coeficientes de requerimento mensal de irrigação estão apresentados na Tabela 8.

A equação 45 restringe o uso de água total anual pelas culturas à água disponível do projeto. Seu segundo membro (VAD), correspondente ao volume anual disponível, foi considerado igual a 79.649.300 m³ (volume total utilizado na área durante o ano de 2009).

C) PRODUÇÃO DAS CULTURAS

Nome:	Equação:	
AREAMIN-1	$X10 \ge 30$	(46)
AREAMIN-3	$X30 \ge 30$	(47)
AREAMIN-7	$X70 \ge 60$	(48)
AREAMAX-7	$X70 \le 800$	(49)
AREAMIN-10	$X100 \ge 1500$	(50)
AREAMIN-11	$X110 \ge 60$	(51)
AREAMAX-11	$X110 \le 1200$	(52)
AREAMAX-12	$X120 \le 300$	(53)

onde:

AREAMIN-1 – área mínima, em ha, a ser plantada com abóbora em fevereiro.

AREAMIN-3 – área mínima, em ha, a ser plantada com feijão *Phaseolus* em março.

AREAMIN-7 – área mínima, em ha, a ser plantada com melancia em abril.

AREAMAX-7 – área máxima, em ha, a ser plantada com melancia em abril.

AREAMIN-10 – área mínima, em ha, a ser plantada com banana no 3º ano da cultura.

AREAMIN-11 – área mínima, em ha, a ser plantada com mamão no 1º ano da cultura.

AREAMAX-11 – área máxima, em ha, a ser plantada com mamão no 1º ano da cultura.

AREAMAX-12 – área máxima, em ha, a ser plantada com com limão Tahiti no 5º ano da cultura.

As equações 46 a 53 representam as restrições à produção das diferentes culturas, ou seja, por condições de mercado, consumo interno, capacidade de processamento ou problemas regionais. Os valores de cada restrição foram estimados em função da produção média esperada por ha, e pela área cultivada, dados fornecidos pela CODEVASF e pela PLENA Consultoria e Projetos, que é a empresa que administra o Perímetro de Irrigação Formoso.

2º MODELO COM LÂMINAS DE ÁGUA ALTERNATIVAS

O modelo é representado pelas seguintes equações:

```
MAX RL =
             2902,18X10 + 2902,18X20 + 2480,08X30 + 2480,08X40 + 718,29X50 +
             718,29X60 + 4511,10X70 + 4511,10X80 + 987,14X90 + 9011,72X100 +
             36266,39X110 + 13988,03X120 - 2,87X11 - 15,59X12 - 43,20X13 -
             104,97X14 - 155,85X15 - 210,25X16 - 329,96X17 - 409,46X18 - 596,29X19 -
             2,87X21 - 15,59X22 - 43,20X23 - 104,97X24 - 155,85X25 - 210,25X26 -
             329,96X27 - 409,46X28 - 596,29X29 - 1,71X31 - 25,06X32 - 53,36X33 -
             186,35X34 - 278,67X35 - 348,91X36 - 393,43X37 - 616,54X38 - 580,54X39 -
             1,71X41 - 25,06X42 - 53,36X43 - 186,35X44 - 278,67X45 - 348,91X46 -
             393,43X47 - 616,54X48 - 580,54X49 - 12,26X51 - 24,77X52 - 25,07X53 -
             38,12X54 - 51,68X55 - 52,48X56 - 79,85X57 - 80,68X58 - 80,95X59 -
             12,26X61 - 24,77X62 - 25,07X63 - 38,12X64 - 51,68X65 - 52,48X66 -
             79,85X67 - 80,68X68 - 80,95X69 - 0,56X71 - 24,07X72 - 70,48X73 -
             114,35X74 - 204,64X75 - 273,19X76 - 752,03X77 - 1026,23X78 -
             1300,43X79 - 0,56X81 - 24,07X82 - 70,48X83 - 114,35X84 - 204,64X85 -
             273,19X86 - 752,03X87 - 1026,23X88 - 1300,43X89 + 4,77X91 + 4,67X92 +
             3,25X93 - 8,29X94 - 23,52X95 - 40,70X96 - 60,29X97 - 82,90X98 -
             250,45X99 - 659,77X101 - 634,77X102 - 963,63X103 - 1114,54X104 -
             1014,54X105 - 1729,08X106 - 1329,08X107 - 1243,62X108 - 343,62X109 -
             95,76X111 - 211,19X112 - 768,70X113 - 1230,46X114 - 2711,47X115 -
             3750,41X116 - 6616,69X117 - 8463,70X118 - 10310,71X119 - 478,63X121 -
             957,27X122 - 957,27X123 - 1435,9X124 - 1435,9X125 - 1435,9X126 -
             1914,54X127 - 1914,54X128 - 2871,81X129
                                                                                        (54)
```

onde:

```
MAX RL – maximização de RL (LUCRO).
```

X10, X11,..., X19 – área plantada com abóbora em fevereiro (ha)

X20, X21,..., X29 – área plantada com abóbora em junho (ha).

X30, X31,..., X39 – área plantada com feijão *Phaseolus* em março (ha).

X40, X41,..., X49 – área plantada com feijão *Phaseolus* em junho (ha).

X50, X51,..., X50 – área plantada com feijão *Vigna* em abril (ha).

X60, X61, ..., X69 – área plantada com feijão *Vigna* em julho (ha).

X70, X71,..., X79 – área área plantada com melancia em abril (ha).

X80, X81,..., X89 – área plantada com melancia em julho (ha).

X90, X91,..., X99 – área plantada com milho em novembro (ha).

X100, X101, ..., X109 – área plantada com banana no 3º ano da cultura (ha).

X110, X111, ...,X119 – área plantada com mamão no 1º ano da cultura (ha). X120, X121,..., X129 – área plantada com limão Tahiti no 5º ano da cultura (ha).

No modelo com lâminas alternativas, as culturas poderão ser irrigadas com diferentes lâminas que estão representadas pelos índices (9, 8, ..., 0) . Os números maiores designam lâminas menores e vice-versa. Assim, AX₉ significa área plantada com feijão *Phaseolus* e irrigada com lâmina mínima, ou seja, 350mm. Por outro lado, AX₀ significa a área plantadas com feijão *Phaseolus* e irrigada com lâmina máxima, 545 mm. As lâminas de água disponíveis às diversas culturas encontram-se nas Tabelas 1 a 8 do Apêndice.

Os coeficientes técnicos das atividades produtivas, áreas plantadas com as diversas culturas estudadas, representam os incrementos da renda líquida entre duas lâminas de irrigação consecutivas conforme observa-se nas Tabelas 4 a 7 e 1 a 8 do Apêndice.

O modelo está sujeito as seguintes restrições de:

A) ÁREA

Equação:	
$X90 + X100 + X110 + X120 \le 4405$	(55)
$X10 + X90 + X100 + X110 + X120 \le 4405$	(56)
$X10 + X30 + X100 + X110 + X120 \le 4405$	(57)
$X10 + X30 + X50 + X70 + X100 + X110 + X120 \le 4405$	(58)
$X30 + X50 + X70 + X100 + X110 + X120 \le 4405$	(59)
$X40 + X50 + X70 + X100 + X110 + X120 \le 4405$	(60)
$X20 + X40 + X60 + X80 + X100 + X110 + X120 \le 4405$	(61)
$X20 + X40 + X60 + X80 + X100 + X110 + X120 \le 4405$	(62)
$X20 + X60 + X80 + X100 + X110 + X120 \le 4405$	(63)
$X100 + X110 + X120 \le 4405$	(64)
$X90 + X100 + X110 + X120 \le 4405$	(65)
$X90 + X100 + X110 + X120 \le 4405$	(66)
X10 - X11≤0	(67)
X11 - X12≤0	(68)
X12 - X13≤0	(69)
X13 - X14≤0	(70)
X14 - X15≤0	(71)
X15 - X16≤0	(72)
X16 - X17≤0	(73)
X17 - X18≤0	(74)
X18 - X19≤0	(75)
X20 - X21≤0	(76)
	$X90 + X100 + X110 + X120 \le 4405$ $X10 + X90 + X100 + X110 + X120 \le 4405$ $X10 + X30 + X100 + X110 + X120 \le 4405$ $X10 + X30 + X50 + X70 + X100 + X110 + X120 \le 4405$ $X30 + X50 + X70 + X100 + X110 + X120 \le 4405$ $X40 + X50 + X70 + X100 + X110 + X120 \le 4405$ $X20 + X40 + X60 + X80 + X100 + X110 + X120 \le 4405$ $X20 + X40 + X60 + X80 + X100 + X110 + X120 \le 4405$ $X20 + X60 + X80 + X100 + X110 + X120 \le 4405$ $X100 + X110 + X120 \le 4405$ $X90 + X100 + X110 + X120 \le 4405$ $X90 + X100 + X110 + X120 \le 4405$ $X11 - X12 \le 0$ $X11 - X12 \le 0$ $X12 - X13 \le 0$ $X13 - X14 \le 0$ $X14 - X15 \le 0$ $X16 - X17 \le 0$ $X17 - X18 \le 0$ $X17 - X18 \le 0$ $X18 - X19 \le 0$

A22	X21 - X22≤0	(77)
A23	X22 - X23≤0	(78)
A24	X23 - X24≤0	(79)
A25	X24 - X25≤0	(80)
A26	X25 - X26≤0	(81)
A27	X26 - X27≤0	(82)
A28	X27 - X28≤0	(83)
A29	X28 - X29≤0	(84)
A31	X30 - X31≤0	(85)
A32	X31 - X32≤0	(86)
A33	X32 - X33≤0	(87)
A34	X33 - X34≤0	(88)
A35	X34 - X35≤0	(89)
A36	X35 - X36≤0	
		(90)
A37	X36 - X37≤0	(99)
A38	X37 - X38≤0	(92)
A39	X38 - X39≤0	(93)
A41	X40 - X41≤0	(94)
A42	X41 - X42≤0	(95)
A43	X42 - X43≤0	(96)
A44	X43 - X44≤0	(97)
A45	X44 - X45≤0	(98)
A46	X45 - X46≤0	(99)
A47	X46 - X47≤0	(100)
A48	X47 - X48≤0	(101)
A49	X48 - X49≤0	(102)
A51	X50 - X51≤0	
		(103)
A52	X51 - X52≤0	(104)
A53	X52 - X53≤0	(105)
A54	X53 - X54≤0	(106)
A55	X54 - X55≤0	(107)
		
A56	X55 - X56≤0	(108)
A57	X56 - X57≤0	(109)
A58	X57 - X58≤0	(110)
A59	X58 - X59≤0	(111)
A61	X60 - X61≤0	(112)
A62	X61 - X62≤0	(113)
A63	X62 - X63≤0	
		(114)
A64	X63 - X64≤0	(115)
A65	X64 - X65≤0	(116)
A66	X65 - X66≤0	(117)
A67	X66 - X67≤0	(118)
	_	
A68	X67 - X68≤0	(119)
A69	X68 - X69≤0	(120)
A71	X70 - X71≤0	(121)
A72	X71 - X72≤0	(122)
A73	X72 - X73≤0	
AIS	$\Lambda 12 - \Lambda 13 \ge 0$	(123)

A74	X73 - X74≤0	(124)
A75	X74 - X75≤0	(125)
A76	X75 - X76≤0	(126)
A77	X76 - X77≤0	(127)
A78	X77 - X78≤0	(127) (128)
A79	X77 - X78≤0 X78 - X79≤0	(128) (129)
A81	X80 - X81≤0	(130)
A82	X81 - X82≤0	(131)
A83	X82 - X83≤0	(132)
A84	X83 - X84≤0	(133)
A85	X84 - X85≤0	(134)
A86	X85 - X86≤0	(135)
A87	X86 - X87≤0	(136)
A88	X87 - X88≤0	(137)
A89	X88 - X89≤0	(138)
A91	X90 - X91≤0	(139)
A92	X91 - X92≤0	(140)
A93	X92 - X93≤0	(141)
A94	X93 - X94≤0	(142)
A95	X94 - X95≤0	(143)
A96	X95 - X96≤0	(144)
A97	X96 - X97≤0	(145)
A98	X97 - X98≤0	(146)
A99	X98 - X99≤0	(147)
A101	X100 - X101≤0	(148)
A102	X101 - X101 <u>-</u> 0 X101 - X102 <u>≤</u> 0	(149)
A102	X101 - X102 <u>≤</u> 0 X102 - X103≤0	(150)
A103	$X102 - X103 \le 0$ $X103 - X104 \le 0$	(150) (151)
A105	X104 - X105≤0	(152)
A106	X105 - X106≤0	(153)
A107	X106 - X107≤0	(154)
A108	X107 - X108≤0	(155)
A109	X108 - X109≤0	(156)
A111	X110 - X111≤0	(157)
A112	X111 - X112≤0	(158)
A113	X112 - X113≤0	(159)
A114	X113 - X114≤0	(160)
A115	X114 - X115≤0	(161)
A116	X115 - X116≤0	(162)
A117	X116 - X117≤0	(163)
A118	X117 - X118≤0	(164)
A119	X118 - X119≤0	(165)
A121	X120 - X121≤0	(166)
A122	X121 - X122≤0	(167)
A123	X122 - X123≤0	(168)
A124	X123 - X124≤0	(169)
A125	X124 - X125≤0	(170)
		(170)

(177)

A126	X125 - X126≤0	(171)
A127	X126 - X127≤0	(172)
A128	X127 - X128≤0	(173)
A129	X128 - X129≤0	(174)

As equações 67 a 174 asseguram que, considerando-se cada cultura separadamente, a área irrigada com determinada lâmina de irrigação deve ser menor ou igual àquela área irrigada com uma lâmina imediatamente inferior.

B) ÁGUA

```
2,418X90 + 2,684X100 + 1,296X110 + 2,224X120 - 0,0468X91 - 0,0624X92 -
WJAN =
           0,1248X93 - 0,1560X94 - 0,1560X95 - 0,1560X96 - 0,1560X97 - 0,1560X98 -
           0.3120X99 - 0.0463X101 - 0.0463X102 - 0.0740X103 - 0.0926X104 -
           0,0926X105 - 0,1851X106 - 0,1851X107 - 0,2777X108 - 0,2777X109 -
           0.0231X111 - 0.0231X112 - 0.0463X113 - 0.0463X114 - 0.0694X115 -
           0,0694X116 - 0,0926X117 - 0,0926X118 - 0,0926X119 - 0,0265X121 -
           0,0530X122 - 0,0530X123 - 0,0794X124 - 0,0794X125 - 0,0794X126 -
           0,1059X127 - 0,1059X128 - 0,1589X129 \le 10.833,500 \text{ dm.ha}
                                                                                  (175)
WFEV =
           1,315X10 + 1,706X90 + 2,314X100 + 1,117X110 + 2,013X120 - 0,0342X11 -
           0,0342 X12 - 0,0479 X13 - 0,0685 X14 - 0,0685 X15 - 0,0685 X16 - 0,0856
           X17 - 0,0856 X18 - 0,1027X19 - 0,0330X91 - 0,0440X92 - 0,0880X93 -
           0,1100X94 - 0,1100X95 - 0,1100X96 - 0,1100X97 - 0,1100X98 - 0,2201X99 -
           0,0399X101 - 0,0399X102 - 0,0638X103 - 0,0798X104 - 0,0798X105 -
           0,1596X106 - 0,1596X107 - 0,2394X108 - 0,2394X109 - 0,0199X111 -
           0,0199X112 - 0,0399X113 - 0,0399X114 - 0,0598X115 - 0,0598X116 -
           0,0798X117 - 0,0798X118 - 0,0798X119 - 0,0240X121 - 0,0479X122 -
           0,0479X123 - 0,0719X124 - 0,0719X125 - 0,0719X126 - 0,0959X127 -
           0.0959X128 - 0.1438X129 \le 10.833.500 \text{ dm.ha}
                                                                                  (176)
           1,333X10 + 1,437X30 + 2,345X100 + 1,132X110 + 1,651X120 - 0,0347X11 -
WMAR =
           0,0347 X12 - 0,0486 X13 - 0,0694 X14 - 0,0694 X15 - 0,0694 X16 - 0,0868
           X17 - 0.0868 X18 - 0.1041 X19 - 0.0132 X31 - 0.0264 X32 - 0.0264 X33 -
           0,0527 X34 - 0,0527 X35 - 0,0527 X36 - 0,0527 X37 - 0,0791 X38 - 0,0791
           X39 - 0,0404X101 - 0,0404X102 - 0,0647X103 - 0,0809X104 - 0,0809X105 -
           0,1617X106 - 0,1617X107 - 0,2426X108 - 0,2426X109 - 0,0202X111 -
           0,0202X112 - 0,0404X113 - 0,0404X114 - 0,0606X115 - 0,0606X116 -
           0,0809X117 - 0,0809X118 - 0,0809X119 - 0,0197X121 - 0,0393X122 -
           0,0393X123 - 0,0590X124 - 0,0590X125 - 0,0590X126 - 0,0786X127 -
```

 $0.0786X128 - 0.1180X129 \le 10.833,500 \text{ dm.ha}$

```
WABR=
           1,192X10 + 2,142X30 + 1,269X50 + 2,381X70 + 2,098X100 + 1,013X110 +
           1.391X120 - 0.0311 X11 - 0.0311 X12 - 0.0435 X13 - 0.0621 X14 - 0.0621
           X15 - 0,0621 X16 - 0,0776 X17 - 0,0776 X18 - 0,0932 X19 - 0,0197 X31 -
           0,0393 X32 - 0,0393 X33 - 0,0786 X34 - 0,0786 X35 - 0,0786 X36 - 0,0786
           X37 - 0,1179 X38 - 0,1179 X39 - 0,0127X51 - 0,0254X52 - 0,0254X53 -
           0,0381X54 - 0,0508X55 - 0,0508X56 - 0,0762X57 - 0,0762X58 - 0,0762X59 -
           0,0725X71 - 0,0805X72 - 0,1074X73 - 0,1074X74 - 0,1342X75 - 0,1342X76 -
           0,2684X77 - 0,2684X78 - 0,2684X79 - 0,0362X101 - 0,0362X102 -
           0.0579X103 - 0.0723X104 - 0.0723X105 - 0.1447X106 - 0.1447X107 -
           0,2170X108 - 0,2170X109 - 0,0181X111 - 0,0181X112 - 0,0362X113 -
           0,0362X114 - 0,0543X115 - 0,0543X116 - 0,0723X117 - 0,0723X118 -
           0.0723X119 - 0.0166X121 - 0.0331X122 - 0.0331X123 - 0.0497X124 -
           0.0497X125 - 0.0497X126 - 0.0662X127 - 0.0662X128 - 0.0993X129 \le
           10.833,500 dm.ha
                                                                                 (178)
WMAI=
           1,871X30 + 1,848X50 + 3,556X70 + 2,036X100 + 0,983X110 + 1,603X120 -
           0,0172 X31 - 0,0343 X32 - 0,0343 X33 - 0,0687 X34 - 0,0687 X35 - 0,0687
           X36 - 0,0687 X37 - 0,1030 X38 - 0,1030 X39 - 0,0185X51 - 0,0370X52 -
           0.0370X53 - 0.0554X54 - 0.0739X55 - 0.0739X56 - 0.1109X57 - 0.1109X58 -
           0,1109X59 - 0,1082X71 - 0,1203X72 - 0,1603X73 - 0,1603X74 - 0,2004X75 -
           0,2004X76 - 0,4009X77 - 0,4009X78 - 0,4009X79 - 0,0351X101 -
           0.0351X102 - 0.0562X103 - 0.0702X104 - 0.0702X105 - 0.1404X106 -
           0,1404X107 - 0,2106X108 - 0,2106X109 - 0,0176X111 - 0,0176X112 -
           0.0351X113 - 0.0351X114 - 0.0527X115 - 0.0527X116 - 0.0702X117 -
           0,0702X118 - 0,0702X119 - 0,0191X121 - 0,0382X122 - 0,0382X123 -
           0,0572X124 - 0,0572X125 - 0,0572X126 - 0,0763X127 - 0,0763X128 -
           0.1145X129 \le 10.833.500 dm.ha
                                                                                 (179)
WJUN =
           1,156X20 + 1,169X40 + 1,882X50 + 2,933X70 + 1,866X100 +
           0,901X110 + 1,083X120 - 0,0301 X21 - 0,0301 X22 - 0,0421 X23 - 0,0602
           X24 - 0,0602 X25 - 0,0602 X26 - 0,0752 X27 - 0,0752 X28 - 0,0903 X29 -
           0,0107 X41 - 0,0215 X42 - 0,0215 X43 - 0,0429 X44 - 0,0429 X45 - 0,0429
           X46 - 0,0644 X47 - 0,0644 X48 - 0,0858 X49 - 0,0188X51 - 0,0376X52 -
           0,0376X53 - 0,0565X54 - 0,0753X55 - 0,0753X56 - 0,1129X57 - 0,1129X58 -
           0,1129X59 - 0,0893X71 - 0,0992X72 - 0,1323X73 - 0,1323X74 - 0,1654X75 -
           0,1654X76 - 0,3307X77 - 0,3307X78 - 0,3307X79 - 0,0322X101 -
           0.0322X102 - 0.0515X103 - 0.0644X104 - 0.0644X105 - 0.1287X106 -
           0,1287X107 - 0,1931X108 - 0,1931X109 - 0,0161X111 - 0,0161X112 -
           0,0322X113 - 0,0322X114 - 0,0483X115 - 0,0483X116 - 0,0644X117 -
           0,0644X118 - 0,0644X119 - 0,0129X121 - 0,0258X122 - 0,0258X123 -
           0,0387X124 - 0,0387X125 - 0,0387X126 - 0,0516X127 - 0,0516X128 -
           0.0773X129 \le 10.833,500 \text{ dm.ha}
                                                                                 (180)
```

(183)

```
WJUL =
           1,232X20 + 2,078X40 + 0,989X60 + 1,882X80 + 1,990X100 +
           0.961X110 + 0.989X120 - 0.0321 X21 - 0.0321 X22 - 0.0449 X23 - 0.0642
           X24 - 0.0642 X25 - 0.0642 X26 - 0.0802 X27 - 0.0802 X28 - 0.0963 X29 -
           0.0191 X41 - 0.0381 X42 - 0.0381 X43 - 0.0762 X44 - 0.0762 X45 - 0.0762
           X46 - 0,1144 X47 - 0,1144 X48 - 0,1525 X49 - 0,0099X61 - 0,0198X62 -
           0.0198X63 - 0.0297X64 - 0.0396X65 - 0.0396X66 - 0.0594X67 - 0.0594X68 -
           0,0594X69 - 0,0573X81 - 0,0637X82 - 0,0849X83 - 0,0849X84 - 0,1061X85 -
           0,1061X86 - 0,2122X87 - 0,2122X88 - 0,2122X89 - 0,0343X101 -
           0.0343X102 - 0.0549X103 - 0.0686X104 - 0.0686X105 - 0.1372X106 -
           0,1372X107 - 0,2059X108 - 0,2059X109 - 0,0172X111 - 0,0172X112 -
           0,0343X113 - 0,0343X114 - 0,0515X115 - 0,0515X116 - 0,0686X117 -
           0.0686X118 - 0.0686X119 - 0.0118X121 - 0.0236X122 - 0.0236X123 -
           0,0353X124 - 0,0353X125 - 0,0353X126 - 0,0471X127 - 0,0471X128 -
           0.0707X129 \le 10.833.500 \text{ dm.ha}
                                                                                (181)
WAGO=
           1,232X20 + 2,078X40 + 0,989X60 + 1,882X80 + 1,990X100 + 0,961X110 +
           0.989X120 - 0.0321 X21 - 0.0321 X22 - 0.0449 X23 - 0.0642 X24 - 0.0642
           X25 - 0,0642 X26 - 0,0802 X27 - 0,0802 X28 - 0,0963 X29 - 0,0191 X41 -
           0,0381 X42 - 0,0381 X43 - 0,0762 X44 - 0,0762 X45 - 0,0762 X46 - 0,1144
           X47 - 0.1144 X48 - 0.1525 X49 - 0.0099X61 - 0.0198X62 - 0.0198X63 -
           0,0297X64 - 0,0396X65 - 0,0396X66 - 0,0594X67 - 0,0594X68 - 0,0594X69 -
           0.0573X81 - 0.0637X82 - 0.0849X83 - 0.0849X84 - 0.1061X85 - 0.1061X86 -
           0,2122X87 - 0,2122X88 - 0,2122X89 - 0,0343X101 - 0,0343X102 -
           0.0549X103 - 0.0686X104 - 0.0686X105 - 0.1372X106 - 0.1372X107 -
           0,2059X108 - 0,2059X109 - 0,0172X111 - 0,0172X112 - 0,0343X113 -
           0,0343X114 - 0,0515X115 - 0,0515X116 - 0,0686X117 - 0,0686X118 -
           0.0686X119 - 0.0118X121 - 0.0236X122 - 0.0236X123 - 0.0353X124 -
           0.0353X125 - 0.0353X126 - 0.0471X127 - 0.0471X128 - 0.0707X129 \le
           10.833,500 dm.ha
                                                                                (182)
WSET=
           2,262X60 + 3,576X80 + 2,730X100 + 1,318X110 + 1,244X120 - 0,0226X61 -
           0.0452X62 - 0.0452X63 - 0.0679X64 - 0.0905X65 - 0.0905X66 - 0.1357X67 -
           0,1357X68 - 0,1357X69 - 0,1088X81 - 0,1209X82 - 0,1613X83 - 0,1613X84 -
           0,2016X85 - 0,2016X86 - 0,4031X87 - 0,4031X88 - 0,4031X89 - 0,0471X101
           -\ 0.0471X102\ -\ 0.0753X103\ -\ 0.0941X104\ -\ 0.0941X105\ -\ 0.1883X106\ -
           0,1883X107 \ - \ 0,2824X108 \ - \ 0,2824X109 \ - \ 0,0235X111 \ - \ 0,0235X112 \ -
           0.0471X113 - 0.0471X114 - 0.0706X115 - 0.0706X116 - 0.0941X117 -
           0,0941X118 - 0,0941X119 - 0,0148X121 - 0,0296X122 - 0,0296X123 -
```

0,0444X124 - 0,0444X125 - 0,0444X126 - 0,0593X127 - 0,0593X128 -

 $0.0889X129 \le 10.833,500 \text{ dm.ha}$

```
WOUT=
           3,193X100 + 1,541X110 + 3,043X120 - 0,0551X101 - 0,0551X102 -
           0.0881X103 - 0.1101X104 - 0.1101X105 - 0.2202X106 - 0.2202X107 -
           0.3303X108 - 0.3303X109 - 0.0275X111 - 0.0275X112 - 0.0551X113 -
           0.0551X114 - 0.0826X115 - 0.0826X116 - 0.1101X117 - 0.1101X118 -
           0,1101X119 - 0,0362X121 - 0,0724X122 - 0,0724X123 - 0,1087X124 -
           0.1087X125 - 0.1087X126 - 0.1449X127 - 0.1449X128 - 0.2173X129 \le
           10.833,500 dm.ha
                                                                                (184)
           1,478X90 + 2,777X100 + 1,340X110 + 2,071X120 - 0,0286X91 - 0,0381X92 -
WNOV=
           0,0763X93 - 0,0954X94 - 0,0954X95 - 0,0954X96 - 0,0954X97 - 0,0954X98 -
           0.1907X99 - 0.0479X101 - 0.0479X102 - 0.0766X103 - 0.0957X104 -
           0.0957X105 - 0.1915X106 - 0.1915X107 - 0.2872X108 - 0.2872X109 -
           0,0239X111 - 0,0239X112 - 0,0479X113 - 0,0479X114 - 0,0718X115 -
           0.0718X116 - 0.0957X117 - 0.0957X118 - 0.0957X119 - 0.0247X121 -
           0,0493X122 - 0,0493X123 - 0,0740X124 - 0,0740X125 - 0,0740X126 -
           0.0986X127 - 0.0986X128 - 0.1479X129 \le 10.833,500 \text{ dm.ha}
                                                                                (185)
WDEZ=
           2,148X90 + 2,622X100 + 1,266X110 + 2,716X120 - 0,0416X91 - 0,0554X92 -
           0,1109X93 - 0,1386X94 - 0,1386X95 - 0,1386X96 - 0,1386X97 - 0,1386X98 -
           0.2771X99 - 0.0452X101 - 0.0452X102 - 0.0723X103 - 0.0904X104 -
           0,0904X105 - 0,1809X106 - 0,1809X107 - 0,2713X108 - 0,2713X109 -
           0.0226X111 - 0.0226X112 - 0.0452X113 - 0.0452X114 - 0.0678X115 -
           0,0678X116 - 0,0904X117 - 0,0904X118 - 0,0904X119 - 0,0323X121 -
           0.0647X122 - 0.0647X123 - 0.0970X124 - 0.0970X125 - 0.0970X126 -
           0.1293X127 - 0.1293X128 - 0.1940X129 \le 10.833.500 \text{ dm.ha}
                                                                                (186)
WTOTAL = 3.84X10 + 3.84X20 + 5.45X30 + 5.45X40 + 5.00X50 + 5.00X60 +
           8.87X70 + 8.87X80 + 7.75X90 + 29.00X100 + 14.00X110 + 21.00X120
           - 0,10X11 - 0,10X12 - 0,14X13 - 0,20X14 - 0,20X15 - 0,20X16 - 0,25X17 -
           0.25X18 - 0.30X19 - 0.10X21 - 0.10X22 - 0.14X23 - 0.20X24 - 0.20X25 - 0.20X25
           0,20X26 - 0,25X27 - 0,25X28 - 0,30X29 - 0,05X31 - 0,10X32 - 0,10X33 -
           0.20X34 - 0.20X35 - 0.20X36 - 0.20X37 - 0.30X38 - 0.30X39 - 0.05X41 -
           0.10X42 - 0.10X43 - 0.20X44 - 0.20X45 - 0.20X46 - 0.20X47 - 0.30X48 -
           0.30X49 - 0.05X51 - 0.10X52 - 0.10X53 - 0.15X54 - 0.20X55 - 0.20X56 -
           0.30X57 - 0.30X58 - 0.30X59 - 0.05X61 - 0.10X62 - 0.10X63 - 0.15X64 -
           0,20X65 - 0,20X66 - 0,30X67 - 0,30X68 - 0,30X69 - 0,27X71 - 0,30X72 -
           0.40X73 - 0.40X74 - 0.50X75 - 0.50X76 - 1.00X77 - 1.00X78 - 1.00X79 -
           0,27X81 - 0,30X82 - 0,40X83 - 0,40X84 - 0,50X85 - 0,50X86 - 1,00X87 -
           1,00X88 - 1,00X89 - 0,15X91 - 0,20X92 - 0,40X93 - 0,50X94 - 0,50X95 -
           0.50X96 - 0.50X97 - 0.50X98 - 1.00X99 - 0.50X101 - 0.50X102 - 0.80X103 -
           1,00X104 - 1,00X105 - 2,00X106 - 2,00X107 - 3,00X108 - 3,00X109 -
           0.25X111 - 0.25X112 - 0.50X113 - 0.50X114 - 0.75X115 - 0.75X116 -
           1,00X117 - 1,00X118 - 1,00X119 - ,25X121 - 0,50X122 - 0,50X123 -
           0.75X124 - 0.75X125 - 0.75X126 - 1.00X127 - 1.00X128 - 1.50X129 \le
           79.649,300 dm.ha
                                                                                (187)
```

3.5 Solução do Problema

Para solucionar os modelos estudados utilizou-se o software desenvolvido pela Eastern Software Product, Inc. , de nome Linear Programming – 88 (LP - 88), o qual tem como propósito geral resolver sistemas de equações lineares, utilizando para isso o algoritmo interativo "método simplex revisado", para otimização da renda líquida e para o estudo das análises de sensibilidade.

4 RESULTADOS E DISCUSSÃO

Neste capítulo, os resultados são apresentados sob dois aspectos visando atender aos objetivos propostos no presente estudo. Primeiro, foi realizada uma comparação dos modelos estudados, lâminas alternativas (LA) e lâminas fixas (LF), com o modelo tradicional de cultivo exposto no Relatório Anual 2009, elaborado pela CODEVASF. Considerou-se o volume de água anual derivado para a área de colonização que foi de 79.649.300 m³.

Na segunda parte, são discutidos e analisados os resultados dos modelos LA e LF, obtidos a partir de uma simulação de seis volumes de água disponíveis 47.790.000 ; 61.111.000; 67.198.000; 72.346.000; 79.649.300 e 99.499.000 m³.

4.1 Análise comparativa entre os modelos LA, LF e Tradicional

4.1.1 Padrão de cultivo

No Perímetro de Irrigação Formoso (PIF), o maior volume anual de água ofertado aos usuários foi 79.649.300 m³ e o volume mensal foi 10.833.500 m³, no ano de 2009. Utilizando estas restrições de água e satisfazendo as exigências de áreas máximas e mínimas de algumas culturas, como descritas na Tabela 1, os modelos LA e LF resultaram nos seguintes planos ótimos de cultivo apresentados na Tabela 17.

Na Tabela 17 verifica-se, para os modelos LA e LF, que os cultivos de abóbora e feijão *Phaseolus* só foram indicados para a semeadura em fevereiro e março, respectivamente, com áreas de 30 ha, definidas pela necessidade de produção para atender o consumo interno.

Comparando-se os modelos com lâminas alternativas (LA) e lâminas fixas (LF), observa-se que as culturas que fazem parte do padrão de cultivo (abóbora 1, feijão *Phaseolus* 1, melancia 1, mamão e limão), apresentam as mesmas áreas cultivadas. Os cultivos melancia 2 e banana apresentaram diferentes áreas cultivadas para os modelos estudados, no modelo LA 917 ha e 1868 ha; no modelo LF 1243 ha e 1542 ha, respectivamente. Esta diferença proporcionou um maior retorno financeiro para o modelo LA correspondente a R\$ 741.279,75.

No modelo de padrão tradicional considerou-se a área total cultivada com todas as culturas exploradas no Perímetro de Irrigação Formoso no ano agrícola de 2009. O retorno financeiro no modelo de padrão tradicional foi R\$ 39.451.892,14, valor 42% menor em relação ao retorno financeiro nos modelos LA e LF. Esta menor rentabilidade se deve a exploração de culturas de baixa receita marginal como o feijão *Vigna* e milho (Tabelas 1 a 9, do Apêndice).

Tabela 17 – Áreas cultivadas (ha) por culturas e retorno financeiro para os modelos estudados e o tradicional, considerando a quantidade de água utilizada durante o ano de 2009 (79.649.300 m³)

	MODELOS				
Culturas	Lâminas Alternativas	Lâminas Fixas	Tradicional		
Abóbora 1	30	30	51		
Abóbora 2	-	-	40		
Feijão <i>Phaseolus</i> 1	30	30	36		
Feijão <i>Phaseolus</i> 2	-	-	40		
Feijão <i>Vigna</i> 1	-	-	38		
Feijão Vigna 2	-	-	30		
Melancia 1	60	60	71		
Melancia 2	917	1243	40		
Milho	-	-	62		
Banana	1868	1542	2824		
Mamão	1200	1200	60		
Limão	300	300	5		
Total	4405	4405	4194		
Retorno financeiro (R\$)	68.384.956,53	67.643.676,78	39.451.892,14		

4.1.2 Utilização da terra

A Tabela 18 apresenta a área ocupada por mês para os modelos estudados e o tradicional, considerando a quantidade de água utilizada durante o ano de 2009. A área média anual ocupada foi maior no modelo tradicional (4012 ha) e menor no modelo LF (3383 ha). A maior ocupação corresponde aos meses entre julho e agosto nos modelos LA e LF, período do ciclo da cultura da melancia; e os meses entre maio e setembro no modelo tradicional, período do ciclo das culturas da abóbora, feijão *Phaseolus*, feijão *Vigna* e melancia, dentre outras cultivadas no Perímetro.

Tabela 18 – Área ocupada (ha) por mês para os modelos estudados e o tradicional, considerando a quantidade de água utilizada durante o ano de 2009 (79.649.300 m³)

	MODELOS						
	Lâminas A	Alternativas	Lâmi	Lâminas Fixas		Tradicional	
Mês	Área (ha)	% ocupação	Área (ha)	% ocupação	Área (ha)	% ocupação	
Janeiro	3368	76,45	3042	69,05	4000	90,81	
Fevereiro	3398	77,13	3072	69,73	4000	90,81	
Março	3428	77,81	3102	70,41	4000	90,81	
Abril	3488	79,17	3162	71,78	3974	90,22	
Maio	3458	78,49	3132	71,10	4071	92,42	
Junho	3428	77,81	3102	70,41	4071	92,42	
Julho	4285	97,28	4285	97,28	4061	92,19	
Agosto	4285	97,28	4285	97,28	4041	91,74	
Setembro	4285	97,28	4285	97,28	4046	91,85	
Outubro	3368	76,45	3042	69,05	3966	90,03	
Novembro	3368	76,45	3042	69,05	3956	89,81	
Dezembro	3368	76,45	3042	69,05	3956	89,81	
Média anual	3627	82,34	3383	76,79	4012	91,07	

4.1.3 Utilização da água

Quanto ao uso da água, a Tabela 19 mostra os volumes mensais estimados para os modelos LA e LF e os que foram usados no modelo tradicional no ano de 2009. Observa-se que em nenhum mês do ano, em ambos os modelos estudados, ocorreu demanda igual ao volume de restrição considerado (10.833.500 m³), correspondente ao maior volume derivado (mês de setembro).

O consumo de água anual mostra que o modelo LA utiliza a água com eficiência econômica maior do que o LF. No caso de se utilizar mais de 79.649.300 m³, cada m³ de água a mais aumentará o valor da função objetivo (retorno financeiro) em R\$ 234,89 e R\$ 223,60 para os modelos LA e LF. Por outro lado, cada m³ a menos, reduzirá a função objetivo na mesma quantidade.

Tabela 19 – Consumo de Água mensal (1000 m³) estimado para os modelos estudados e o derivado para o modelo tradicional, considerando a quantidade de água utilizada durante o ano de 2009 (79.649.300 m³)

	MODELOS				
Mês	Lâminas Alternativas	Lâminas Fixas	Tradicional		
Janeiro	6716	6360	5591		
Fevereiro	5856	5551	4535		
Março	5861	5552	4094		
Abril	5371	5110	4167		
Maio	5315	5069	8151		
Junho	4687	4459	7471		
Julho	6320	6858	7914		
Agosto	8364	9507	9278		
Setembro	9448	10610	10834		
Outubro	8108	7685	9152		
Novembro	6879	6511	4674		
Dezembro	6724	6376	3787		
Consumo anual					
(mm.ha)	79649	79649	79649		
Preço sombra da Água					
$(R\$/1000 \text{ m}^3)$	234,89	223,60	=		

4.1.4 Lâminas de água utilizadas

A Tabela 20 mostra as lâminas de água utilizadas e as respectivas produtividades das culturas para os modelos LA e LF e o modelo tradicional, durante o ano agrícola de 2009. Observa-se que com exceção do mamão e do limão, que todas as culturas que fazem parte do plano ótimo de cultivo utilizaram menor lâmina de água no modelo LA. Isto demonstra que para os modelos em estudo, nem sempre a maior lâmina de água e, consequentemente, maior produtividade significam maior retorno financeiro, já que se obteve maior lucro com o modelo LA.

No ano agrícola de 2009, ocorreram problemas com pragas e doenças, o que resultou em baixa produtividade das culturas apresentadas no modelo tradicional. As mais importantes foram pertinentes à cultura da banana, sendo elas: o Mal-do-Panamá, Sigatoka Amarela e Broca da Bananeira. O Mal-do-Panamá apresentou ocorrência em 476 lotes (288 no Formoso A e 188 no Formoso H), conforme levantamento realizado em setembro de 2009, contra 371 lotes pelo levantamento feito em 2008, havendo, portanto um aumento de 28,3% dos lotes

com a presença da doença. Alguns produtores já iniciaram o cultivo do limão Tahiti (5 ha) e da bananeira da variedade Fhia 18 (40 ha) como alternativa de prevenção à doença.

Tabela 20 – Lâmina de água (W) em mm, produtividade (Y) em kg ha⁻¹ para os modelos estudados e o tradicional, considerando a quantidade de água utilizada durante o ano de 2009 (79.649.300 m³)

	MODELOS					
Culturas	Lâminas Alternativas		Lâmina	s Fixas	Tradicional	
	W	Y	\mathbf{W}	Y	\mathbf{W}	Y
Abóbora 1	364	22070	384	22134	300	13000
Abóbora 2	-	-	-	-	300	13000
Feijão Phaseolus 1	540	2667	545	2669	400	1600
Feijão Phaseolus 2	-	-	-	-	400	1600
Feijão Vigna 1	-	-	-	-	410	1400
Feijão Vigna 2	-	-	-	-	410	1400
Melancia 1	790	33238	887	33670	500	18000
Melancia 2	790	33238	887	33670	500	18000
Milho	-	-	-	-	550	1830
Banana	1520	18812	2900	37856	1670	20400
Mamão	1400	94784	1400	94784	1191	54000
Limão	2100	31060	2100	31060	-	-

4.1.5 Análise de sensibilidade

Segundo Dantas Neto (1994), os coeficientes técnicos do modelo de programação linear são muitas vezes estimados, estando assim sujeitos a variações, sendo dessa forma de grande interesse não apenas uma solução básica ótima, mas o conhecimento dos intervalos destes coeficientes nos quais a solução se mantém ótima. E isto é viável através do estudo denominado análise de sensibilidade ou de pós-otimidade dos parâmetros do modelo de programação linear.

Para Arce (1990), esta análise nada mais é do que a sensibilidade dos efeitos das mudanças dos parâmetros do modelo, sobre o plano ótimo de cultivos. A análise de sensibilidade de uma variável é válida, somente quando todas as demais variáveis e seus coeficientes permanecem constantes (DANTAS NETO, 1994; RODRIGUES, 2000).

4.1.5.1 Análise de sensibilidade da função objetivo

Uma vez que solução encontrada pelo modelo de programação linear é ótima, a análise de sensibilidade da função objetivo é muito útil para se observar o comportamento das variáveis que estão na solução. Os resultados da análise de sensibilidade da função objetivo dos modelos estão apresentados nas Tabelas 21 e 22. Considerando-se a cultura da melancia, constata-se que o retorno monetário por unidade produzida desta cultura pode ser alterada para valores compreendidos no intervalo de R\$ 4.103,33 a R\$ 4.415,89 no modelo LA e de R\$ 4.123,51 a R\$ 4.511,00 no modelo LF, sem que a solução ótima (cultivo de 917 ha e 1243 ha de melancia, respectivamente) seja alterada.

No modelo LA, a abóbora do segundo período, está na solução ótima com valor zero, uma vez que toda área permitida para o seu plantio foi utilizada no primeiro período. Caso essa variável entre na solução ótima, poderá ter um valor máximo de receita marginal de R\$ 3.433,72, ou seja, este é o valor que poderá ter sem alterar a solução.

Nas Tabelas 21 e 22 as variáveis não básicas só apresentam os limites máximos, maiores que seu retorno unitário. Isto indica os máximos valores que podem ser atribuídos aos coeficientes dessas variáveis na função objetivo, sem que a solução ótima seja alterada. Caso se tente viabilizá-las, acarretarão decréscimos na receita do projeto. Assim, enquanto o retorno monetário proporcionado pelo milho for inferior a R\$ 3.820,27 no modelo LA e R\$ 4.260,57 no modelo LF ele continuará não fazendo parte da base.

Tabela 21 – Análise de sensibilidade da função objetivo do modelo de lâminas alternativas

Variável	Estado	Valor da variável	Retorno unitário	Mínimo	Máximo
		(ha)	$(R\$ ha^{-1})$	$(R\$ ha^{-1})$	(R\$ ha ⁻¹)
X12	B*	30	2.883,54	Nenhum	3.433,72
X22	В	0	2.883,54	Nenhum	3.433,72
X31	В	30	2.478,29	Nenhum	3.830,37
X41	NB*	0	2.480,00	Nenhum	3.830,37
X50	NB	0	718,30	Nenhum	3.734,71
X60	NB	0	718,30	Nenhum	3.734,71
X73	В	60	4.415,89	4.415,89	Nenhum
X83	В	917	4.415,89	4.103,33	4.415,89
X90	NB	0	987,00	Nenhum	3.820,27
X100	В	1868	9.011,00	7.948,71	9.188,56
X110	В	1200	36.270,00	5.848,72	Nenhum
X120	В	300	13.990,00	7.492,95	Nenhum

B* = Básica; NB* = Não-básica

Tabela 22 – Análise de sensibilidade da função objetivo do modelo de lâminas fixas

		3 J			
Variável	Estado	Valor da variável	Retorno unitário	Mínimo	Máximo
		(ha)	$(R\$ ha^{-1})$	$(R\$ ha^{-1})$	$(R\$ ha^{-1})$
X10	В	30	2.902,18	Nenhum	3.386,31
X20	NB	0	2.902,18	Nenhum	3.386,31
X30	В	30	2.480,08	Nenhum	3.746,30
X40	NB	0	2.480,08	Nenhum	3.746,30
X50	NB	0	718,29	Nenhum	3.645,68
X60	NB	0	718,29	Nenhum	3.645,68
X70	В	60	4.511,10	4511,00	Nenhum
X80	В	1243	4.511,10	4123,51	4.511,00
X90	NB	0	987,14	Nenhum	4.260,57
X100	В	1542	9.011,72	4511,00	10.950,20
X110	В	1200	36.260,39	5658,05	Nenhum
X120	В	300	13.990,03	7223,23	Nenhum

As culturas não recomendadas para cultivo, denominadas variáveis não básicas do modelo, apresentam custos marginais, os quais se referem à redução da receita líquida por unidade de área cultivada. Na Tabela 23 são apresentados os custos marginais das referidas culturas. Para os dois modelos estudados, não foram indicados os cultivos da abóbora e do feijão *Phaseolus* com semeadura em junho; neste caso existe um custo marginal associado a essas atividades, isto é, para cada hectare cultivado com abóbora nessa época promoverá uma redução de R\$ 531,52 e R\$ 484,31 nos modelos LA e LF respectivamente; cultivando-se o feijão *Phaseolus* a redução será de R\$ 1.350,37 no modelo LA e R\$ 1.266,30 no modelo LF.

O valor mínimo da contribuição ao lucro que deve proporcionar cada cultura, irrigada sem déficit, para que possa ser indicada para cultivo está apresentado na Tabela 23. A cultura do milho não deverá ser recomendada enquanto sua contribuição ao lucro for inferior a R\$ 3.820,27 no modelo LA e R\$ 4.260,57 no modelo LF. O feijão *Phaseolus* semeado em junho só participará da solução ótima se sua contribuição ao lucro for superior a R\$ 3.830,37 e R\$ 3.746,30, respectivamente, nos modelos LA e LF. Esta cultura, semeada em março, constituiu-se numa solução básica apenas devido à necessidade de se cultivar no mínimo 30 ha para satisfazer a demanda interna.

Tabela 23 – Custos marginais associados às atividades não básicas e valor mínimo da contribuição ao lucro para um volume

		Modelos				
		LA		LF		
Cultura	Época	Custo	Mínima	Custo	Mínima	
	de semeadura	Marginal	Contribuição	Marginal	Contribuição	
		(R\$ ha ⁻¹)	ao lucro (R\$ ha ⁻¹)	(R\$ ha ⁻¹)	ao lucro (R\$ ha ⁻¹)	
Abóbora	Junho	531,72	3.433,72	484,31	3.386,31	
Feijão Phaseolus	Junho	1.350,37	3.830,37	1.266,30	3.746,30	
Feijão Vigna	Abril / Julho	3.016,41	3.734,71	2.927,68	3.645,68	
Milho	Novembro	2.833,27	3.820,27	3.273,57	4.260,57	

4.1.5.2 Análise de sensibilidade do recurso terra

Analisando-se as Tabelas 24 e 25, observa-se que para ambos os modelos, em todos os meses do ano, as áreas ocupadas nunca atingiram o valor da área disponível 4405 ha. Consequentemente, todos apresentam folga e o preço sombra é zero, indicando que o recurso terra não foi restritivo. Observa-se ainda, que os modelos só apresentam limites de áreas mínimas, ou seja, mínimo valor de área que pode ser utilizado sem que as variáveis básicas da solução ótima (culturas) sejam modificadas.

A análise de sensibilidade do recurso terra relacionado às restrições de mercado e consumo interno é feita nas Tabelas 26 e 27. As restrições de área mínima de abóbora e feijão *Phaseolus*, apresentam valores de preço sombra negativos em ambos modelos, significando que a entrada dessas culturas na solução ótima, forçada pelas restrições, acarreta redução na receita líquida.

Caso a restrição AREAMIN3 (área mínima cultivada do feijão *Phaseolus* semeado em março), que tem como limite mínimo 30 ha, tivesse seu valor aumentado para 31 ha, os rendimentos econômicos da função objetivo seriam reduzidos de R\$ 1.350,37 no modelo LA e R\$ 1.266,30 no modelo LF. Por outro lado, cada hectare de terra não cultivado dessa cultura, condicionaram ganhos de R\$ 1.350,37 e de R\$ 1.266,30 nos modelos LA e LF, respectivamente. O mesmo raciocínio se aplica a restrição AREAMIN1.

As culturas mamão e limão, restrições AREAMAX11 e AREAMAX12, em ambos os modelos LA e LF, apresentam valores de preço sombra positivos indicando que, caso ocorra aumento em suas áreas máximas de plantio, haverá, consequentemente, maior rendimento financeiro. Assim, para cada hectare adicional de mamão, dentro dos intervalos 344 a 2291 ha

(modelo LA) e 1090 a 1394 ha (modelo LF), implicaria num ganho de R\$ 9.042,13 e R\$ 9.060,20 , respectivamente.

A restrição imposta à cultura da banana AREAMIN10, apresenta preço sombra zero nos dois modelos estudados. Assim, se a área da banana for aumentada ou reduzida dos 1868 ha no modelo LA e 1542 no modelo LF, as variáveis básicas que compõem a solução ótima não serão alteradas, contudo os valores da função objetivo serão alterados.

Tabela 24 – Análise de sensibilidade do recurso terra ocupada mensalmente, utilizando-se modelo de lâminas alternativas

	modelo de famin	ias aiteinativas			
Mês	Área ocupada	Quantidade	Preço sombra	Área	Área
	(ha)	de folga	$(R\$ ha^{-1})$	Mínima	Máxima
		(ha)		(ha)	(ha)
Janeiro	3368	1037	0	3368	Nenhum
Fevereiro	3398	1007	0	3398	Nenhum
Março	3428	977	0	3428	Nenhum
Abril	3488	917	0	3488	Nenhum
Maio	3458	947	0	3458	Nenhum
Junho	3428	977	0	3428	Nenhum
Julho	4285	120	0	4285	Nenhum
Agosto	4285	120	0	4285	Nenhum
Setembro	4285	120	0	4285	Nenhum
Outubro	3368	1037	0	3368	Nenhum
Novembro	3368	1037	0	3368	Nenhum
Dezembro	3368	1037	0	3368	Nenhum

Tabela 25 – Análise de sensibilidade do recurso terra ocupada mensalmente, utilizando-se modelo de lâminas fixas

Mês	Área ocupada	Quantidade de folga	Preço sombra	Área	Área
	(ha)	(ha)	$(R\$ ha^{-1})$	Mínima	Máxima
				(ha)	(ha)
Janeiro	3042	1363	0	3042	Nenhum
Fevereiro	3072	1333	0	3072	Nenhum
Março	3102	1303	0	3102	Nenhum
Abril	3162	1243	0	3162	Nenhum
Maio	3132	1273	0	3132	Nenhum
Junho	3102	1303	0	3102	Nenhum
Julho	4285	120	0	4285	Nenhum
Agosto	4285	120	0	4285	Nenhum
Setembro	4285	120	0	4285	Nenhum
Outubro	3042	1363	0	3042	Nenhum
Novembro	3042	1363	0	3042	Nenhum
Dezembro	3042	1363	0	3042	Nenhum

Tabela 26 – Análise de sensibilidade das restrições de mercado e consumo interno utilizando-se o modelo de lâminas alternativas

Restrições	Área ocupada	Quantidade de folga	Preço sombra	Área	Área
	(ha)	(ha)	$(R\$ ha^{-1})$	Mínima	Máxima
				(ha)	(ha)
AREAMIN1	30	0	-531,72	0	773
AREAMIN3	30	0	-1.350,37	0	836
AREAMIN7	60	0	0	0	800
AREAMAX7	60	740	0	60	Nenhum
AREAMIN10	1868	-368	0	Nenhum	1868
AREAMIN11	1200	-1140	0	Nenhum	1200
AREAMAX11	1200	0	9.042,13	344	2291
AREAMAX12	300	0	4.497,05	0	808

Tabela 27 – Análise de sensibilidade das restrições de mercado e consumo interno utilizando-se o modelo de lâminas fixas

Restrições	Área	Quantidade de folga	Preço sombra	Área	Área
	ocupada	(ha)	(R\$/ha)	Mínima	Máxima
	(ha)			(ha)	(ha)
AREAMIN1	30	0	-484,31	0	1025
AREAMIN3	30	0	-1.266,30	0	1093
AREAMIN7	60	0	0	0	800
AREAMAX7	60	740	0	60	Nenhum
AREAMIN10	1542	-42	0	Nenhum	1542
AREAMIN11	1200	-1140	0	Nenhum	1200
AREAMAX11	1200	0	9.060,20	1090	1364
AREAMAX12	300	0	4.766,78	177	369

4.1.5.3 Análise de sensibilidade do recurso água

As Análises de sensibilidade do volume de água mensal e anual dos modelos estudados estão apresentadas nas Tabelas 28 e 29, considerando-se uma disponibilidade anual máxima de 79.649.300 m 3 e mensal de 10.833.500 m 3 .

Observa-se que a disponibilidade anual de água no PIF constitui uma restrição efetiva ao sistema de produção. O padrão ótimo de cultivo determinado na solução dos modelos resultou no consumo de todo o volume disponível. Como o volume anual mostrou ser um recurso escasso, ao mesmo está associado um preço sombra (custo de oportunidade de se utilizar um determinado volume de água), o qual corresponde à redução esperada no valor da função objetivo caso tal volume se torne mais restritivo em uma unidade. Neste caso, redução unitária de água

total (1 m³) de 79.649.300 a 72.997.000 m³ (modelo LA) e a 78.809.000 m³ (modelo LF), diminuiria o valor da função objetivo, respectivamente, de R\$ 234,89 e R\$ 223,4 , sem provocar alteração nas variáveis básicas da solução ótima. Por outro lado, cada unidade adicional de água de 79.649.300 m³ a 96.255.000 m³ (modelo LA) e a 99.499.000 m³ (modelo LF) aumentaria o valor da função objetivo nas mesmas quantidades de unidades monetárias.

A disponibilidade mensal de água não foi limitante. O volume de água utilizado mensalmente, em ambos os modelos LA e LF, sempre foi menor que o valor disponível (10.833.500 m³), portanto, todos apresentam folga e o preço sombra é zero, indicando que o recurso volume máximo mensal de água que pode ser bombeado para área de colonização não é restritivo quando o volume anual disponível é 79.649.300 m³. Os modelos só apresentaram valores mínimos de volume que podem ser usados nas restrições de água mensal, sem que as variáveis básicas (culturas) da solução ótima sejam modificadas.

Os valores mínimos e máximos para os volumes de água (Tabelas 28 e 29) representam os limites de disponibilidade de água para os quais o preço sombra é válido e a solução ótima atual não é alterada, entretanto podem se modificar os valores das áreas cultivadas. A disponibilidade anual de água pode variar entre 72.997.000 m³ e 96.255.000 m³ no modelo LA e 78.809.000 m³ e 99.499.000 m³ no modelo LF, sem que a solução ótima e o preço sombra se alterem.

Comparando-se os modelos, observa-se um maior intervalo de variação (23.259.000 m³) entre os limites de volumes mínimo e máximo no modelo LA, apesar do limite máximo ser menor (96.255.000 m³), demonstrando maior flexibilidade na utilização da água pelo modelo LA.

Tabela 28 – Análise de sensibilidade do volume de água mensal e anual utilizando-se o modelo de lâminas alternativas

	de familias afternat				
Mês	Volume Utilizado	Quantidade	Preço Sombra	Volume Mínimo	Volume Máximo
	(1000m^3)	de Folga	$(R\$/1000 \text{ m}^3)$	(1000m^3)	(1000m^3)
		(1000m^3)			
Janeiro	6716	4117	0	6716	Nenhum
Fevereiro	5856	4977	0	5856	Nenhum
Março	5861	4973	0	5861	Nenhum
Abril	5371	5463	0	5371	Nenhum
Maio	5315	5518	0	5315	Nenhum
Junho	4687	6135	0	4699	Nenhum
Julho	6320	4514	0	6320	Nenhum
Agosto	8364	2470	0	8364	Nenhum
Setembro	9448	1386	0	9448	Nenhum
Outubro	8108	2725	0	8108	Nenhum
Novembro	6879	3954	0	6879	Nenhum
Dezembro	6724	4109	0	6724	Nenhum
Água Total	79649	0	234,89	72997	96255

Tabela 29 – Análise de sensibilidade do volume de água mensal e anual utilizando-se o modelo de lâminas fixas

Mês	Volume Utilizado (1000m³)	Quantidade de Folga	Preço Sombra (R\$/1000 m ³)	Volume Mínimo (1000m³)	Volume Máximo (1000m³)
	(1000III)	$(1000 \mathrm{m}^3)$	(K\$/1000 III)	(1000111)	(1000111)
Janeiro	6360	4473	0	6360	Nenhum
Fevereiro	5551	5282	0	5551	Nenhum
Março	5552	5281	0	5552	Nenhum
Abril	5110	5723	0	5110	Nenhum
Maio	5069	5765	0	5069	Nenhum
Junho	4459	6375	0	4459	Nenhum
Julho	6858	3976	0	6858	Nenhum
Agosto	9507	1326	0	9507	Nenhum
Setembro	10610	224	0	10610	Nenhum
Outubro	7685	3149	0	7685	Nenhum
Novembro	6511	4323	0	6511	Nenhum
Dezembro	6376	4457	0	6376	Nenhum
Água Total	79649	0	223,60	78809	99499

4.2 Otimização considerando seis níveis de volumes de água disponível

O valor mínimo para o volume anual de água disponível foi de 45.273.000 m³ no modelo de programação linear LA e 47.790.000 m³ no modelo LF, verificando-se que para volumes inferiores a esses a solução do modelo foi impossível, indicando que não foram satisfeitas as restrições do modelo, especificamente aquelas que limitam a área mínima cultivada.

O valor máximo foi determinado quando a disponibilidade anual de água não foi limitante, com o preço sombra igual a zero. Para o modelo LA esse volume foi $97.218.00~\text{m}^3$, para o modelo LF o volume foi $99.499.000~\text{m}^3$.

Para padronizar o estudo de ambos os modelos, os limites inferior e superior dos volumes anuais de água disponível foram 47.790.000 m³ e 99.499.000 m³.

4.2.1 Padrão de cultivo

Nas Tabelas 30 e 31 estão relacionados a área cultivada por cultura, área total e retorno financeiro para seis níveis de disponibilidade de água para os modelos estudados. Observa-se que as mesmas culturas (abóbora 1, feijão *Phaseolus* 1, melancia 1, banana, mamão e limão) fazem parte do padrão de cultivo previsto pelos modelos LA e LF. As culturas da abóbora 1, feijão *Phaseolus* 1 e melancia 1 permaneceram com áreas cultivadas constantes em qualquer nível de disponibilidade de água, em ambos os modelos, de acordo com as restrições impostas.

A cultura do limão só aparece na solução a partir da disponibilidade de água de 67.198.000 m³ no modelo LA e 72.346.000 m³ no modelo LF. A partir destas disponibilidades de água a área cultivada com limão foi de 300 ha, limite máximo para o cultivo desta cultura que está sendo testada como opção de cultivo substituindo a cultura da banana em áreas afetadas pelo Mal-do-Panamá.

Tabela 30 – Área cultivada por cultura (ha), área total (ha) e retorno financeiro (R\$) para seis níveis de disponibilidade de água, utilizando-se o modelo de lâminas alternativas

	ie disponioni	Disponibilidade de Água (1000 m ³)								
Culturas	47790	61111	67198	72346	79649	99499				
Abóbora 1	30	1615	30	30	30	30				
Abóbora 2	0	0	1285	545	0	0				
Feijão Phaseolus 1	30	30	30	30	30	30				
Feijão Phaseolus 2	0	0	0	0	0	0				
Feijão Vigna 1	0	0	0	0	0	0				
Feijão Vigna 2	0	0	0	0	0	0				
Melancia 1	60	60	60	60	60	60				
Melancia 2	0	0	0	740	1285	0				
Milho	0	0	0	0	0	0				
Banana	1500	1500	1500	1500	1500	2785				
Mamão	1200	1200	1200	1200	1200	1200				
Limão	0	0	300	300	300	300				
Área total	2820	4405	4405	4405	4405	4405				
Retorno (R\$)	52.207.842	59.263.243	64.674.113	65.870.267	68.384.957	72.394.587				

Tabela 31 – Área cultivada por cultura (ha), área total (ha) e retorno financeiro (R\$) para seis níveis de disponibilidade de água, utilizando-se o modelo de lâminas fixas

		Dispo	onibilidade de	e Água (1000	(m^3)	
Culturas	47790	61111	67198	72346	79649	99499
Abóbora 1	30	30	30	30	30	30
Abóbora 2	0	0	1585	1285	0	0
Feijão Phaseolus 1	30	30	30	30	30	30
Feijão Phaseolus 2	0	0	0	0	0	0
Feijão Vigna 1	0	0	0	0	0	0
Feijão Vigna 2	0	0	0	0	0	0
Melancia 1	60	60	60	60	60	60
Melancia 2	0	0	0	0	1243	257
Milho	0	0	0	0	0	0
Banana	1500	1500	1500	1500	1542	2528
Mamão	248	1200	1200	1200	1200	1200
Limão	0	0	0	300	300	300
Área total	1868	2820	4405	4405	4405	4405
Retorno (R\$)	22.959.953	57.462.196	62.062.242	65.388.414	67.643.677	72.082.073

4.2.2 Utilização da terra

As Tabelas 32 e 33 apresentam a área cultivada, na solução ótima, por mês para seis níveis de disponibilidade de água, para os modelos estudados. A ocupação mensal da área aumenta a medida que aumenta a disponibilidade de água. No mês de abril, no maior nível de disponibilidade de água, foram cultivados integralmente os 4405 ha disponíveis, no modelo LA.

O modelo LF foi mais influenciado pelo aumento da disponibilidade, já que a área média mensal no nível mais elevado de água (99.499.000 m³) foi 2,31 vezes maior que no nível mais baixo (47.790.000 m³), enquanto que no modelo LA este valor foi de 1,56 vezes.

Tabela 32 – Área mensal cultivada (ha), na solução ótima, para seis níveis de disponibilidade de água, utilizando-se o modelo de lâminas alternativas

	Disponibilidade de Água (1000 m ³)								
Mês	47790	61111	67198	72346	79649	99499			
Janeiro	2700	2700	3000	3000	3000	4285			
Fevereiro	2730	4315	3030	3030	3030	4315			
Março	2760	4345	3060	3060	3060	4345			
Abril	2820	4405	3120	3120	3120	4405			
Maio	2790	2790	3090	3090	3090	4375			
Junho	2760	2760	3060	3060	3060	4345			
Julho	2700	2700	4285	4285	4285	4285			
Agosto	2700	2700	4285	4285	4285	4285			
Setembro	2700	2700	4285	4285	4285	4285			
Outubro	2700	2700	3000	3000	3000	4285			
Novembro	2700	2700	3000	3000	3000	4285			
Dezembro	2700	2700	3000	3000	3000	4285			
Média Mensal	2730	3126	3351	3351	3351	4315			

Tabela 33 – Área cultivada (ha), na solução ótima, por mês para seis níveis de disponibilidade de água, utilizando-se o modelo de lâminas fixas

	Disponibilidade de Água (1000 m ³)								
Mês	47790	61111	67198	72346	79649	99499			
Janeiro	1748	2700	2700	3000	3042	4028			
Fevereiro	1778	2730	2730	3030	3072	4058			
Março	1808	2760	2760	3060	3102	4088			
Abril	1868	2820	2820	3120	3162	4148			
Maio	1838	2790	2790	3090	3132	4118			
Junho	1808	2760	2760	3060	3102	4088			
Julho	1748	2700	4285	4285	4285	4285			
Agosto	1748	2700	4285	4285	4285	4285			
Setembro	1748	2700	4285	4285	4285	4285			
Outubro	1748	2700	2700	3000	3042	4028			
Novembro	1748	2700	2700	3000	3042	4028			
Dezembro	1748	2700	2700	3000	3042	4028			
Média Mensal	1778	2730	3126	3351	3383	4122			

4.2.3 Utilização da água

Nas Tabelas 34 e 35 observa-se que, em qualquer nível de disponibilidade, todo o volume anual de água foi utilizado, exceto no nível mais elevado (99.499.000 m³) para o modelo LA, onde houve uma folga de 2.282.000 m³. Nos dois modelos estudados o consumo de água mensal aumenta à medida que aumenta o volume disponível.

Somente no mês de outubro o volume máximo mensal $(10.834.000 \text{ m}^3)$ foi utilizado integralmente, em ambos os modelos, para o volume anual disponível de $99.499.000 \text{ m}^3$.

Tabela 34 – Consumo de água mensal (1000 m³) determinado pela solução, para seis níveis de disponibilidade de água, utilizando-se o modelo de lâminas alternativas

	Disponibilidade de Água (1000 m ³)							
Mês	47790	61111	67198	72346	79649	99499		
Janeiro	4370	5251	5820	5830	6715	9007		
Fevereiro	3799	4584	5082	5091	5856	7833		
Março	3891	4594	5075	5085	5860	7865		
Abril	3594	4218	4661	4669	5370	7179		
Maio	3500	4173	4624	4633	5314	7077		
Junho	3148	5018	5421	4103	4696	6299		
Julho	3240	5160	5560	6157	6319	6480		
Agosto	3818	6034	6493	8469	8363	7577		
Setembro	4444	5097	5614	9431	9446	8856		
Outubro	5198	6342	7044	7055	8108	10834		
Novembro	4520	5379	5954	5963	6878	9249		
Dezembro	4268	5261	5850	5860	6724	8962		
Anual	47790	61111	67198	72346	79649	97218		

Tabela 35 – Consumo de água mensal (1000 m³)determinado pela solução, para seis níveis de disponibilidade de água, utilizando-se o modelo de lâminas fixas

	disponished de agua, utilizado se o neceso de la maistra inter-									
	Disponibilidade de Água (1000 m ³)									
Mês	47790	61111	67198	72346	79649	99499				
Janeiro	4348	5581	5581	6248	6360	9007				
Fevereiro	3788	4851	4851	5455	5551	7833				
Março	3882	4959	4959	5454	5552	7865				
Abril	3642	4605	4606	5023	5110	7179				
Maio	3568	4503	4503	4984	5069	7077				
Junho	3199	4056	4056	4381	4459	6299				
Julho	3224	4138	5970	5920	6858	6964				
Agosto	3799	4876	6829	6751	9507	8455				
Setembro	4422	5677	7978	7916	10610	9775				
Outubro	5172	6639	6639	7552	7685	10834				
Novembro	4498	5774	5774	6395	6511	9249				
Dezembro	4248	5452	5452	6267	6376	8962				
Anual	47790	61111	67198	72346	79649	99499				

4.2.4 Lâminas de água utilizadas

As tabelas 36 e 37 apresentam as lâminas de água utilizadas nas culturas que fazem parte do padrão de cultivo previsto pelos modelos LA e LF, com suas respectivas produtividades, nos seis níveis de volumes de água disponíveis.

Analisando-se a Tabela 36, observa-se que as culturas abóbora 1, feijão *Phaseolus* 1 e melancia 1 tiveram um aumento de lâmina de água quando a disponibilidade aumentou de 47.790.000 m³ a 79.649.300 m³. No nível 99.499.000 m³, maior nível, houve redução das lâminas de água do feijão *Phaseolus* 1 e da melancia 1, com redução de produtividade de 2.667 kg ha¹ para 2.612 kg ha¹ e 33.238 kg ha¹ para 28.474 kg ha¹, respectivamente. Esta diminuição nas lâminas proporcionou ao modelo uma liberação de água que foi utilizada pela cultura da banana.

A cultura do mamão não foi influenciada pelo aumento da disponibilidade. Pela sua alta receita marginal, o modelo atribui a maior lâmina de água disponível para a cultura (1400 mm) para uma produção de 94.784 kg ha⁻¹.

Como se observa na Tabela 37, o modelo de lâminas fixas caracteriza-se por apresentar lâminas constantes em todas as culturas, em qualquer nível de volume de água disponível, e seus valores são sempre maiores que os modelos de lâminas alternativas.

Tabela 36 – Lâmina de água (W) em mm, produtividade (Y) em kg ha $^{-1}$, para seis níveis de disponibilidade de água utilizando-se o modelo de lâminas alternativas

		Disponil	oilidade de	Água (1000	m^3)		
	477	790	61	111	6	67198 W Y 350 21949 350 21949 530 2648 750 32810 1520 18812	
Cultura	W	Y	W	Y	W	Y	
Abóbora 1	310	21262	330	21669	350	21949	
Abóbora 2	-	-	-	-	350	21949	
Feijão Phaseolus 1	520	2612	520	2612	530	2648	
Melancia 1	170	10190	650	31099	750	32810	
Banana	1520	18812	1520	18812	1520	18812	
Mamão	1400	94784	1400	94784	1400	94784	
Limão			2100	31060	2100	31060	

	Disponibilidade de Água (1000 m ³)						
	72346		79	9649	99499		
Cultura	W	Y	W	Y	W	Y	
Abóbora 1	350	21949	364	22070	384	22134	
Abóbora 2	350	21949	-	-	-	-	
Feijão Phaseolus 1	530	2648	540	2667	520	2612	
Melancia 1	750	32810	790	33238	550	28474	
Melancia 2	750	32810	790	33238	-	-	
Banana	1520	18812	1520	18812	2900	37856	
Mamão	1400	94784	1400	94784	1400	94784	
Limão	2100	31060	2100	31060	2100	31060	

Tabela 37 – Lâmina de água (W) em mm, produtividade (Y) em kg ha⁻¹, para seis níveis de disponibilidade de água utilizando-se o modelo de lâminas fixas

	Disponibilidade de Água (1000 m ³)						
Culturas	W	47790	61111	67198	72346	79649	99499
Abóbora 1	384	22134	22134	22134	22134	22134	22134
Abóbora 2	-	-	22134	22134	22134	-	-
Feijão Phaseolus 1	545	2669	2669	2669	2669	2669	2669
Melancia 1	887	33670	33670	33670	33670	33670	33670
Melancia 2	-	-	-	-	33670	33670	33670
Banana	2900	37856	37856	37856	37856	37856	37856
Mamão	1400	94784	94784	94784	94784	94784	94784
Limão	2100	-	-	31060	31060	31060	31060

4.2.5 Análise de sensibilidade

Realizou-se uma análise de sensibilidade dos modelos LA e LF, considerando a simulação dos seis níveis de volume de água disponível. Observou-se o comportamento das variáveis assim como as mudanças dos limites especificados nas restrições, sem que ocorra alteração na solução ótima considerada originalmente.

4.2.5.1 Análise de sensibilidade da função objetivo

Uma análise de sensibilidade do comportamento das variáveis que compõe a solução ótima, encontrada para os seis níveis de disponibilidade de água anual, nos modelos LA e LF é mostrada nas Tabelas 17 e 18 do Apêndice.

Observa-se na Tabela 17 do apêndice que o aumento da disponibilidade de água, dentro dos limites propostos, pouco influenciou nas variáveis básicas do modelo (abóbora 1, feijão *Phaseolus* 1, melancia 1, banana e mamão). Exceto o limão que não aparece na solução em volumes disponíveis inferior a 67.198.000 m³ no modelo LA e 72.346.000 m³ no modelo LF.

As culturas feijão *Phaseolus* 2, feijão *Vigna* 1, feijão *Vigna* 2 e milho, em todos os 6 níveis estudados, só apresentaram valores de limites máximos. Enquanto o retorno unitário for inferior a estes valores, estas culturas serão variáveis não básicas. A inclusão de qualquer uma destas culturas na base reduzirá o lucro de um valor igual ao custo marginal.

4.2.5.2 Análise de sensibilidade do recurso terra

Uma análise de sensibilidade da ocupação mensal de terra é mostrada nas Tabelas 19 e 20 do Apêndice. Com exceção do mês de abril na disponibilidade de água 99.499.000 m³, em qualquer volume disponível, as áreas ocupadas não atingiram o valor da área disponível (4405 ha), consequentemente, todos os volumes estudados apresentam preço sombra zero. Isto indica que o recurso terra mensal disponível não foi influenciado pelo aumento do volume de água disponível anual, dentro dos limites pré-estabelecidos.

4.2.5.3 Análise de sensibilidade do recurso água

Nas Tabelas 21 e 22 do Apêndice, observa-se que para o volume de 99.499.000 m³ no mês de outubro, para ambos os modelos LA e LF, utilizou-se totalmente a água disponível mensal. Nos demais meses, em todos os níveis de disponibilidade de água anual, não foi atingido

o valor preestabelecido pela restrição, apresentando apenas valores mínimos de volume de água mensal. No mês de outubro, onde a água apresentou preço sombra, o valor deste no modelo LF foi superior ao do modelo LA, indicando que, caso sejam necessários volumes adicionais nesse mês, haverá maior gasto com água no modelo LF que no modelo LA.

Em relação ao volume de água total anual, o preço sombra da água, em ambos os modelos estudados, diminui com o aumento do volume disponível. Observa-se que nos níveis inferiores a 67.198.000 m³, os preços sombra no modelo LF são maiores do que o no LA. Porém, a partir do nível 72.346.000 m³ os preços de água anual afetam principalmente o modelo LA.

5 CONCLUSÕES

Com base nas culturas consideradas e suas respectivas funções de resposta à água, nas restrições de área cultivada, nos preços e nos custos de produção, os resultados permitem as seguintes conclusões:

- A maximização da receita líquida no Perímetro Irrigado Formoso foi obtida com o modelo de lâminas alternativas, com um retorno financeiro de R\$ 68.384.956,53, utilizando o seguinte padrão de cultivo: 30 ha de abóbora, 30 ha de feijão *Phaseolus*, 977 ha de melancia, 1868 ha de banana, 1200 ha de mamão e 300 ha de limão Tahiti, para o volume anual de água de 79.649.300 m³.
- Os modelos de otimização lâminas alternativas e lâminas fixas projetaram receita líquida
 42 % maior que a obtida com o plano de cultivo tradicional do PIF, considerando o ano agrícola de 2009.
- A análise de sensibilidade do uso da terra apresentou preço sombra zero, indicando que esse recurso não foi restritivo.
- O estudo com seis níveis de água disponível demonstrou que os retornos financeiros aumentam com o aumento da água disponível, porém o incremento de renda diminui à medida que aumenta a disponibilidade do recurso água em ambos os modelos.
- Nos modelos estudados, a área total cultivada cresceu com a maior disponibilidade de água.
- Em qualquer nível de volume de água disponível os valores das lâminas de água foram maiores no modelo lâminas fixas do que no modelo lâminas alternativas.
- O modelo lâminas alternativas indicou que para um volume anual de água inferior a 45.273.000 m³ não foi possível obter uma solução ótima para o plano de cultivos do Perímetro de Irrigação Formoso, por não terem sido satisfeitas, especificamente, as restrições que limitam a área mínima cultivada.
- Volumes anuais de água disponível superior a 97.218.000 m³, mantendo-se o volume mensal disponível em 10.834.000 m³, apresentam folga, não contribuindo para o aumento da receita líquida, no modelo lâminas alternativas.

REFERÊNCIAS

ALBUQUERQUE FILHO, J.L. Pesquisa operacional aplicada à agricultura irrigada. In: CURSO DE ESPECIALIZAÇÃO EM IRRIGAÇÃO, 1986, Campina Grande. Campina Grande: UFPB, 1986.

ALMEIDA, F.T.; BERNARDO, S.; SOUSA, E.F.; MARIN, S.L.D.; GRIPPA, S. Análise econômica baseada em funções de resposta da produtividade versus lâminas de água para o mamoeiro no Norte Fluminense. **Engenharia Agrícola**, Jaboticabal, v. 24, n. 3, p. 675-683, 2004

ALVES JÚNIOR, J. Necessidade hídrica e resposta da cultura de lima ácida 'Tahiti' a diferentes níveis de irrigação. 2006. 100 p. Tese (Doutorado em Irrigação e Drenagem) — Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 2006.

ANDRADE JÚNIOR, A.S.; FRIZZONE, J.A.; BASTOS, E.A.; CARDOSO, M.J.; RODRIGUES, B.H.N. Estratégias ótimas de irrigação para a cultura da melancia. **Pesquisa Agropecuária Brasileira**, Brasília: v. 36, n. 2, p. 301-305, fev. 2001.

ARCE, R.A.B. Otimização de um projeto hidroagrícola, no município de Guaíra (SP), utilizando programação linear. 1990. 76 p. Dissertação (Mestrado em Irrigação e Drenagem) — Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 1990.

BALTRA, C.O. A utilização da informática na irrigação. **ITEM, Irrigação e Tecnologia Moderna**, Brasília, n. 28 p. 13-15, 1982.

BARBOSA, P.S.F. Modelos de programação linear em recursos hídricos. In: PORTO, R.L.L. (Ed.). **Técnicas quantitativas para o gerenciamento de recursos hídricos**. 2. ed. Porto Alegre: Editora da Universidade Federal do Rio Grande do Sul, 1997. p. 97-163.

BARLOW, D.P.M.; AHLFELD, P.; DICKERMAN, D.C. Conjunctive management model for sustained yield of stream—aquifer systems. **Journal of Water Resources Planning and Management,** New York, v. 129, n. 1, p. 35–48, 2003.

BARROS, V.S. Função de produção do melão (*Cucumis melo L.*) aos níveis de água e adubação nitrogenada no Vale do Curu-CE. 1999. 91 p. Dissertação (Mestrado em Engenharia Agrícola) –Universidade Federal do Ceará, Fortaleza, 1999.

BELAINEH G.; PERALTA, R.C.; HUGHES, T.C. Simulation/optimisation modelling for water resources management. **Journal of Water Resources Planning and Management,** New York, v. 125, n. 3, p. 154–160. 1999

BERCONCI, J.I.; BERGAMASCHI, H.; SANTOS, A.O.; FRANÇA. S.; RADIN, B. Eficiência da Irrigação em rendimento de grãos e matéria seca de milho. **Pesquisa Agropecuária Brasileira**, Brasília: v. 36, n. 7, p. 949-956, 2001.

BRASIL. Ministério da Agricultura, Pecuária r Abastecimento. **Dados agroclimáticos**. Salvador: INMET, 2006

BREGALDA, P. F.; OLIVEIRA, A. A. F.; BORNSTEIN, C.T. Introdução à programação linear. 3. ed. Rio de Janeiro: Campus, 1988.

CARVALLO, H.O.; HOLZAPFEL, E.A.; LOPEZ, M.A.; MARIÑO, M.A. Irrigated cropping optimization, **Journal of Irrigation and Drainage Engineering**, New York, v. 124, n. 2, p. 67-71, 1998.

CIRILO, J.A. Programação não linear aplicada a recursos hídricos. In: PORTO, R.L.L. (Ed.). **Técnicas quantitativas para o gerenciamento de recursos hídricos**. 2. ed. Porto Alegre: Editora da Universidade; ABRH, 2002. p. 305-359.

COELHO, E.F.; COSTA, E.C.; TEIXEIRA, A.H.C. Irrigação. In: BORGES, A.L. (Ed.). **O** cultivo da bananeira. Cruz das Almas: EMBRAPA, 2004. p. 122-145.

COMPANHIA DE DESENVOLVIMENTO DOS VALES DO SÃO FRANCISCO E PARNAÍBA. **Relatório anual**. Bom Jesus da Lapa, 2009. 38 p.

COSTA, M.H. Modelo de otimização dos recursos hídricos para a irrigação, conforme a **época de plantio**. 1991. 111 p. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal de Viçosa, Viçosa, 1991.

CURI, R.C.; CURI, W.F.; OLIVEIRA, M.B.A. Análise de alterações na receita líquida de um perímetro irrigado no semi-árido sob condições de variações hídricas e econômicas. **Revista Brasileira de Recursos Hídricos,** São Paulo, v. 9, n. 3, p. 39-53, 2005

DANTAS NETO, J. Modelos de decisão para otimização do padrão de cultivo, em áreas irrigadas, baseados nas funções de resposta das culturas à água. 1994. 125 p. Tese (Doutorado em Irrigação e Drenagem) – Faculdade de Ciências Agronômicas, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, 1994

DANTAS NETO, J.; AZEVEDO, C.A.V.; FRIZZONE, J.A. Uso da programação linear para estimar o padrão de cultura do perímetro irrigado Nilo Coelho. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 1, n. 1, p. 9-12, 1997.

DEVI, S.; SRIVASTAVA, D.K.; MOHAN, C. Optimal water allocation for the trans-boundary Subernarekha River, India. **Journal of Water Resources Planning and Management,** New York, v. 131, n. 4, p. 253–269, 2005.

DOORENBOS, J.; KASSAN, A.H. **Crop response to water.** Rome: FAO, 1979. 194 p. (FAO. Irrigation and Drainage Paper, 33).

Efeito da água no rendimento das culturas . Campina Grande: UFPB, 1994.
DOORENBOS, J.; PRUITT, W.O. Crop water requirements. Rome: FAO, 1977. 179 p. (FAO. Irrigation and Drainage Paper, 24).
Guidelines for predicting crop water requirements. Rome: FAO, 1984.

- DUDLEY, N.J.; HOWELL, D.T; MUSGRAVE, W.J. Optimal intraseasonal irrigation water allocation. **Water Resource Research**, Washington, v. 7, n. 5, p. 1051-1063, 1971.
- EMBRAPA. Centro de Pesquisa do Trópico Semi-Árido. Efeito de níveis de nitrogênio e irrigação na produtividade da melancia. In: _____. Resumo de atividades de pesquisa n° 2. Pretolina, 1977. p. 285-287.
- ENGLISH, M.J.; MUSICK, J.T.; MURTY, V.V.N. Deficit irrigation. In: GLEN, J.H.; HOWEL, T.A.; SALOMON, K.H. (Ed.). **Management of farm irrigation systems.** St. Joseph: ASAE, 1990. p. 631-663.
- FERREIRA, E.J. **Análise técnica e econômica do projeto de irrigação do Jaíba, MG**. 1993. 159 p. Tese (Doutorado em Engenharia Agrícola) Centro de Ciências Agrária, Universidade Federal de Viçosa, Viçosa, 1993
- FRIZZONE, J.A. Funções de resposta do feijoeiro (*Phaseolus vulgaris* L) ao uso de nitrogênio e lâmina de irrigação. 1986. 133 p. Tese (Doutorado em Solos e Nutrição de Plantas) Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 1986.
- _____. **Funções de resposta das culturas à irrigação**. Piracicaba: ESALQ, 1993. 42 p. (Série Didática, 6).
- _____. Função de produção. In: FARIA, M.A.; SILVA. E.L.; VILELLA, L.A.A.; SILVA, A.M. (Ed.). **Manejo da irrigação**. Lavras: UFLA, Sociedade Brasileira de Engenharia Agrícola, 1998. p. 86-116.
- _____. Otimização do uso da água na agricultura irrigada: perspectivas e desafios. **Engenharia Rural,** Piracicaba, v. 15, p. 37-56, 2004.
- _____. Otimização em irrigação com déficit. In: Paz, V.S.P.; OLIVEIRA,A.S.; PEREIRA, F.A.C.; GHEYI,H.G. (Ed.). **Manejo e sustentabilidade da irrigação em regiões áridas e semi-áridas.** Cruz das Almas: UFRB, Núcleo de Engenharia de Água e Solo, 2009. p. 273-308.
- FRIZZONE, J.A.; OLITTA, A.F.L. Consumo de água e produção de feijoeiro (*Phaseolus* vulgaris L.) em Latossolo Vermelho-Amarelo. **Item**, Brasília, n. 29 p. 25-29, 1987.
- FRIZZONE, J.A.; BOTREL, T.A.; ARCE, R.A.B. Alocação de água e combinação de atividades pela programação linear em um projeto hidroagrícola no município de Guairá (SP). **Scientia Agricola**, Piracicaba, v. 51, n. 3, p. 524-532, 1994.
- FRIZZONE, J.A.; COELHO, R.D.; DOURADO-NETO, D.; SOLIANI, R. Linear programming model to optimize the water resource use in irrigation projects: an application to the Senador Nilo Coelho Project. **Scientia Agricola**, Piracicaba, v. 54, p. 136-148, 1997.

FRIZZONE, J.A.; MATIOLI, C.S.; REZENDE, R.; GONÇALVES, A.C.A. Viabilidade econômica da irrigação suplementar da cana-de-açúcar, *Saccharum* spp., para a região Norte do Estado de São Paulo. **Acta Scientiarum**, Maringá, v. 23, n. 5, p. 1131-1137, 2001.

FRIZZONE, J.A.; TEODORO, R.E.F.; PEREIRA, A.S.; BOTREL, T.A. Lâminas de água e doses de nitrogênio na produção de forragem de aveia (*Avena sativa* L.). **Scientia Agricola**, Piracicaba, v. 52, n. 3; p. 578-586, 1995.

GOMES, U.; ESPINOZA, W. Efeito de lâminas de água e doses de nitrogênio na produtividade de milho sob aspersão no perímetro irrigado Formoso A, Bom Jesus da Lapa. In: COMPANHIA DE DESENVOLVIMENTO DO VALE DO SÃO FRANCISCO. **Unidades de observação e demonstração: relatório técnico** 1986-1989. Brasília, 1990a. p. 46-47.

_____. Resposta de variedades de feijoeiro a níveis de fósforo e lâminas de água sob aspersão no perímetro irrigado Formoso A, Bom Jesus da Lapa. IN: COMPANHIA DE DESENVOLVIMENTO DO VALE DO SÃO FRANCISCO. **Unidades de observação e demonstração: relatório técnico** 1986-1989. Brasília, 1990b. p. 93-94.

GORANTIWAR, S.D.; SMOUT, I.K. Allocation of scarce water resources using deficit irrigation in rotational systems. **Journal of Irrigation and Drainage Engineering**. New York, v. 129, n. 3, p. 155-163, 2003.

HARGREAVES, G.H.; SAMANI, Z.A. Economics consideration of deficit irrigation. **Journal of Irrigation and Drainage Engineering**, New York, v. 3, n. 110, p. 343-358, 1984.

HAZELL, P.B.R.; NORTON, R.D. Mathematical programming for economic analysis in agriculture. New York: Macmillan. 1986. 400 p.

HEXEM, R.W.; HEADY, E.O. Water production functions for irrigated agriculture. Ames: The Iowa University Press, 1978. 215 p.

KUMAR, R.; KHEPAR, S.D. Decision models for optimal cropping patterns in irrigation based on crop water production functions. **Agricultural Water Management**, Amsterdam, v. 3, n. 1, p. 65-76, 1980.

KUO, S.F.; LIU, C.W.; CHEIN, S.K. Comparative study of optimization techniques for irrigation project planning. **Journal of the American Water Resources Association**, Herndon, p. 59-73, 2003.

LABADIE, J.W. Optimal operation of multireservoir systems: state-of-the-art review. **Journal of Water Resources Planning and Management**, New York, v. 130, n. 2, p. 93-111, 2004.

MALE, J.W.; MUELLER, F.A. Model for prescribing groundwater use permits. **Journal of Water Resources Planning and Management**, New York, v. 118, n. 5, p. 543–561, 1992.

MANNOCCHI, F.; MECARELLI, P. Optimization analysis of deficit irrigation systems. **Journal of Irrigation and Drainage Engineering**, New York, v.120, n.3, p.484-503. 1994

MAROUELLI, W.A.; SILVA, H.R; PEREIRA, W.; SILVA, W.L.C.; SOUZA, A.F. **Resposta da abóbora híbrida** *tipo tetsukabuto* **a diferentes lâminas de água e doses de nitrogênio**. Brasília: EMBRAPA, 1999. 5 p. (Pesquisa em Andamento, 26).

MATANGA, G.B.; MARIÑO, M. A. Irrigation planning 1. Cropping pattern. **Water Resources Research**, Washington, v. 15, n. 3, p. 672-678, 1979.

MATEUS, G.R.; LUNA, H.P.L. Programação não linear. Belo Horizonte: UFMG, 1986. 299 p.

McMILLAN JR., C. **Mathematical programming:** an introduction to the design and application of optimal decision machines. New York: John Wiley, 1970. 495 p.

MOUSINHO, F.E.P. Função de resposta da melancia à aplicação de água e adubo nitrogenado para as condições edafoclimáticas de Fortaleza, CE. 2002. 61 p. Dissertação (Mestrado em Engenharia Agrícola) — Universidade Federal do Ceará, Fortaleza, 2002.

OLIVEIRA, J.A.; LANNA, A.E.L. Otimização de um sistema de reservatórios atendendo a múltiplos usos no Nordeste Brasileiro. **Revista Brasileira de Recursos Hídricos**, São Paulo, v. 2, n. 2, p. 123-141, 1997.

PALÁCIOS, E.V. Response functions of crops yield to soil moisture stress. **Water Resources Bulletin,** Minneapolis, v. 17, n. 4, p. 699-703, 1981.

PARDOLOS, P.M.; RESENDE, M.G.C. **Handbook of applied optimization**. Oxford University Press, 2002.

PAUL, S.; PANDA, S.N.; KUMAR, D.N. Optimal irrigation allocation: a multilevel approach. **Journal of Irrigation and Drainage Engineering**, Reston, v. 126, n. 3, p. 149–156, 2000

REVELLE, C. **Optimizing reservoir resources:** including a new model for reservoir reliability. New York: John Wiley, 1999.

REZENDE, R.; FREITAS, P. S. L.; MANTOVANI, E. C.; FRIZZONE, J.A. Função de produção da cultura do milho e do feijão para diferentes lâminas e uniformidade de aplicação de água. **Acta Scientiarum Agronomy**, Maringá, v. 26, n. 4, p. 503-511, 2004.

RODRIGUES, J.A.L.; COSTA, R.N.T.; FRIZZONE, J.A.; AGUIAR, J.V. Plano ótimo de cultivo no projeto de irrigação Morada Nova, Ceará, utilizando modelo de programação linear. **Irriga**, Botucatu, v. 5, n. 3, p. 199-221, 2000.

SILVA, M.A. Efeito da lâmina de água e da adubação nitrogenada sobre a produção de feijão-de-corda (*Vigna sinensis* L. Savi), utilizando o sistema de irrigação por "aspersão em linha". 1978. 53 p.Dissertação (Mestrado em Engenharia Agrícola) – Centro de Ciências Agrárias, Universidade Federal de Viçosa, Viçosa, 1978

SILVEIRA, P.M. da, MOREIRA, J.A.A. Resposta do feijoeiro a doses de fósforo e lâminas de água de irrigação. **Revista Brasileira de Ciência do Solo**, Campinas, v. 14, n. 1,p. 63-67, 1990.

SIMONOVIC, S. Reservoir systems analysis: closing gap between theory and practice. **Journal Water Resources Planning and Management**, New York, v. 118, n. 3, p. 262-280, 1992.

SOARES, J.I. Função de resposta da melancia (*Citrullus lanatus* Thumb. Mansf.) aos níveis de água e adubação nitrogenada no Vale do Curu-CE. 2000. 76 p. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal do Ceará, Fortaleza, 2000.

SOARES, J.I.; COSTA, R.N.T.; SILVA, L.A.C.; GONDIM, R.S. Função de resposta da melancia aos níveis de água e adubação nitrogenada, no Vale do Curu, CE. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 6, n. 2, p. 219-224, jul./ago. 2002.

SOUSA, S.A.V.; FRIZZONE, J.A.; PERES, F.C. Otimização da irrigação para diferentes déficits nas lâminas de água aplicadas às culturas. **Engenharia Rural**, Piracicaba, v. 9, n. 1, p. 1-9, 1998.

SUASSUNA, J. **Semi-árido:** proposta de convivência com a seca. Fortaleza: Fundação Konrad Adenauer, 2002.

VAUX JR.; PRUITT, W.O. Crop-water production functions. In: HILLEL, D. (Ed.). **Advances in irrigation**. New York: Academic Press, 1983. p. 61-97.

VALERO, J.A.J.; MANÃS, F.J.M.S.O. Agronomia del riego. Madrid: Ed Mundi, 1993. 732 p.

WINSTON, W.L. **Operations research:** applications and algorithms. New York: Thomson, 2004.

WURBS, R.A. Reservoir-system simulation and optimization models. **Journal of Water Resources Planning and Management**, New York, v. 119, n. 4, p. 455-472, 1993.

YEH, W.W-G. Reservoir management and operation models: a state-of-the-art review. **Journal Water Resources Planning and Management**, New York, v. 21, n. 12, p. 1797-1818, 1985.

BIBLIOGRAFIA CONSULTADA

COMPANHIA DE DESENVOLVIMENTO DOS VALES DO SÃO FRANCISCO E PARNAÍBA. 2ª SUPERINTENDÊNCIA REGIONAL. Diagnóstico socioeconômico e ambiental dos lotes familiares do Perímetro de Irrigação Formoso . Bom Jesus da Lapa, 200 121 p.	18.
Relatório anual: execução dos serviços de Assistência Técnica e Extensão Rural – ATER, para os pequenos produtores dos Perímetros de Irrigação Formoso e Formosinho, localizados em área de atuação da 2ª Superintendência Regional, no Estado da Bahia. Bom Jesus da Lapa, 2008. 25 p.	
Relatório semestral nº 2.Bom Jesus da Lapa, 2009. 29 p.	
Plano de assistência técnica e extensão rural do Perímetro de Irrigação Formoso para 2010. Bom Jesus da Lapa, 2009. 59 p.	

APÊNDICE

Tabela 1 – Custos e rendimentos da cultura abóbora com a função de resposta à água discretizada

	Lâmina	Produtividade	Custo da	Custo	Renda	Renda
	(W)	(Y)	Água	Total	Bruta	Líquida
X1 e X2	(mm)	(kg ha ⁻¹)	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$
0	384	22133,52	136,02	5951,22	8853,41	2902,18
1	374	22117,46	132,48	5947,68	8846,99	2899,31
2	364	22069,61	128,93	5944,13	8827,84	2883,71
3	350	21949,19	123,97	5939,17	8779,68	2840,51
4	330	21669,05	116,87	5932,07	8667,62	2735,55
5	310	21261,71	109,78	5924,98	8504,68	2579,70
6	290	20727,16	102,69	5917,89	8290,87	2372,97
7	265	19880,11	93,83	5909,03	7952,04	2043,02
8	240	18834,30	84,96	5900,16	7533,72	1633,56
9	210	17316,99	74,32	5889,52	6926,79	1037,27

Preço médio unitário (R\$ kg⁻¹) = 0,40

Preço médio da água (R\$ mm⁻¹) = 0,3545

Custo de Produção (R\$ ha⁻¹), exceto o custo da água = 5.815,20

Tabela 2 - Custos e rendimentos da cultura feijão Phaseolus com a função de resposta à água discretizada

-							
		Lâmina	Produtividade	Custo da	Custo	Renda	Renda
		(W)	(Y)	Água	Total	Bruta	Líquida
	X3 e X4	(mm)	(kg ha ⁻¹)	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$
_	0	545	2668,97	193,25	1656,83	4136,91	2480,08
	1	540	2666,73	191,48	1655,06	4133,43	2478,37
	2	530	2648,27	187,93	1651,51	4104,82	2453,30
	3	520	2611,55	184,39	1647,97	4047,91	2399,94
	4	500	2486,75	177,30	1640,88	3854,47	2213,59
	5	480	2302,39	170,20	1633,78	3568,71	1934,92
	6	460	2072,71	163,11	1626,69	3212,70	1586,01
	7	440	1814,31	156,02	1619,60	2812,18	1192,58
	8	410	1409,67	145,38	1608,96	2185,00	576,03
	9	380	1028,27	134,75	1598,33	1593,81	-4,51
-							

Preço médio unitário (R\$ kg⁻¹) = 1,55 Preço médio da água (R\$ mm⁻¹) = 0,3545

Custo de Produção (R\$ ha⁻¹), exceto o custo da água = 1463,58

Tabela 3 - Custos e rendimentos da cultura feijão Vigna com a função de resposta à água discretizada

-	Lâmina	Produtividade	Custo da	Custo	Renda	Renda
	(W)	(Y)	Água	Total	Bruta	Líquida
X5 e X6	(mm)	(kg ha ⁻¹)	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$
0	500	1539,83	177,30	1437,48	2155,76	718,29
1	495	1529,80	175,52	1435,70	2141,73	706,02
2	485	1509,58	171,98	1432,16	2113,41	681,25
3	475	1489,14	168,43	1428,61	2084,79	656,18
4	460	1458,11	163,11	1423,29	2041,35	618,06
5	440	1416,13	156,02	1416,20	1982,58	566,38
6	420	1373,57	148,93	1409,11	1923,00	513,89
7	390	1308,94	138,29	1398,47	1832,51	434,04
8	360	1243,71	127,65	1387,83	1741,19	353,36
9	330	1178,29	117,02	1377,20	1649,60	272,40

Preço médio unitário (R\$ kg⁻¹) = 1,40 Preço médio da água (R\$ mm⁻¹) = 0,3545

Custo de Produção (R\$ ha⁻¹), exceto o custo da água = 1.260,18

Tabela 4 - Custos e rendimentos da cultura melancia com a função de resposta à água discretizada

	0					
	Lâmina	Produtividade	Custo da	Custo	Renda	Renda
	(W)	(Y)	Água	Total	Bruta	Líquida
X7 e X8	(mm)	(kg ha ⁻¹)	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	(R\$.ha ⁻¹)
0	887	33669,89	314,52	5589,86	10100,97	4511,10
1	860	33636,10	304,95	5580,29	10090,83	4510,54
2	830	33520,41	294,31	5569,65	10056,12	4486,47
3	790	33238,19	280,13	5555,47	9971,46	4415,99
4	750	32809,73	265,95	5541,29	9842,92	4301,63
5	700	32068,50	248,22	5523,56	9620,55	4096,99
6	650	31098,78	230,49	5505,83	9329,63	3823,81
7	550	28473,83	195,03	5470,37	8542,15	3071,78
8	450	24934,88	159,57	5434,91	7480,46	2045,56
9	350	20481,93	124,11	5399,45	6144,58	745,13

Preço médio unitário (R\$ kg⁻¹) = 0,30 Preço médio da água (R\$ mm⁻¹) = 0,3545

Custo de Produção (R\$ ha⁻¹), exceto o custo da água = 5.275,34

Tabela 5 – Custos e rendimentos da cultura milho com a função de resposta à água discretizada

	Lâmina	Produtividade	Custo da	Custo	Renda	Renda
	(W)	(Y)	Água	Total	Bruta	Líquida
X9	(mm)	(kg ha ⁻¹)	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$
0	775	7554,65	274,81	1656,99	2644,13	987,14
1	760	7553,09	269,49	1651,67	2643,58	991,91
2	740	7546,18	262,40	1644,58	2641,16	996,58
3	700	7514,94	248,22	1630,40	2630,23	999,83
4	650	7440,60	230,49	1612,67	2604,21	991,55
5	600	7322,74	212,76	1594,94	2562,96	968,02
6	550	7155,79	195,03	1577,21	2504,53	927,32
7	500	6932,88	177,30	1559,48	2426,51	867,03
8	450	6645,37	159,57	1541,75	2325,88	784,13
9	350	5828,49	124,11	1506,29	2039,97	533,68

Preço médio unitário (R\$ kg⁻¹) = 0,35

Preço médio da água (R\$ mm⁻¹) = 0.3545

Custo de Produção (R\$ ha⁻¹), exceto o custo da água = 1382,18

Tabela 6 – Custos e rendimentos da cultura banana com a função de resposta à água discretizada

	Lâmina	Produtividade	Custo da	Custo	Renda	Renda
	(W)	(Y)	Água	Total	Bruta	Líquida
X10	(mm)	(kg ha ⁻¹)	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	(R\$.ha ⁻¹)
0	2900	37856,00	1028,32	9916,28	18928,00	9011,72
1	2850	36501,00	1010,59	9898,55	18250,50	8351,95
2	2800	35196,00	992,86	9880,82	17598,00	7717,18
3	2720	33212,00	964,49	9852,45	16606,00	6753,55
4	2620	30912,00	929,04	9817,00	15456,00	5639,00
5	2520	28812,00	893,58	9781,54	14406,00	4624,46
6	2320	25212,00	822,66	9710,62	12606,00	2895,38
7	2120	22412,00	751,74	9639,70	11206,00	1566,30
8	1820	19712,00	645,36	9533,32	9856,00	322,68
9	1520	18812,00	538,98	9426,94	9406,00	77,23

Preço médio unitário (R\$ kg⁻¹) = 0,50

Preço médio da água (R\$ mm⁻¹) = 0,3545

Custo de Produção (R\$ ha⁻¹), exceto o custo da água = 8.887,96

Tabela 7 – Custos e rendimentos da cultura mamão com a função de resposta à água discretizada

	Lâmina	Produtividade	Custo da	Custo	Renda	Renda
	(W)	(Y)	Água	Total	Bruta	Líquida
X11	(mm)	(kg ha ⁻¹)	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$
0	1400	94784,11	496,43	16812,71	66348,87	49536,16
1	1375	94597,28	487,57	16803,85	66218,10	49414,25
2	1350	94204,32	478,70	16794,98	65943,02	49148,04
3	1300	92799,98	460,97	16777,25	64959,98	48182,73
4	1250	90571,07	443,24	16759,52	63399,75	46640,23
5	1175	85681,67	416,65	16732,93	59977,17	43244,24
6	1100	78937,02	390,05	16706,33	55255,91	38549,58
7	1000	67058,18	354,59	16670,87	46940,73	30269,85
8	900	51881,12	319,13	16635,41	36316,78	19681,37
9	800	33405,82	283,67	16599,95	23384,07	6784,12

Preço médio unitário (R\$ kg⁻¹) = 0,70

Preço médio da água (R\$ mm⁻¹) = 0,3545

Custo de Produção (R\$ ha⁻¹), exceto o custo da água = 16.316,28

Tabela 8 - Custos e rendimentos da cultura limão tahiti com a função de resposta à água discretizada

Lâmina Produtividade Custo da (W) Custo dagua Custo Total Total Bruta (R\$.ha ⁻¹) Renda Líquida (R\$.ha ⁻¹) X12 (mm) (kg ha ⁻¹) (R\$.ha ⁻¹) (R\$.ha ⁻¹) (R\$.ha ⁻¹) 0 2100 31060,00 744,65 6200,97 20189,00 13988,03 1 2075 30310,00 735,78 6192,10 19701,50 13509,40 2 2025 28810,00 718,05 6174,37 18726,50 12552,13 3 1975 27310,00 700,32 6156,64 17751,50 11594,86 4 1900 25060,00 673,73 6130,05 16289,00 10158,95 5 1825 22810,00 647,13 6103,45 14826,50 8723,05 6 1750 20560,00 620,54 6076,86 13364,00 7287,14 7 1650 17560,00 585,08 6041,40 11414,00 5372,60 8 1550 14560,00 549,62 6005,94 9464,00		discretize	auu				
X12 (mm) (kg ha ⁻¹) (R\$.ha ⁻¹) (R\$.ha ⁻¹) (R\$.ha ⁻¹) (R\$.ha ⁻¹) 0 2100 31060,00 744,65 6200,97 20189,00 13988,03 1 2075 30310,00 735,78 6192,10 19701,50 13509,40 2 2025 28810,00 718,05 6174,37 18726,50 12552,13 3 1975 27310,00 700,32 6156,64 17751,50 11594,86 4 1900 25060,00 673,73 6130,05 16289,00 10158,95 5 1825 22810,00 647,13 6103,45 14826,50 8723,05 6 1750 20560,00 620,54 6076,86 13364,00 7287,14 7 1650 17560,00 585,08 6041,40 11414,00 5372,60 8 1550 14560,00 549,62 6005,94 9464,00 3458,06		Lâmina	Produtividade	Custo da	Custo	Renda	Renda
0 2100 31060,00 744,65 6200,97 20189,00 13988,03 1 2075 30310,00 735,78 6192,10 19701,50 13509,40 2 2025 28810,00 718,05 6174,37 18726,50 12552,13 3 1975 27310,00 700,32 6156,64 17751,50 11594,86 4 1900 25060,00 673,73 6130,05 16289,00 10158,95 5 1825 22810,00 647,13 6103,45 14826,50 8723,05 6 1750 20560,00 620,54 6076,86 13364,00 7287,14 7 1650 17560,00 585,08 6041,40 11414,00 5372,60 8 1550 14560,00 549,62 6005,94 9464,00 3458,06		(W)	(Y)	Água	Total	Bruta	Líquida
1 2075 30310,00 735,78 6192,10 19701,50 13509,40 2 2025 28810,00 718,05 6174,37 18726,50 12552,13 3 1975 27310,00 700,32 6156,64 17751,50 11594,86 4 1900 25060,00 673,73 6130,05 16289,00 10158,95 5 1825 22810,00 647,13 6103,45 14826,50 8723,05 6 1750 20560,00 620,54 6076,86 13364,00 7287,14 7 1650 17560,00 585,08 6041,40 11414,00 5372,60 8 1550 14560,00 549,62 6005,94 9464,00 3458,06	X12	(mm)	(kg ha ⁻¹)	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$	$(R\$.ha^{-1})$
2 2025 28810,00 718,05 6174,37 18726,50 12552,13 3 1975 27310,00 700,32 6156,64 17751,50 11594,86 4 1900 25060,00 673,73 6130,05 16289,00 10158,95 5 1825 22810,00 647,13 6103,45 14826,50 8723,05 6 1750 20560,00 620,54 6076,86 13364,00 7287,14 7 1650 17560,00 585,08 6041,40 11414,00 5372,60 8 1550 14560,00 549,62 6005,94 9464,00 3458,06	0	2100	31060,00	744,65	6200,97	20189,00	13988,03
3 1975 27310,00 700,32 6156,64 17751,50 11594,86 4 1900 25060,00 673,73 6130,05 16289,00 10158,95 5 1825 22810,00 647,13 6103,45 14826,50 8723,05 6 1750 20560,00 620,54 6076,86 13364,00 7287,14 7 1650 17560,00 585,08 6041,40 11414,00 5372,60 8 1550 14560,00 549,62 6005,94 9464,00 3458,06	1	2075	30310,00	735,78	6192,10	19701,50	13509,40
4 1900 25060,00 673,73 6130,05 16289,00 10158,95 5 1825 22810,00 647,13 6103,45 14826,50 8723,05 6 1750 20560,00 620,54 6076,86 13364,00 7287,14 7 1650 17560,00 585,08 6041,40 11414,00 5372,60 8 1550 14560,00 549,62 6005,94 9464,00 3458,06	2	2025	28810,00	718,05	6174,37	18726,50	12552,13
5 1825 22810,00 647,13 6103,45 14826,50 8723,05 6 1750 20560,00 620,54 6076,86 13364,00 7287,14 7 1650 17560,00 585,08 6041,40 11414,00 5372,60 8 1550 14560,00 549,62 6005,94 9464,00 3458,06	3	1975	27310,00	700,32	6156,64	17751,50	11594,86
6 1750 20560,00 620,54 6076,86 13364,00 7287,14 7 1650 17560,00 585,08 6041,40 11414,00 5372,60 8 1550 14560,00 549,62 6005,94 9464,00 3458,06	4	1900	25060,00	673,73	6130,05	16289,00	10158,95
7 1650 17560,00 585,08 6041,40 11414,00 5372,60 8 1550 14560,00 549,62 6005,94 9464,00 3458,06	5	1825	22810,00	647,13	6103,45	14826,50	8723,05
8 1550 14560,00 549,62 6005,94 9464,00 3458,06	6	1750	20560,00	620,54	6076,86	13364,00	7287,14
	7	1650	17560,00	585,08	6041,40	11414,00	5372,60
9 1400 10060,00 496,43 5952,75 6539,00 586,25	8	1550	14560,00	549,62	6005,94	9464,00	3458,06
	9	1400	10060,00	496,43	5952,75	6539,00	586,25

Preço médio unitário (R\$ kg⁻¹) = 0,65 Preço médio da água (R\$ mm⁻¹) = 0,3545

Custo de Produção (R\$ ha⁻¹), exceto o custo da água = 5.456,32

Tabela 9 – Necessidade de água da cultura abóbora

	Eto		Etc	_
Mês	(mm)	Kc	(mm)	F
Fevereiro*	150	0,85	127,5	0,3425
Março	152	0,85	129,2	0,3470
Abril	136	0,85	115,6	0,3105
Junho*	121	0,85	102,85	0,3010
Julho	129	0,85	109,65	0,3209
Agosto	152	0,85	129,2	0,3781

Et₀ = Evapotranspiração de referência; Kc = Coeficiente de desenvolvimento da cultura;

ETc = Evapotranspiração da cultura;

F = Percentagem de utilização da água.

Tabela 10 – Necessidade de água da cultura feijão *Phaseolus*

		J		
	Eto		Etc	
Mês	(mm)	Kc	(mm)	F
Março*	152	0,6	91,2	0,2636
Abril	136	1	136	0,3931
Maio	132	0,9	118,8	0,3434
Junho*	121	0,6	72,6	0,2145
Julho	129	1	129	0,3812
Agosto	152	0,9	136,8	0,4043

Tabela 11 – Necessidade de água da cultura feijão Vigna

	Eto		Etc	_
Mês	(mm)	Kc	(mm)	F
Abril*	136	0,6	81,6	0,2539
Maio	132	0,9	118,8	0,3696
Junho	121	1	121	0,3765
Julho*	129	0,6	77,4	0,1979
Agosto	152	0,9	136,8	0,3497
Setembro	177	1	177	0,4525

Tabela 12 – Necessidade de água da cultura melancia

	Eto		Etc	
Mês	(mm)	Kc	(mm)	F
Abril*	136	0,65	88,4	0,2684
Maio	132	1	132,0	0,4009
Junho	121	0,9	108,9	0,3307
Julho*	129	0,65	83,9	0,2122
Agosto	152	1	152,0	0,3847
Setembro	177	0,9	159,3	0,4031

Tabela 13 – Necessidade de água da cultura milho

	Eto		Etc	_
Mês	(mm)	Kc	(mm)	F
Novembro	180	0,65	117,0	0,1907
Dezembro	170	1	170,0	0,2771
Janeiro	174	1,1	191,4	0,3120
Fevereiro	150	0,9	135,0	0,2201

Tabela 14 – Necessidade de água da cultura banana

Mês	Eto	Kc	Etc	F
	(mm)		(mm)	
Janeiro	174	1,15	200,1	0,09
Fevereiro	150	1,15	172,5	0,08
Março	152	1,15	174,8	0,08
Abril	136	1,15	156,4	0,07
Maio	132	1,15	151,8	0,07
Junho	121	1,15	139,15	0,06
Julho	129	1,15	148,35	0,07
Agosto	152	1,15	174,8	0,08
Setembro	177	1,15	203,55	0,09
Outubro	207	1,15	238,05	0,11
Novembro	180	1,15	207	0,10
Dezembro	170	1,15	195,5	0,09

Tabela 15 – Necessidade de água da cultura mamão

Mês	Eto	Kc	Etc	F
	(mm)		(mm)	
Janeiro	174	0,9	156,6	0,09
Fevereiro	150	0,9	135	0,08
Março	152	0,9	136,8	0,08
Abril	136	0,9	122,4	0,07
Maio	132	0,9	118,8	0,07
Junho	121	0,9	108,9	0,06
Julho	129	0,9	116,1	0,07
Agosto	152	0,9	136,8	0,08
Setembro	177	0,9	159,3	0,09
Outubro	207	0,9	186,3	0,11
Novembro	180	0,9	162	0,10
Dezembro	170	0,9	153	0,09

Tabela 16 – Necessidade de água da cultura limão Tahiti

	Eto		Etc	
Mês	(mm)	Kc	(mm)	F
Janeiro	174	1,00	174,0	0,1059
Fevereiro	150	1,05	157,5	0,0959
Março	152	0,85	129,2	0,0786
Abril	136	0,80	108,8	0,0662
Maio	132	0,95	125,4	0,0763
Junho	121	0,70	84,7	0,0516
Julho	129	0,60	77,4	0,0471
Agosto	152	0,50	76,0	0,0463
Setembro	177	0,55	97,4	0,0593
Outubro	207	1,15	238,1	0,1449
Novembro	180	0,90	162,0	0,0986
Dezembro	170	1,25	212,5	0,1293

Tabela 17 - Análise de sensibilidade da função objetivo para os 6 níveis de disponibilidade de água (1000 m³) utilizando-se o modelo de lâminas alternativas

47790					1111	
-	Retorno Unitário	Mínimo	Máximo	Retorno Unitário	Mínimo	Máximo
Cultura	(R\$)	(R\$)	(R\$)	(R\$)	(R\$)	(R\$)
X10	2579,44	Nenhum	3182,50	2735,34	2735,34	Nenhum
X10 X20	2579,44	Nenhum	3182,50	2735,34	2735,34	Nenhum
X20 X30	2399,87	Nenhum	10781,99	2399,87	Nenhum	8574,26
X40	2399,87	Nenhum	10781,99	2399,87	Nenhum	8574,26
X50	272,74	Nenhum	26073,84	272,74	Nenhum	24898,74
X60	272,74	Nenhum	26073,84	272,74	Nenhum	24898,74
X70	3071,69	Nenhum	16536,17	3823,69	Nenhum	10448,43
X80	3071,69	Nenhum	16536,17	3823,69	Nenhum	10448,43
X90	533,49	Nenhum	25456,09	533,49	Nenhum	23823,70
X100	4365,40	Nenhum	52645,20	7423,40	Nenhum	30938,34
X110	36270,00	11978	Nenhum	36270,00	9475,80	Nenhum
X120	13990,00	Nenhum	18154,50	13990,00	12406,62	14496,99
71120	67198		1015 1,50		2346	11100,00
X10	2840,34	2840,34	Nenhum	2840,34	2840,34	Nenhum
X20	2840,34	2840,34	Nenhum	2840,34	2840,34	Nenhum
X30	2453,23	Nenhum	5682,98	2453,23	Nenhum	5587,11
X40	2453,23	Nenhum	5682,98	2453,23	Nenhum	5587,11
X50	272,74	Nenhum	25182,66	272,74	Nenhum	25218,17
X60	272,74	Nenhum	25182,66	272,74	Nenhum	25218,17
X70	4301,49	Nenhum	4656,54	4301,49	4301,49	Nenhum
X80	4301,49	Nenhum	4656,54	4301,49	4301,49	Nenhum
X90	533,49	Nenhum	23601,99	533,49	Nenhum	23601,99
X100	8667,40	Nenhum	14250,08	8667,40	Nenhum	13451,22
X110	36270,00	6862,26	Nenhum	36270,00	6675,86	Nenhum
X120	13990,00	9543,54	Nenhum	13990,00	9232,87	Nenhum
	79649)		9	9499	
X10	2883,54	Nenhum	4478,70	2902,00	Nenhum	5689,43
X20	2883,54	Nenhum	4478,70	2902,00	Nenhum	5689,43
X30	2478,29	Nenhum	5179,04	2480,00	Nenhum	5689,43
X40	2478,29	Nenhum	5179,04	2480,00	Nenhum	5689,43
X50	718,30	Nenhum	3734,71	718,30	Nenhum	5689,43
X60	718,30	Nenhum	3734,71	718,30	Nenhum	5689,43
X70	4415,89	4415,89	Nenhum	4511,00	Nenhum	5689,43
X80	4415,89	4415,89	Nenhum	4511,00	Nenhum	5689,43
X90	783,99	Nenhum	26283,45	987,00	Nenhum	5676,74
X100	8667,40	7295,38	9022,52	9011,00	7832,57	14146,04
X110	36270,00	5848,72	Nenhum	36270,00	7292,48	Nenhum
X120	13990,00	7492,95	Nenhum	13990,00	8854,96	Nenhum

Tabela 18 - Análise de sensibilidade da função objetivo para os 6 níveis de disponibilidade de água $(1000~\text{m}^3)$ utilizando-se o modelo de lâminas fixas

	(1000 m³) utilizando-se o modelo de lâminas fixas								
	47790			61111					
	Retorno Unitário	Mínimo	Máximo	Retorno Unitário	Mínimo	Máximo			
Cultura	(R\$)	(R\$)	(R\$)	(R\$)	(R\$)	(R\$)			
X10	2902,00	Nenhum	9945,60	2902,00	2902	Nenhum			
X20	2902,00	Nenhum	9945,60	2902,00	2558	2902			
X30	2480,00	Nenhum	14115,50	2480,00	Nenhum	4119			
X40	2480,00	Nenhum	14115,50	2480,00	Nenhum	4119			
X50	718,00	Nenhum	12950,00	718,00	Nenhum	3779			
X60	718,00	Nenhum	12950,00	718,00	Nenhum	3779			
X70	4511,00	Nenhum	22973,30	4511,00	Nenhum	6703			
X80	4511,00	Nenhum	22973,30	4511,00	Nenhum	6703			
X90	987,00	Nenhum	20072,50	987,00	Nenhum	5857			
X100	9012,00	Nenhum	75110,00	9012,00	Nenhum	21916			
X110	36260,00	105,80	Nenhum	36260,00	10580,208	Nenhum			
X120	13990,00	Nenhum	54390,00	13990,00	Nenhum	15870			
	67198	3		-	72346				
X10	2902,00	2902,00	Nenhum	2902,00	2902,00	Nenhum			
X20	2902,00	Nenhum	2902,00	2902,00	1952,90	2902,00			
X30	2480,00	Nenhum	3942,31	2480,00	Nenhum	3417,01			
X40	2480,00	Nenhum	3942,31	2480,00	Nenhum	3417,01			
X50	718,00	Nenhum	3651,54	718,00	Nenhum	3273,06			
X60	718,00	Nenhum	3651,54	718,00	Nenhum	3273,06			
X70	4511,00	Nenhum	6152,15	4511,00	4511,00	Nenhum			
X80	4511,00	Nenhum	6152,15	4511,00	4123,51	4511,00			
X90	987,00	Nenhum	5428,46	987,00	Nenhum	4152,73			
X100	9012,00	Nenhum	19159,23	9012,00	Nenhum	10950,20			
X110	36260,00	9466,92	Nenhum	36260,00	6151,99	Nenhum			
X120	13990,00	8391,15	15870,31	13990,00	8391,15	Nenhum			
	79649)		Ģ	99499				
X10	2902,00	Nenhum	3386,31	2902,00	Nenhum	4511,00			
X20	2902,00	Nenhum	3386,31	2902,00	Nenhum	4511,00			
X30	2480,00	Nenhum	3746,30	2480,00	Nenhum	4511,00			
X40	2480,00	Nenhum	3746,30	2480,00	Nenhum	4511,00			
X50	718,00	Nenhum	3645,68	718,00	Nenhum	4511,00			
X60	718,00	Nenhum	3645,68	718,00	Nenhum	4511,00			
X70	4511,00	4511,00	Nenhum	4511,00	4511,00	Nenhum			
X80	4511,00	4123,51	4511,00	4511,00	2902,00	4511,00			
X90	987,00	Nenhum	4260,57	987,00	Nenhum	4511,00			
X100	9012,00	4511,00	10950,20	9012,00	4511,00	14457,25			
X110	36260,00	5658,05	Nenhum	36260,00	6683,26	Nenhum			
X120	13990,00	7223,23	Nenhum	13990,00	8800,55	Nenhum			

Tabela 19 - Análise de sensibilidade do recurso terra, área ocupada mensal, para os 6 níveis de disponibilidade de água utilizando-se o modelo de lâminas alternativas

	47790		o se o model	61111		
	Preço Sombra	Área Mín,	Área Max,	Preço Sombra	Área Mín,	Área Max
Mês	(R\$)	(ha)	(ha)	(R\$)	(ha)	(ha)
Janeiro	0	2700	Nenhum	0	2939	Nenhum
Fevereiro	0	2730	Nenhum	0	2969	Nenhum
Março	0	2760	Nenhum	0	2999	Nenhum
Abril	0	2820	Nenhum	0	3059	Nenhum
Maio	0	2790	Nenhum	0	3029	Nenhum
Junho	0	2760	Nenhum	0	2999	Nenhum
Julho	0	2700	Nenhum	0	4285	Nenhum
Agosto	0	2700	Nenhum	0	4285	Nenhum
Setembro	0	2700	Nenhum	0	4285	Nenhum
Outubro	0	2700	Nenhum	0	2939	Nenhum
Novembro	0	2700	Nenhum	0	2939	Nenhum
Dezembro	0	2700	Nenhum	0	2939	Nenhum
	67198	3			72346	
Janeiro	0	3000	Nenhum	0	3000	Nenhum
Fevereiro	0	3030	Nenhum	0	3030	Nenhum
Março	0	3060	Nenhum	0	3060	Nenhum
Abril	0	3120	Nenhum	0	3120	Nenhum
Maio	0	3090	Nenhum	0	3090	Nenhum
Junho	0	3060	Nenhum	0	3060	Nenhum
Julho	0	4285	Nenhum	0	4285	Nenhum
Agosto	0	4285	Nenhum	0	4285	Nenhum
Setembro	0	4285	Nenhum	0	4285	Nenhum
Outubro	0	3000	Nenhum	0	3000	Nenhum
Novembro	0	3000	Nenhum	0	3000	Nenhum
Dezembro	0	3000	Nenhum	0	3000	Nenhum
	79649				99499	
Janeiro	0	3368	Nenhum	0	4285	Nenhum
Fevereiro	0	3398	Nenhum	0	4315	Nenhum
Março	0	3428	Nenhum	0	4345	Nenhum
Abril	0	3488	Nenhum	0	4405	Nenhum
Maio	0	3458	Nenhum	0	4375	Nenhum
Junho	0	3428	Nenhum	0	4345	Nenhum
Julho	0	4285	Nenhum	0	4285	Nenhum
Agosto	0	4285	Nenhum	0	4285	Nenhum
Setembro	0	4285	Nenhum	0	4285	Nenhum
Outubro	0	3368	Nenhum	0	4285	Nenhum
Novembro	0	3368	Nenhum	0	4285	Nenhum
Dezembro	0	3368	Nenhum	0	4285	Nenhum

Tabela 20 - Análise de sensibilidade do recurso terra, área ocupada mensal, para os 6 níveis de disponibilidade de água utilizando-se o modelo de lâminas fixas

uis	47790		se o modero d	61111		
	Preço Sombra	Área Mín,	Área Max,	Preço Sombra	Área Mín,	Área Max
Mês	(R\$)	(ha)	(ha)	(R\$)	(ha)	(ha)
Janeiro	0	1748	Nenhum	0	2700	Nenhum
Fevereiro	0	1778	Nenhum	0	2730	Nenhum
Março	0	1808	Nenhum	0	2760	Nenhum
Abril	0	1868	Nenhum	0	2820	Nenhum
Maio	0	1838	Nenhum	0	2790	Nenhum
Junho	0	1808	Nenhum	0	2760	Nenhum
Julho	0	1748	Nenhum	0	2700	Nenhum
Agosto	0	1748	Nenhum	0	2700	Nenhum
Setembro	0	1748	Nenhum	0	2700	Nenhum
Outubro	0	1748	Nenhum	0	2700	Nenhum
Novembro	0	1748	Nenhum	0	2700	Nenhum
Dezembro	0	1748	Nenhum	0	2700	Nenhum
	67198	3			72346	
Janeiro	0	2700	Nenhum	0	3000	Nenhum
Fevereiro	0	2730	Nenhum	0	3030	Nenhum
Março	0	2760	Nenhum	0	3060	Nenhum
Abril	0	2820	Nenhum	0	3120	Nenhum
Maio	0	2790	Nenhum	0	3090	Nenhum
Junho	0	2760	Nenhum	0	3060	Nenhum
Julho	0	4285	Nenhum	0	4285	Nenhum
Agosto	0	4285	Nenhum	0	4285	Nenhum
Setembro	0	4285	Nenhum	0	4285	Nenhum
Outubro	0	2700	Nenhum	0	3000	Nenhum
Novembro	0	2700	Nenhum	0	3000	Nenhum
Dezembro	0	2700	Nenhum	0	3000	Nenhum
	79649)			99499	
Janeiro	0	3042	Nenhum	0	4028	Nenhum
Fevereiro	0	3072	Nenhum	0	4058	Nenhum
Março	0	3102	Nenhum	0	4088	Nenhum
Abril	0	3162	Nenhum	0	4148	Nenhum
Maio	0	3132	Nenhum	0	4118	Nenhum
Junho	0	3102	Nenhum	0	4088	Nenhum
Julho	0	4285	Nenhum	0	4285	Nenhum
Agosto	0	4285	Nenhum	0	4285	Nenhum
Setembro	0	4285	Nenhum	0	4285	Nenhum
Outubro	0	3042	Nenhum	0	4028	Nenhum
Novembro	0	3042	Nenhum	0	4028	Nenhum
Dezembro	0	3042	Nenhum	0	4028	Nenhum

Tabela 21 - Análise de sensibilidade do recurso água, volume utilizado mensal e anual, para os 6 níveis de disponibilidade de água (1000 m³) utilizando-se o modelo de lâminas alternativas

de disponibilidade de agua (1000 m.) utilizando-se o modelo de faminas alternativas 47790 61111						as
			X7-1 X4		61111	X7-1 X4
Ma	Preço Sombra	Vol. Mín, (1000 m ³)	Vol. Max,	Preço Sombra	Vol. Mín,	Vol. Max,
Mês	(R\$) 0	4370	$\frac{(1000 \text{ m}^3)}{\text{Numbure}}$	(R\$)	$\frac{(1000 \text{ m}^3)}{5252}$	$\frac{(1000 \text{ m}^3)}{\text{Numburn}}$
Janeiro			Nenhum	0	5253	Nenhum
Fevereiro	0	3799	Nenhum	0	4585	Nenhum
Março	0	3891	Nenhum	0	4594	Nenhum
Abril	0	3594	Nenhum	0	4219	Nenhum
Maio	0	3500	Nenhum	0	4174	Nenhum
Junho	0	3159	Nenhum	0	5019	Nenhum
Julho	0	3240	Nenhum	0	5161	Nenhum
Agosto	0	3818	Nenhum	0	6036	Nenhum
Setembro	0	4444	Nenhum	0	5099	Nenhum
Outubro	0	5198	Nenhum	0	6343	Nenhum
Novembro	0	4520	Nenhum	0	5379	Nenhum
Dezembro	0	4268	Nenhum	0	5261	Nenhum
Água total	864,50	45279	48279	635,86	56876	62186
	67198				72346	
Janeiro	0	5821	Nenhum	0	5832	Nenhum
Fevereiro	0	5083	Nenhum	0	5092	Nenhum
Março	0	5077	Nenhum	0	5086	Nenhum
Abril	0	4662	Nenhum	0	4670	Nenhum
Maio	0	4626	Nenhum	0	4634	Nenhum
Junho	0	5423	Nenhum	0	4104	Nenhum
Julho	0	5561	Nenhum	0	6158	Nenhum
Agosto	0	6495	Nenhum	0	8469	Nenhum
Setembro	0	5616	Nenhum	0	9432	Nenhum
Outubro	0	7044	Nenhum	0	7056	Nenhum
Novembro	0	5953	Nenhum	0	5964	Nenhum
Dezembro	0	5850	Nenhum	0	5860	Nenhum
Água total	383,04	67012	67312	365,29	67312	72452
	79649				99499	
Janeiro	0	6716	Nenhum	0	9007	Nenhum
Fevereiro	0	5856	Nenhum	0	7833	Nenhum
Março	0	5861	Nenhum	0	7865	Nenhum
Abril	0	5371	Nenhum	0	7179	Nenhum
Maio	0	5315	Nenhum	0	7077	Nenhum
Junho	0	4699	Nenhum	0	6299	Nenhum
Julho	0	6320	Nenhum	$\overset{\circ}{0}$	6480	Nenhum
Agosto	0	8364	Nenhum	0	7577	Nenhum
Setembro	0	9448	Nenhum	0	8856	Nenhum
Outubro	0	8108	Nenhum	10,4027	10735	11085
Novembro	0	6879	Nenhum	0	9249	Nenhum
Dezembro	0	6724	Nenhum	0	8962	Nenhum
Água total	234,89	72997	96255		97218	Nenhum
Agua total	۷۵4,09	1 477 1	70233	0	91218	INCHILIALII

Tabela 22 - Análise de sensibilidade do recurso água, volume utilizado mensal e anual, para os 6 níveis de disponibilidade de água (1000 m³) utilizando-se o modelo de lâminas fixas

de disponibilidade de água (1000 m³) utilizando-se o modelo de lâminas fixas							
47790 61111							
	Preço Sombra	Vol. Mín,	Vol. Max,	Preço Sombra	Vol. Mín,	Vol. Max,	
Mês	(R\$)	(1000 m^3)	(1000 m^3)	(R\$)	(1000 m^3)	(1000 m^3)	
Janeiro	0	4348,0282	Nenhum	0	5581,2	Nenhum	
Fevereiro	0	3788,0006	Nenhum	0	4850,85	Nenhum	
Março	0	3881,8777	Nenhum	0	4959	Nenhum	
Abril	0	3641,5888	Nenhum	0	4605,48	Nenhum	
Maio	0	3567,7444	Nenhum	0	4503,09	Nenhum	
Junho	0	3198,8592	Nenhum	0	4056,18	Nenhum	
Julho	0	3223,7879	Nenhum	0	4138,2301	Nenhum	
Agosto	0	3798,7777	Nenhum	0	4875,9321	Nenhum	
Setembro	0	4422,4948	Nenhum	0	5676,6378	Nenhum	
Outubro	0	5172,4055	Nenhum	0	6638,7	Nenhum	
Novembro	0	4498,4613	Nenhum	0	5773,5	Nenhum	
Dezembro	0	4247,5739	Nenhum	0	5452,2	Nenhum	
Água total	2590,00	45150,9	61110,9	755,73	61110,9	67197,3	
	67198	3			72346		
Janeiro	0	5581	Nenhum	0	6248	Nenhum	
Fevereiro	0	4851	Nenhum	0	5455	Nenhum	
Março	0	4959	Nenhum	0	5454	Nenhum	
Abril	0	4606	Nenhum	0	5023	Nenhum	
Maio	0	4503	Nenhum	0	4984	Nenhum	
Junho	0	4056	Nenhum	0	4381	Nenhum	
Julho	0	5970	Nenhum	0	5920	Nenhum	
Agosto	0	6829	Nenhum	0	6751	Nenhum	
Setembro	0	7978	Nenhum	0	7916	Nenhum	
Outubro	0	6639	Nenhum	0	7552	Nenhum	
Novembro	0	5774	Nenhum	0	6395	Nenhum	
Dezembro	0	5452	Nenhum	0	6267	Nenhum	
Água total	646,15	67197	72345	319,88	72345	78809	
	79649)			99499		
Janeiro	0	6360	Nenhum	0	9007	Nenhum	
Fevereiro	0	5551	Nenhum	0	7833	Nenhum	
Março	0	5552	Nenhum	0	7865	Nenhum	
Abril	0	5110	Nenhum	0	7179	Nenhum	
Maio	0	5069	Nenhum	0	7077	Nenhum	
Junho	0	4459	Nenhum	0	6299	Nenhum	
Julho	0	6858	Nenhum	0	6964	Nenhum	
Agosto	0	9507	Nenhum	0	8455	Nenhum	
Setembro	0	10610	Nenhum	0	9775	Nenhum	
Outubro	0	7685	Nenhum	14,10	7552	10834	
Novembro	0	6511	Nenhum	0	9249	Nenhum	
Dezembro	0	6376	Nenhum	0	8962	Nenhum	
Água total	223,60	78809	99499	0	99499	Nenhum	

ANEXOS

ANEXO A

Custos operacionais de produção da Abe	óbora (1 ha	a)		
Especificação	Unidade	Quantidade	Preço Unitário (R\$)	Custo / Ano (R\$)
1 3			, ,	
1- SEMENTES E MUDAS				
Semente de abóbora tetsukabuto	kg	1	986,00	986,00
Sub-total 1				986,00
2- FERTILIZANTES				
N-P-K (4-14-8)	kg	300	0,80	240,00
N-P-K (20-0-20)	kg	300	1,18	354,00
Fertilizante foliar	L	6	12,00	72,00
Esterco de gado	m³	10	50,00	500,00
Sub-total 2				1.166,00
3- DEFENSIVOS				
Fenitrothion 50%	L	0,6	38,50	23,10
Fenthion 50%	L	0,4	96,00	38,40
Imidacloprid 70%	kg	0,6	593,30	355,98
Tetraconazole 25%	L	0,4	57,00	22,80
Mancozeb 80%	kg	1,2	26,00	31,20
Thiophanate methyl 70%	kg	0,2	29,00	5,80
Mancozeb 44% + Oxicloreto de Cobre				
30%	kg	0,4	25,00	10,00
Sub-total 3				487,28
4- OUTROS INSUMOS / SERVIÇOS				
Prestação de k1	ha/mês	4	7,58	30,32
Análise de solo	ud	0,2	53,00	10,60
Manutenção de equipamentos de		0.2	60.00	20.00
irrigação	vb	0,3	60,00	20,00
Ferramentas diversas	vb	0,3	50,00	15,00
2,4-D	L	1	100,00	100,00
Sub-total 4				175,92
5- OPERAÇÕES MECANIZADAS				
Preparo de solo	htr	4	80,00	320,00
Sulcamento	htr	2	60,00	120,00
Sub-total 5				440,00
6- MÃO-DE-OBRA				
Preparo de covas e plantio	dh	10	20,00	200,00
Capina	dh	15	20,00	300,00
Irrigação	dh	4	20,00	80,00

Adubação de cobertura	dh	8	20,00	160,00
Aplicação de defensivos	dh	12	40,00	480,00
Aplicação de fertilizante foliar	dh	6	40,00	240,00
Transporte interno	dh	6	20,00	120,00
Desbaste	dh	6	20,00	120,00
Polinização	dh	18	20,00	360,00
Colheita, classificação e				
embalagem/carga	dh	25	20,00	500,00
Sub-total 6				2.560,00
TOTAL GERAL				5.815,20

ANEXO B

Custos operacionais de produção do Feijão Phaseolus (1 ha)

<u>Phaseolus</u>	(1 ha)	T	T
		,	Custo / Ano
Unidade	Quantidade	(R\$)	(R\$)
kg	40	1,80	72,00
			72,00
kg	150	0,75	112,50
kg	100	0,64	64,00
kg	3	2,00	6,00
kg	3	4,00	12,00
L	1,5	12,00	18,00
g	20	0,45	9,00
			221,50
L	0,8	9,00	7,20
kg	1,5	31,00	46,50
L	0,8	59,00	47,20
kg	0,2	25,00	5,00
			105,90
ha/mês	1	7,58	7,58
ud	30	0,80	24,00
ud	0,2	53,00	10,60
vb	0,2	60,00	12,00
vb	0,2	50,00	10,00
			64,18
htr	2	80,00	160,00
htr	1	80,00	80,00
htr	1	80,00	80,00
		,	320,00
dh	6	20.00	120,00
†			80,00
1		,	80,00
1		,	40,00
+		,	40,00
1			80,00
	kg kg kg kg kg kg L g L kg L kg L ha/mês ud vb vb	kg 40 kg 150 kg 100 kg 3 kg 3 L 1,5 g 20 L 0,8 kg 1,5 L 0,8 kg 0,2 ha/mês 1 ud 30 ud 0,2 vb 0,2 vb 0,2 htr 1 htr 1 htr 1 dh 6 dh 2 dh 1 dh 2 dh 1 dh 2 dh 1 dh 2 dh 1 dh 2	Unidade Quantidade Preço Unitário (R\$) kg 40 1,80 kg 150 0,75 kg 100 0,64 kg 3 2,00 kg 3 4,00 L 1,5 12,00 g 20 0,45 L 0,8 9,00 kg 1,5 31,00 L 0,8 59,00 kg 0,2 25,00 ha/mês 1 7,58 ud 30 0,80 ud 0,2 53,00 vb 0,2 50,00 htr 1 80,00 htr 1 80,00 htr 1 80,00 dh 2 40,00 dh 2 40,00 dh 2 40,00 dh 1 40,00 dh 2 20,00

Transporte interno	dh	2	20,00	40,00
Colheita e embalagem	dh	10	20,00	200,00
Sub-total 6				680,00
TOTAL GERAL				1.463,58

ANEXO C

Custos operacionais de produção do Feijão Vigna (1 ha)

Custos operacionais de produção do Feijão	<i>vigna</i> (1 na _.)		
			Preço Unitário	Custo / Ano
Especificação	Unidade	Quantidade	(R\$)	(R\$)
1- SEMENTES E MUDAS				
Semente de feijão vigna	kg	40	1,30	52,00
Sub-total 1				52,00
2- FERTILIZANTES				
N-P-K (4-30-10)	kg	150	0,75	112,50
Sulfato de amônio	kg	50	0,64	32,00
Sulfato de zinco	kg	2	2,00	4,00
Ácido bórico	kg	2	4,00	8,00
Fertilizante foliar	L	1	12,00	12,00
Molibidato de sódio	g	20	0,45	9,00
Sub-total 2				177,50
3- DEFENSIVOS				
Espalhante adesivo 20%	L	0,3	9,00	2,70
Thiophanate methyl 20% +				
Chlorothalonil 50%	kg	1	31,00	31,00
Lambdacihalothrin 5%.	L	0,2	59,00	11,80
Sub-total 3				45,50
4- OUTROS INSUMOS / SERVIÇOS				
Água	1000 m ³			
Prestação de k1	ha/mês	1	7,58	7,58
Sacaria	ud	25	0,80	20,00
Análise de solo	ud	0,2	53,00	10,60
Manutenção de equipamentos de irrigação	vb	0,2	60,00	12,00
Ferramentas diversas	vb	0,3	50,00	15,00
Sub-total 4				65,18
5- OPERAÇÕES MECANIZADAS				
Preparo de solo	htr	2	80,00	160,00
Plantio / adubação	htr	1	60,00	60,00
Beneficiamento	htr	1	60,00	60,00
Sub-total 5				280,00
6- MÃO-DE-OBRA				
Capina	dh	4	20,00	80,00
Aplicação de herbicida	dh	2	40,00	80,00
Aplicação de defensivos	dh	2	40,00	80,00
Aplicação de fertilizante foliar	dh	2	40,00	80,00
Irrigação	dh	2	20,00	40,00

Adubação de cobertura	dh	2	20,00	40,00
Transporte interno	dh	2	20,00	40,00
Colheita e embalagem	dh	10	20,00	200,00
Sub-total 6				640,00
TOTAL GERAL				1.260,18

ANEXO D

Custos operacionais de produção da Melancia (1 ha)

Custos operacionais de produção da Mela	ncia (1 ha)		1	
Especificação	Unidade	Quantidade	Preço Unitário (R\$)	Custo / Ano (R\$)
1- SEMENTES E MUDAS	Omaaac	Quantidade	(Ι (Ψ)	(Ιζψ)
Semente de melancia crimson sweet	σ	1.500,00	0,26	390,00
Sub-total 1	g	1.500,00	0,20	390,00
2- FERTILIZANTES				370,00
Fertilizante foliar	L	6	12,00	72,00
N-P-K (6-24-12)	kg	500	1,08	540,00
Cloreto de potássio	kg	250	1,65	412,50
Esterco de gado	m ³	5	50,00	250,00
FTE - BR 12	kg	50	0,76	38,00
Uréia	kg	120	0,80	96,00
Sub-total 2	Kg	120	0,00	1.408,50
3- DEFENSIVOS				1.400,50
Imidacloprid 70%	kg	0,5	593,30	296,65
Acetamiprid 20%	kg	0,1	280,00	16,8
Dimethoate 40%	L	0,3	18,50	5,55
Cypermethrin 56% + profenofos 4%	L	0,2	43,40	8,68
Espalhante adesivo 20%	L	1	9,00	9,00
Trichlorfon 50%	L	0,6	31,00	18,6
Thiophanate methyl 20% +	_		2 2,0 0	
Chlorothalonil 50%	kg	1	31,00	31,00
Sub-total 3				386,28
4- OUTROS INSUMOS / SERVIÇOS				
Prestação de k1	ha/mês	4	7,58	30,32
Análise de solo	ud	0,2	53,00	10,60
Manutenção de equipamentos de				
irrigação	vb	0,3	60,00	15,00
Ferramentas diversas	vb	0,3	50,00	15,00
Sub-total 4				70,92
5- OPERAÇÕES MECANIZADAS				
Preparo de solo	htr	5	80,00	400,00
Sulcamento	htr	2	60,00	120,00
Sub-total 5				520,00
6- MÃO-DE-OBRA				
Aplicação de esterco	dh	8	20,00	160,0
Adubação de plantio	dh	6	20,00	120,0
Plantio	dh	12	20,00	240,0

Adubação de cobertura	dh	6	20,00	120,00
Capina	dh	12	20,00	240,00
Aplicação de defensivos	dh	9	40,00	360,00
Desbaste	dh	6	20,00	120,00
manejo de frutos	dh	12	20,00	240,00
Aplicação de fertilizante foliar	dh	6	40,00	240,00
Irrigação	dh	4,1	20,00	82,00
Transporte interno	dh	6	20,00	120,00
Colheita, classificação e				
embalagem/carga	dh	22,9	20,00	458,00
Sub-total 6				2500,00
TOTAL GERAL				5.275,70

ANEXO E

Custos operacionais de produção do Milho (1 ha)

Especificação	Custos operacionais de produção do Mil	ho (1 ha)	I	1	
Especificação Unidade Quantidade (R\$ (R\$)				Preço	
1- SEMENTES E MUDAS	T	** * 1 1			
Semente de milho	* *	Unidade	Quantidade	(R\$	(R\$)
Sub-total 1		_			
2- FERTILIZANTES kg 300 0.80 240.00		kg	30	1,60	, , , , , , , , , , , , , , , , , , ,
N-P-K (4-14-8) kg 300 0,80 240,00 Uréia kg 100 0,80 80,00 Sub-total 2 330,00 Sub-total 2 330,00 Sub-total 2 330,00 Sub-total 2 330,00 Sepalhante adesivo 20% L 1 9,00 9,00 Chlorpyrifos 48% L 1 28,00 28,00 Thiodicarb 35% L 0,3 70,00 21,00 Sub-total 3 58,00 4 - OUTROS INSUMOS / SERVIÇOS Prestação de kl ha/mês 1 7,58 7,58 Sacaria ud 100 0,80 80,00 Análise de solo ud 0,2 53,00 10,60 Manutenção de equipamentos de irrigação vb 0,3 60,00 18,00 Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 126,18 5 - OPERAÇÕES MECANIZADAS Preparo de solo htr 2 80,00 160,00 Plantio / adubação htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Aransporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Colheita e embalagem dh 8 20,00 160,00					48,00
Uréia kg 100 0,80 80,00 Sulfato de zinco kg 5 2,00 10,00 Sub-total 2 330,00 330,00 330,00 Espalhante adesivo 20% L 1 9,00 9,00 Chlorpyrifos 48% L 1 28,00 28,00 Thiodicarb 35% L 0,3 70,00 21,00 Sub-total 3 58,00 4 OUTROS INSUMOS / SERVIÇOS Prestação de k1 ha/mês 1 7,58 7,58 Sacaria ud 100 0,80 80,00 Análise de solo ud 0,2 53,00 10,60 Manutenção de equipamentos de irrigação vb 0,3 60,00 18,00 Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 5 -0PERAÇÕES MECANIZADAS	2- FERTILIZANTES				
Sulfato de zinco kg 5 2,00 10,00 Sub-total 2 330,00 330,00 3- DEFENSIVOS 25 200 9,00 Espalhante adesivo 20% L 1 28,00 28,00 Chlorpyrifos 48% L 0,3 70,00 21,00 Sub-total 3 L 0,3 70,00 21,00 Sub-total 4 Destação de k1 ha/mês 1 7,58 7,58 Sacaria ud 100 0,80 80,00 Manutenção de equipamentos de irrigação vb 0,3 60,00 18,00 Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 126,18 126,18 126,18 5 - OPERAÇÕES MECANIZADAS Preparo de solo htr 2 80,00 160,00 Plantio / adubação htr 1 60,00 60,00 60,00 Beneficiamento htr 1 60,00 60,00 60,00 Aplicação de herbicida	`	kg		1 1	,
Sub-total 2 330,00		kg	100	0,80	80,00
3- DEFENSIVOS Espalhante adesivo 20%	Sulfato de zinco	kg	5	2,00	10,00
Espalhante adesivo 20% L 1 9,00 9,00 Chlorpyrifos 48% L 1 28,00 28,00 Thiodicarb 35% L 0,3 70,00 21,00 Sub-total 3 58,00 58,00 4- OUTROS INSUMOS / SERVIÇOS	Sub-total 2				330,00
Chlorpyrifos 48% L 1 28,00 28,00 Thiodicarb 35% L 0,3 70,00 21,00 Sub-total 3 58,00 58,00 4- OUTROS INSUMOS / SERVIÇOS Prestação de k1 ha/mês 1 7,58 7,58 Sacaria ud 100 0,80 80,00 Análise de solo ud 0,2 53,00 10,60 Manutenção de equipamentos de irrigação vb 0,3 60,00 18,00 Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 126,18 126,18 5- OPERAÇÕES MECANIZADAS 8 80,00 160,00 Preparo de solo htr 2 80,00 160,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 60,00 80,00 Aplicação de herbicida dh 4 20,00 80,00 Aplicação de defensivos dh 2 40,00 80,00	3- DEFENSIVOS				
Thiodicarb 35% L 0,3 70,00 21,00 Sub-total 3 58,00 4- OUTROS INSUMOS / SERVIÇOS Prestação de k1 ha/mês 1 7,58 7,58 Sacaria ud 100 0,80 80,00 Análise de solo ud 0,2 53,00 10,60 Manutenção de equipamentos de irrigação vb 0,3 60,00 18,00 Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 126,18 126,18 5- OPERAÇÕES MECANIZADAS Thr 2 80,00 160,00 Preparo de solo htr 2 80,00 160,00 Plantio / adubação htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 80,00 6- MÃO-DE-OBRA 2 40,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Irrigação dh	Espalhante adesivo 20%	L	1	9,00	9,00
Sub-total 3 58,00	Chlorpyrifos 48%	L	1	28,00	28,00
4- OUTROS INSUMOS / SERVIÇOS Prestação de k1 ha/mês 1 7,58 7,58 Sacaria ud 100 0,80 80,00 Análise de solo ud 0,2 53,00 10,60 Manutenção de equipamentos de irrigação vb 0,3 60,00 18,00 Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 126,18 126,18 5- OPERAÇÕES MECANIZADAS 80,00 160,00 Preparo de solo htr 2 80,00 160,00 Plantio / adubação htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 80,00 6- MÃO-DE-OBRA 2 40,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Irrigação dh 2 40,00 80,00 Irrigação dh 2 20,00 40,00 Irrigação <	Thiodicarb 35%	L	0,3	70,00	21,00
Prestação de k1 ha/mês 1 7,58 7,58 Sacaria ud 100 0,80 80,00 Análise de solo ud 0,2 53,00 10,60 Manutenção de equipamentos de irrigação vb 0,3 60,00 18,00 Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 126,18 126,18 5- OPERAÇÕES MECANIZADAS 75 75 Preparo de solo htr 2 80,00 160,00 Plantio / adubação htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 280,00 6- MÃO-DE-OBRA 2 40,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 40,00 Transporte interno dh 2	Sub-total 3				58,00
Sacaria ud 100 0,80 80,00 Análise de solo ud 0,2 53,00 10,60 Manutenção de equipamentos de irrigação vb 0,3 60,00 18,00 Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 126,18 5- OPERAÇÕES MECANIZADAS 2 80,00 160,00 Preparo de solo htr 1 60,00 60,00 Plantio / adubação htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 280,00 6- MÃO-DE-OBRA 2 40,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2	4- OUTROS INSUMOS / SERVIÇOS				
Análise de solo ud 0,2 53,00 10,60 Manutenção de equipamentos de irrigação vb 0,3 60,00 18,00 Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 126,18 126,18 5- OPERAÇÕES MECANIZADAS 5 160,00 Preparo de solo htr 1 60,00 60,00 Plantio / adubação htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 280,00 6- MÃO-DE-OBRA 2 40,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 8 20,00 160,00 Colheita e embalagem dh	Prestação de k1	ha/mês	1	7,58	7,58
Manutenção de equipamentos de irrigação vb 0,3 60,00 18,00 Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 126,18 5- OPERAÇÕES MECANIZADAS	Sacaria	ud	100	0,80	80,00
irrigação vb 0,3 60,00 18,00 Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 126,18 5- OPERAÇÕES MECANIZADAS	Análise de solo	ud	0,2	53,00	10,60
Ferramentas diversas vb 0,2 50,00 10,00 Sub-total 4 126,18 126,18 5- OPERAÇÕES MECANIZADAS 80,00 160,00 Preparo de solo htr 1 60,00 60,00 Plantio / adubação htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 280,00 6- MÃO-DE-OBRA 2 40,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	Manutenção de equipamentos de				
Sub-total 4 126,18 5- OPERAÇÕES MECANIZADAS 160,00 Preparo de solo htr 2 80,00 160,00 Plantio / adubação htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 6-MÃO-DE-OBRA 280,00 Capina dh 4 20,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	irrigação	vb	0,3	60,00	18,00
5- OPERAÇÕES MECANIZADAS htr 2 80,00 160,00 Plantio / adubação htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 6- MÃO-DE-OBRA	Ferramentas diversas	vb	0,2	50,00	10,00
Preparo de solo htr 2 80,00 160,00 Plantio / adubação htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 6- MÃO-DE-OBRA 20,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	Sub-total 4				126,18
Plantio / adubação htr 1 60,00 60,00 Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 6- MÃO-DE-OBRA 20,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	5- OPERAÇÕES MECANIZADAS				
Beneficiamento htr 1 60,00 60,00 Sub-total 5 280,00 6- MÃO-DE-OBRA	Preparo de solo	htr	2	80,00	160,00
Sub-total 5 280,00 6- MÃO-DE-OBRA dh 4 20,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	Plantio / adubação	htr	1	60,00	60,00
6- MÃO-DE-OBRA dh 4 20,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	Beneficiamento	htr	1	60,00	60,00
Capina dh 4 20,00 80,00 Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	Sub-total 5				280,00
Aplicação de herbicida dh 2 40,00 80,00 Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	6- MÃO-DE-OBRA				
Aplicação de defensivos dh 2 40,00 80,00 Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	Capina	dh	4	20,00	80,00
Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	Aplicação de herbicida	dh	2	40,00	80,00
Irrigação dh 3 20,00 60,00 Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	Aplicação de defensivos	dh	2	40,00	80,00
Adubação de cobertura dh 2 20,00 40,00 Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00		dh	3	20,00	
Transporte interno dh 2 20,00 40,00 Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00		dh	2	20,00	
Colheita e embalagem dh 8 20,00 160,00 Sub-total 6 540,00	3				
Sub-total 6 540,00	1				*
				,	
	TOTAL GERAL				1.382,18

ANEXO F

Custos operacionais de produção da Banana (1 ha)

Custos operacionais de produção da Ban	ana (1 ha)		1	
		Preço		
		Unitário		Custo / Ano
Especificação	Unidade	(R\$)	Quantidade	(R\$)
1- SEMENTES E MUDAS				
Muda de banana prata	ud	1,80		
Sub-total 1				
2- FERTILIZANTES				
Super fosfato simples	kg	0,56	300	168,00
Ácido bórico	kg	4,00	17	68,00
Sulfato de amônio	kg	0,64	600	384,00
Uréia	kg	0,80	300	240,00
Cloreto de potássio	kg	1,65	1.250,00	2.062,50
Sulfato de zinco	kg	2,00	200	400,00
Esterco de gado	m³	50,00	25	1.250,00
Sulfato de magnésio	kg	0,72	200	144,00
FTE - BR 12	kg	0,76		
Calcário	t	80,00	0,7	56,00
Sub-total 2		,	Í	4.772,50
3- DEFENSIVOS				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Óleo mineral	L	4,50	15	67,50
Propiconazole 25%	L	85,00	0,4	34,00
Paraquat 20% + Diuron 10%	L	30,00	0,5	15,00
Controle biológico - Beauveria	kg	22,00	5	110,00
Epoxiconazol 5% + Piraclostrobina	<u> </u>	,	_	-,
13,3%	L	85,00	0,5	42,50
Epoxiconazol 7,5%	L	63,00	0,6	37,80
Carbofuran 5%	kg	6,90	3	20,70
Sub-total 3				327,50
4- OUTROS INSUMOS / SERVIÇOS				,
Prestação de k1	ha/mês	7,58	12	90,96
Análise de solo	ud	53,00	0,2	10,60
Análise foliar	ud	47,00	0,2	9,40
Análise nematológica	ud	30,00	0,2	6,00
Pulverização aérea	ha	35,00	3	105,00
Ferramentas diversas	vb	50,00	1	50,00
Manutenção de equipamentos de		,		22,00
irrigação	vb	60,00	1	60,00
Sub-total 4				331,96
5- OPERAÇÕES MECANIZADAS				•
-		•		

Preparo de solo	htr	80,00		
Sulcamento	htr	60,00		
Sub-total 5				
6- MÃO-DE-OBRA				
Preparo de covas e plantio	dh	20,00		
Aplicação de esterco	dh	20,00	6	120,00
Desfolha	dh	20,00	10	200,00
Aplicação de herbicida	dh	40,00	1	40,00
Roçagem	dh	20,00	2	40,00
Desbrota	dh	20,00	16	320,00
Adubação de cobertura	dh	20,00	24	480,00
Corte do coração	dh	20,00	2	40,00
Rebaixamento	dh	20,00	6	120,00
Controle do moleque	dh	20,00	0,8	16,00
Marcação cachos	dh	20,00	2	40,00
Irrigação	dh	20,00	16,5	330,00
Corte e transporte de cachos banana	dh	30,00	31,7	950,00
Embalamento de banana	dh	40,00	19	760,00
Sub-total 6				3.456,00
TOTAL GERAL				8.887,96

ANEXO G

Custos operacionais de produção do Mamão (1 ha)

Custos operacionais de produção do Mai	mao (1 na)		1	
		Preço		G
F 'C' ~	TT '1 1	Unitário	0 411	Custo / Ano
Especificação	Unidade	(R\$)	Quantidade	(R\$)
1- SEMENTES E MUDAS		7200.00	0.2	2 1 (0 00
Semente de mamão	kg	7200,00	0,3	2.160,00
Sub-total 1				2.160,00
2- FERTILIZANTES				
Esterco de gado	m³	50,00	18,5	925,00
Cloreto de potássio	kg	1,65	777	1.282,05
Sulfato de magnésio	kg	0,72	148	106,56
Super fosfato simples	kg	0,56	555	310,80
Ácido bórico	kg	4,00	18,5	74,00
Sulfato de amônio	kg	0,64	777	497,28
Sulfato de zinco	kg	2,00	18,5	37,00
FTE - BR 12	kg	0,76	55,5	42,18
MAP	kg	1,18	370	436,60
Calcário	t	80,00	0,6	44,40
Sub-total 2				3.755,87
3- DEFENSIVOS				
Fosethyl-AL 80%	kg	62,00	1	62,00
Thiophanate methyl 70%	kg	29,00	0,4	11,60
Thiamethoxam 25%	kg	269,3	0,5	134,65
Trichlorfon 50%	L	31,00	0,2	6,20
Espalhante adesivo 20%	L	9,00	2	18,00
Abamectina 1,8%	L	60,00	0,6	36,00
Oxicloreto de cobre 84%	kg	23,00	4	92,00
Enxofre 80%	kg	4,50	2	9,00
Thiabendazole 60%	L	200,00	0,3	60,00
Sub-total 3		,	,	429,45
4- OUTROS INSUMOS / SERVIÇOS				,
Prestação de k1	ha/mês	7,58	12	90,96
Caixa p/ mamão (20 kg madeira)	ud	2,20	2.000,00	4.400,00
Análise de solo	ud	53,00	0,2	10,60
Análise foliar	ud	47,00	0,2	9,40
Análise nematológica	ud	30,00	0,2	6,00
Armadilha Mephail	ud	8,00	2	16,00
Proteína hidrolisada	L	16,00	0,5	8,00
Paraquat 20%	L	30,00	3	90,00
Ferramentas diversas	vb	50,00	1	50,00

	1 1			
Manutenção de equipamentos de		60.00		60.00
irrigação	vb	60,00	1	60,00
Caixa plástica-contentores	ud	12,00	25	300,00
Saco de polietileno	1000 ud	150,00	2	300,00
Sub-total 4				5.340,96
5- OPERAÇÕES MECANIZADAS				
Preparo de solo	htr	80,00	4	320,00
Sulcamento	htr	60,00	2	120,00
Sub-total 5				440,00
6- MÃO-DE-OBRA				
Produção de mudas	dh	20,00	12	240,00
Preparo de covas e plantio	dh	20,00	18	360,00
Cobertura morta	dh	20,00	12	240,00
Transporte interno	dh	20,00	10	200,00
Irrigação	dh	20,00	16,5	330,00
Aplicação de defensivos	dh	40,00	6	240,00
Aplicação de herbicida	dh	40,00	3	120,00
Adubação de cobertura	dh	20,00	8	160,00
Aplicação de esterco	dh	20,00	8	160,00
Capina	dh	20,00	12	240,00
Desbrota	dh	20,00	6	120,00
Desbaste	dh	20,00	8	160,00
Controle de formigas	dh	20,00	1	20,00
Colheita, classificação e				
embalagem/carga	dh	20,00	80	1.600,00
Sub-total 6				4.190,00
TOTAL GERAL				16.316,28

ANEXO H

Custos operacionais de produção do Limão (1 ha)

Custos operacionais de produção do Lin	nao (1 na)	ı	1	
		Preço		
7		Unitário		Custo / Ano
Especificação	Unidade	(R\$)	Quantidade	(R\$)
1- SEMENTES E MUDAS		• 00	1.0	
Muda de lima ácida (thaiti)	ud	3,00	10	30,00
Sub-total 1				30,00
2- FERTILIZANTES				
Esterco de gado	m³	50,00	4,8	238,00
Cloreto de potássio	kg	1,65	238	392,70
Sulfato de magnésio	kg	0,72	28,6	20,56
Super fosfato simples	kg	0,56	95,2	53,31
Ácido bórico	kg	4,00	7,1	28,56
Sulfato de amônio	kg	0,64	95,2	60,93
Sulfato de zinco	kg	2,00	21,4	42,84
Fertilizante foliar	L	12,00	36	432,00
Nitrato de cálcio	kg	1,50	95,2	142,80
Fosfito	1	12,00	6	72,00
Sub-total 2				1.483,70
3- DEFENSIVOS				
Acephathe 75%	kg	39,00	0,13	4,88
Azociclotina 50%	L	112,00	0,1	11,2
Deltamethrin 2,5%	L	49,50	1	49,50
Enxofre 80%	kg	4,50	2	9,00
Fenpropathrin 30%	L	138,00	0,1	13,80
Thiacloprid 48%	L	254,00	0,02	5,08
Trichlorfon 50%	L	31,00	1,2	37,20
Sub-total 3		•		130,66
4- OUTROS INSUMOS / SERVIÇOS				,
Prestação de k1	ha/mês	7,58	12	90,96
sacaria laranja/limão	ud	0,50	900	450,00
Ferramentas diversas	vb	50,00	1	50,00
Análise de solo	ud	53,00	0,2	10,60
Análise foliar	ud	47,00	0,2	9,40
Manutenção de equipamentos de		,	,	,
irrigação	vb	60,00	1	60,00
Caixa plástica-contentores	ud	12,00		
Paraquat 20%	L	30,00	1	30,00
Tutor	ud	0,10	10	1,00
Sub-total 4				701,96

5- OPERAÇÕES MECANIZADAS				
Preparo de solo	htr	80,00		
Subsolagem	htr	80,00		
Sulcamento	htr	60,00		
Sub-total 5				
6- MÃO-DE-OBRA				
Preparo de covas e plantio	dh	20,00	1	20,00
Cobertura morta	dh	20,00	0,5	10,00
Transporte interno	dh	20,00	12	240,00
Irrigação	dh	20,00	16,5	330,00
Adubação de cobertura	dh	20,00	12	240,00
Aplicação de defensivos	dh	40,00	6	240,00
Aplicação de fertilizante foliar	dh	40,00	10	400,00
Aplicação de herbicida	dh	40,00	3	120,00
Tutoramento	dh	20,00	0,5	10,00
Controle de formigas	dh	20,00	3	60,00
Desbrota	dh	20,00		
Roçagem	dh	20,00	4	80,00
Aplicação de esterco	dh	20,00	3	60,00
Podas e limpezas	dh	20,00	5	100,00
Colheita, classificação e				
embalagem/carga	dh	20,00	60	1.200,00
Sub-total 6				3.110,00
TOTAL GERAL				5.456,32