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RESUMO 

 

A indústria de seguros não-vida desempenha um papel crucial na proteção da sociedade 

contra uma miríade de perigos. No entanto, existem algumas lacunas de proteção por meio de 

seguros, especialmente para riscos fundamentais. O seguro paramétrico oferece uma solução 

para essas lacunas ao mesmo tempo em que melhora a eficiência do mercado segurador. Uma 

aplicação possível é em questões de alterações climáticas. A crescente frequência e 

intensidade das secas no Brasil, agravadas pelas mudanças climáticas, tem causado crises 

econômicas e energéticas. Este estudo aborda essa questão urgente ao introduzir um produto 

de seguro paramétrico adaptado às hidroelétricas brasileiras, com o objetivo de melhorar a 

resiliência da geração de energia durante crises de seca e mitigar os riscos hidrológicos 

sistêmicos. O objetivo principal deste estudo foi desenhar e avaliar a viabilidade deste produto 

de seguro inovador. A proposta inicial era indexar o seguro em índices de precipitação, 

porém, os resultados apontam para um índice combinado de precipitação e de vazão de água 

dos rios ou volume de reservatórios, dependendo das características da usina hidroelétrica. 

Relativamente aos procedimentos metodológicos, este trabalho é pioneiro no uso de 

econometria espacial e cópulas para modelar a geração de energia de usinas hidroelétricas 

brasileiras, uma abordagem não comumente explorada na literatura existente. Nossas 

principais conclusões enfatizam a utilidade da econometria espacial, particularmente o 

modelo SARAR de efeitos fixos, na modelagem eficaz da geração de energia para ambos os 

tipos de usinas hidrelétricas. Esse modelo leva em conta a influência das usinas vizinhas, o 

que é vital no contexto do sistema elétrico interligado do Brasil. Além disso, o estudo 

esclarece o potencial do seguro paramétrico na mitigação dos riscos hidrológicos durante 

crises de seca, mas reitera a necessidade de produtos de seguros diferenciadas para usinas fio-

d’água e de armazenamento, devido às suas diferentes características. Um aspecto crucial e 

pioneiro deste estudo foi utilizar modelos de cópulas condicionais como mecanismo de 

verificação de robustez, para garantir a não-endogeneidade do modelo espacial. Os resultados 

iniciais não apresentam viabilidade imediata para as seguradoras, devido ao elevado índice de 

sinistralidade, mas melhorias podem ser feitas, principalmente com a introdução de um 

componente dinâmico nos modelos, pois todos foram estimados de maneira estática. Por fim, 

ao introduzir metodologias inovadoras e fornecer informações valiosas sobre a modelagem de 

geração de energia, este estudo oferece um caminho promissor para aumentar a 

sustentabilidade e a resiliência do fornecimento de energia do Brasil, dada a crescente ameaça 

de secas induzidas pelas mudanças climáticas. 

 

Palavras-Chave: Seguro Paramétrico; Risco Hidrológico; Econometria Espacial; Copulas; 

Geradores de Energia. 

  



 

 

ABSTRACT 

 

The nonlife insurance industry plays a crucial role in safeguarding societal members against a 

myriad of perils. However, there are some insurance protection gaps (IPGs), especially for 

fundamental risks. Parametric insurance offers a solution for IPGs while improving the 

insurance market’s efficiency. One possible application is towards climate change issues. The 

increasing frequency and intensity of droughts in Brazil, exacerbated by climate change, have 

caused economical and energetic crises. This study addresses this pressing issue by 

introducing a parametric insurance product tailored to Brazilian hydroelectric companies, 

aiming to improve the resilience of energy generation during drought crises and mitigating 

hydrological systemic risks. The primary objective of this study was to design and evaluate 

the feasibility of this innovative insurance product. The initial proposal was to link the 

insurance solely on precipitation indexes, however, the results point out to a combined index 

of precipitation and rivers’ water flow or reservoir’s volume, depending on hydroelectric 

powerplant’s characteristics. Regarding to methodological procedures, this research lies in its 

pioneering use of spatial econometrics and copulas to model energy generation of Brazilian 

hydroelectric powerplants, an approach not commonly explored in the existing literature. Our 

main findings emphasize the utility of spatial econometrics, particularly the fixed-effects 

SARAR model, in effectively modeling energy generation for both hydroelectric powerplants’ 

types. This model takes into account the influence of neighboring powerplants, which is vital 

in the context of Brazil’s interconnected electrical system. Moreover, the study sheds light on 

the potential of parametric insurance in mitigating hydrological risks during drought crises, 

but it underscores the need for differentiated insurance designs for run-of-river and water 

store powerplants, due to their diverse characteristics. A crucial and pioneering aspect of this 

study was to use vine copulas models as a robustness check mechanism, to ensure the non-

endogeneity of the spatial model. The primary design does not show immediate viability for 

insurance companies, due to a high loss ratio, but improvements can be made, especially by 

introducing a dynamic component in the models, as they were all estimated in a static way. 

Ultimately, by introducing innovative methodologies and providing valuable insights into 

energy generation modeling, this study offers a promising avenue to enhance the 

sustainability and resilience of Brazil’s energy supply given the growing threat of climate 

change-induced droughts. 

 

Keywords: Parametric Insurance; Hydrological Risk; Spatial Econometrics; Copulas; Energy 

Generators. 
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1. INTRODUCTION 

Insurance can be defined as a legal and economic mechanism whereby individuals 

replace potential uncertain and substantial financial losses, stemming from contingent future 

events, for a smaller certain cost – the insurance premium (Vaughan & Vaughan, 2008). The 

nonlife insurance industry assumes a crucial role in safeguarding societal members against a 

myriad of perils. However, not all risks are insurable (for their nature or the insurers’ 

underwriting choices) and not all insurable risks are insured (given supply and demand issues) 

(Lin & Kwon, 2020; Schanz, 2018; Vaughan & Vaughan, 2008). This is reflected by a 

concept called insurance protection gap (IPG), meaning “the difference between the amount 

of insurance that is economically beneficial and the amount of coverage actually purchased” 

(Schanz, 2018, p. 1), which is common for fundamental risks, such as natural catastrophes, 

cyber-risks and epidemic related risks (Singer, 2019). 

Parametric insurance can offer a new opportunity to solve some IPG problems while 

improving the insurance market’s efficiency, as it is an effective mechanism especially in 

regions prone to natural catastrophes (Lin & Kwon, 2020). Also, it enables insurance 

companies to indemnify losses faster, as it requires no claim investigations, whilst reducing 

problems of moral hazard and adverse selection (Bokusheva, 2018; Lin & Kwon, 2020; 

Singer, 2019). 

Parametric insurance (PI), also known as index-based insurance, is an innovative 

actuarial scheme, most suitable for low-frequency, high-intensity losses. Unlike indemnity-

based insurance, PI does not cover the pure loss, but rather indemnifies the policyholder 

according to the variation of an index (parameter) that is observable, reliable, and ideally 

correlated with sustained losses (Eabrasu, 2021; Enríquez et al., 2020; Singer, 2019). This 

means that, even though the parameter is supposed to be correlated with a sustained loss, the 

insurance payouts are only triggered by the index, regardless of real losses. In this case, the 

insurance company provides a payout whose value is established  in advance, diverging from 

the conventional practice of determining the indemnity value based on the real losses incurred 

(Eabrasu, 2021; Enríquez et al., 2020). 

Within this framework, such scheme empowers policyholders to self-assess the 

potential impact of an event, i.e., the risk measurement is made not only by the insurance 

company, but the policyholder also plays an active role in this process by determining which 

levels of the index would represent a sustainable loss, and which levels would demand 

insurance coverage (Eabrasu, 2021). Furthermore, it can be a viable product for insurance 

companies to offer when there is insufficient information to underwrite the severity of actual 

losses, also overcoming the problem of information asymmetry, mitigating adverse selection 

and preventing moral hazards (Bokusheva, 2018; Enríquez et al., 2020; Han et al., 2019). 

PI fosters innovative insurance designs against the unconventional risks that fail to 

satisfy the criteria of conventional indemnity insurance (Lin & Kwon, 2020). The index may 

concern any triggering event (e.g., the magnitude of seismic activity or fluviometric levels), 

so the new generation of parametric insurance solutions include protection for events of 

terrorism or cyber-attacks, coverages for shipping and manufacturing companies when river 

water-levels fall and protection against the economic impact of infectious disease outbreaks 

(Moro, 2020; Singer, 2019). What these new solutions have in common is that they are not 

protecting against direct physical damage, but rather the indirect consequences of events, such 

as business interruption costs (Singer, 2019). One possible application of PI is related to 

weather issues, especially as we experience climate change effects (Horton, 2018). 

Climate change has become a pressing global issue, with far-reaching implications for 

different regions. These effects are expected to intensify with further warming (Bolton et al., 
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2020; Diffenbaugh et al., 2018; Domínguez-Tuda & Gutiérrez-Jurado, 2021; Gürtürk et al., 

2022; Lesk et al., 2021; Li et al., 2022; Mansoor et al., 2022; Montoya et al., 2021; Paltán et 

al., 2021; Qi et al., 2022; Tollefson, 2021; van Houtan et al., 2021; Wu et al., 2021; C. Zhang 

et al., 2021). We are witnessing unprecedented flooding, heatwaves, and wildfires which have 

already incurred billions of dollars in damages. These climate-related changes are raising 

concerns among governments and institutions worldwide (C. C. Lee et al., 2022; Mansoor et 

al., 2022; Mendes-Da-Silva et al., 2021; Verma, 2021).  

Discussions and proposals to address potential consequences of global warming have 

emerged in sectors that had not traditionally paid a lot of attention to it. The financial 

institutions, in particular, are increasingly involved, when not true drivers of changes to come 

(Campiglio et al., 2018; C. C. Lee et al., 2022; Michel-Kerjan & Morlaye, 2008). Central 

banks can have an additional role to play in mitigating climate change, by establishing 

policies such as carbon pricing, and integrating sustainability principles into financial 

practices and accounting frameworks (Bolton et al., 2020; Campiglio et al., 2018). 

The IFRS Foundation, a leading organization responsible for developing global 

accounting standards, has recently established the International Sustainability Standards 

Board (ISSB). ISSB’s primary responsibility is to define sustainability accounting standards 

to be applied in the upcoming financial years, with great focus on ESG (environmental, social 

and corporate governance) dynamics, as investors and stakeholders increasingly recognize the 

find it an urgent need for comprehensive information on climate-related matters (Tettamanzi 

et al., 2022). Climate change, in fact, poses a systemic risk akin to a “ruin problem”, i.e., 

where the system might be exposed to irreversible harm, eventually leading to the risk of total 

failure (Chenet et al., 2021). Notably, at the 2015 Paris Agreement, the promotion of risk 

transfer emerged as the key policy instrument for managing losses and damages associated 

with the adverse effects of climate change (Broberg, 2020; Horton, 2018).  

Thus, numerous applications of PI have arisen addressing climate change challenges. 

Insurance for agriculture is one of the most common applications (Horton, 2018; Jibril et al., 

2022), but there is also a growing use of parametric schemes for natural disasters (Broberg, 

2020; Horton, 2018; Lin & Kwon, 2020; Pai et al., 2022) and a novel and innovative 

application regards renewable energy generation.  

Examples of the latter include (i) wind farms, as the energy generation is affected by 

absent or low-speed wind, both conditions that could be affected by current climate change; 

(ii) hydropower generation systems, as hydroelectric reservoirs are susceptible to droughts 

that reduce their water storage, and high temperatures that increase evaporation rates; and 

even (iii) photovoltaic energy is susceptible to weather conditions, as the electricity 

generation is proportional to the solar radiation flux that reaches the cells, which can be 

affected by cloudy, rainy or dusty conditions during daylight hours (Drewing & Lanavère, 

2021; Enríquez et al., 2020). The demand for parametric insurance for renewable energy is 

likely to grow with continued expansion of power generation from renewable sources and 

concerns about weather and climate risks (Enríquez et al., 2020). 

In this study, we aim to evaluate the costs and viability of a parametric insurance 

scheme for renewable energy generation applied to Brazil. Brazil, bestowed with the world's 

largest fresh water reserves, relies predominantly on hydroelectric power, which accounts for 

approximately 65% of its energy consumption. However, in recent years, the nation has 

grappled with adverse impacts of climate change, notably prolonged periods of severe drought 

(Getirana et al., 2021; Hochberg & Poudineh, 2021; Paim et al., 2019). 

One of the main contributors to this, locally and globally, is deforestation. Brazil holds 

two major biomes, Amazon and Pantanal, which have suffered with wildfires and 
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deforestation, culminating in adverse modifications on air temperature, humidity, and 

consequential precipitation patterns. These changes are not restricted to these biomes. The 

hydroclimate in the south-central region – responsible for most of Brazil’s gross domestic 

product (GDP) –, for instance, is partly controlled by moisture transfer from the rainforest. 

Almost one-quarter of Brazil’s GDP comes from agriculture and livestock. One of the major 

exporters of soy, coffee and sugar cane, among other primary products, Brazil’s economy 

highly depends on water (Getirana et al., 2021; Silva et al., 2022). 

Regarding the energy generation, the country has the world’s second-largest installed 

hydropower capacity (behind only China), with Itaipu Power Plant. But, in 2021, river 

discharges on this powerplant’s area have fallen to their lowest levels in 91 years (Getirana et 

al., 2021). Droughts are not a new problem in Brazil. However, climate change has made 

them more intense and more frequent (Getirana et al., 2021; Hunt et al., 2018; Paim et al., 

2019). There is a high cost in dealing with energy crises resulting from drought, as 

thermoelectric power plants need to be actioned (and besides being more costly, many of 

them run on fossil fuels, which may worsen global warming) and sometimes even electricity 

rationing (with possible blackouts) is imposed (Hunt et al., 2018; Paim et al., 2019). These 

costs hit the consumers by elevating the electricity tariffs and can worsen economic crises 

already present in the nation (Getirana et al., 2021; Hunt et al., 2018; Paim et al., 2019). 

Our study proposes to design a parametric insurance product for Brazilian 

hydroelectric companies, indexed on Brazil’s National Institute of Meteorology (INMET)’s 

rainfall index, which could improve the companies’ operations sustainability and mitigate 

effects of drought crises. Such financial product will be constructed based on other parametric 

insurance studies in the literature, using GLM models and also more advanced techniques, 

such as spatial econometrics and copulas, to determine pricing methods. In the end, we will be 

able to not only unravel the spatial interdependence between climatic variables and energy 

generation, but also to elucidate the intricate conditional non-linear dependency structures to 

different power plant facilities. 
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2. THEORETICAL BACKGROUND 

This chapter is divided in 4 subsections, comprehending (i) the effects of climate 

change onto the financial sector; (ii) the history, main characteristics and functioning of the 

Brazilian electric sector; (iii) an overview of non-life insurance pricing in actuarial literature, 

and; (iv) the historical and most recent applications of weather-index insurance and its pricing 

methods. 

2.1. Climate change and its impact on the financial sector 

Within the context of the business community, climate change and the behavior of 

individuals have become determinant factors in companies’ long-term perspectives. After a 

number of climate related disasters and resulting events, there is a growing pressure for 

companies to increase their efforts to manage the operational risks and potential liabilities 

caused by climate change (Mendes-Da-Silva et al., 2021). In an attempt to mitigate climate 

change’s effects, the 2015 Paris Agreement, for instance, introduced a new compliance 

model, based on National Determined Contributions (NDC), to reduce global greenhouse 

gases (GHG) emissions (Galletta et al., 2022; C. C. Lee et al., 2022). 

Globally, nations are actively collaborating to attain environmental sustainability by 

implementing diverse strategies for reducing GHG emissions, from cleaner energy sources, 

such as wind power, photovoltaics and hydropower, to the creation of global carbon trading 

markets (C. C. Lee et al., 2022). These initiatives are integral to climate finance, a concept 

that aligns financial systems and sustainability, to foster green growth while concurrently 

mitigating carbon dioxide emissions. Climate finance is an essential tool in addressing climate 

change and has regained prominence as a top priority in international climate negotiations (C. 

C. Lee et al., 2022). 

It is now widely accepted that unmitigated climatic change poses serious threats to 

financial stability and, therefore, is material to central banks and financial supervisors’ 

mandates (Campiglio et al., 2018; Chenet et al., 2021). Such recognition was a key catalyst in 

the creation of the Network for Greening the Financial System (NGFS), an international 

group of central banks, financial supervisors and observers focused on how financial policy 

needs to adjust to the risks posed by climate change and the low-carbon transition (Chenet et 

al., 2021).  

An example of the effect of climate change onto the financial sector is that the 

increase in climate-induced physical risks (e.g., heatwaves and floods) directly affects 

insurers. Uninsured risks may harm the financial situation of households and businesses, 

resulting in potential losses for the banks that serve them (Campiglio et al., 2018). Thus, 

climate change poses new challenges and opportunities for insurers (and actuaries) as 

stakeholders demand that insurance solutions go beyond traditional risk transfer to explicitly 

address climate risk adaptation and seize new opportunities, providing aid for companies to 

adapt to this new climate scenario (Can & Musulin, 2023). 

In 2020, the Australian Institute of Actuaries released an information note for its 

members with recommendations on actuarial practices, including Enterprise Risk 

Management (ERM) related to climate change issues (Actuaries Institute Australia, 2020). 

Figure 1, extracted from this information note, illustrates the impact of climate-related risks 

on diverse insurance processes within financial institutions. 
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Source: Actuaries Institute Australia (2020). 

Figure 1 depicts the extensive influence of climate change on insurance procedures, 

encompassing property and casualty, life and pension products, as well as external 

stakeholders associated with insurance companies. Climate-related financial risks (CRFR) 

comprehend physical, transition and liability risks (Bolton et al., 2020; Chenet et al., 2021). 

Distinguished by their profound reach, unpredictable character, and irreversibility, climate-

related financial risks, CRFR are endogenous and systemic in nature, with the potential to 

affect entire economies and financial systems (Chenet et al., 2021). Government climate 

policies alone might not prevent financial instability during the transition., and, in fact, if 

implemented too abruptly and without the adequate safeguards, they might increase transition 

risks (Campiglio et al., 2018). 

A key obstacle to the achievement of a smooth low-carbon transition is the limited 

awareness among companies and investors regarding their exposure to CRFR. Most 

companies are not used to assessing the impact of these risks on their business models, while 

most investors are unaware of how exposed their portfolios are. Hence, despite CRFR unique 

characteristics, the emerging policy framework for addressing them has largely focused on 

market-oriented solutions which seek to reduce perceived information deficits. These 

solutions include disclosure, transparency, scenario analysis and stress testing (Campiglio et 

al., 2018; Chenet et al., 2021). 

The International Integrated Reporting Council (IIRC) was established in 2010 to lay 

the foundations for the development of integrated reporting (IR) principles (Havlová, 2015). 

Its primary objective is to issue IR standards for global adoption by companies, thereby 

providing enhanced clarity in disclosures for users. 

 Havlová (2015) focuses on the early adopters of IR and investigates how the reporting 

changed since its adoption. The author shows that the most relevant information included in 

IR relate to environment, safety, employees’ welfare, community engagement, and corporate 

governance, all of which align with Environmental, Social and Governance (ESG) dynamics. 

Furthermore, accordingly to Chen et al. (2022), climate change crises accelerated ESG 

promotion. 

ESG principles are important drivers of financial actors’ decisions regarding 

sustainable finance. This concept and its implications have been extensively discussed in the 

Figure 1. Climate-Related Risks and Insurance Processes 
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academic literature and by market players and regulators, especially in the banking industry 

(Galletta et al., 2022).  

Galletta et al. (2022) conducted a bibliometric analysis regarding ESG in the financial 

sector on 271 publications over the 1986-2021 period. It is pointed out that the literature has 

increased considerably over the last decade, and scholars have mainly focused on the social 

dimension of ESG. It seems to exist a gap on the environmental issue, as only in more recent 

years it has been investigated as a new direction of studies in the banking sector. These 

studies are motived by the recent regulators’ actions towards green finance sustainability. 

Several studies on ESG dynamics can be cited in 2022 alone. Cankaya & Naeem 

(2022), Chen et al. (2022), Escobar-Anel (2022), Ford et al. (2022), Lai & Zhang (2022), Liu 

et al. (2022), Lööf et al. (2022), Prol & Kim (2022), Shanaev & Ghimire (2022), Shin et al. 

(2022), Umar et al. (2022) and Wen et al. (2022) analyze the impacts of ESG information on 

investors, stock returns or the investments that companies receive. Generally, companies with 

better ESG rates receive more investments or are perceived in a more optimistic way by 

investors. Besides that, when testing the relation between ESG factors and short-term investor 

sentiment in USA, Ford et al. (2022) reveal that only the environmental and ESG 

controversies scores are significant factors in option traders’ sentiment, with better scores in 

these factors significantly improving sentiment. The authors conclude that the most 

sophisticated investors are considering companies’ environmental risks. Prol & Kim (2022) 

also show that high ESG optimized portfolios have lower volatility (although also lower 

returns). This is endorsed by Lööf et al. (2022) findings, who also argue that good ESG 

performance mitigates financial risk. 

Besides the investment focus, Fafaliou et al. (2022) argue that ESG reputational risk 

has a negative impact on firm growth opportunities, mitigating market longevity. To show 

that, the author uses a panel dataset, comprising US firms over the period 2007-2019 . They 

conduct dynamic empirical analysis to quantitatively assess the connections between firms’ 

ESG reputational risk and their market sustainability. M. T. Lee et al. (2022) show that firms 

use ESG achievements as a means of brand valuation. The brands signal to consumers by 

communicating advertising spending, research and development investments, social media 

participation and ESG reputation (M. T. Lee et al., 2022). 

Q. Huang et al. (2022) examine how natural disasters affect the ESG disclosure 

policies of firms located close to disaster areas. Their research focuses on companies situated 

in areas adjacent to regions affected by natural disasters. As a general trend, these companies 

enhance their ESG disclosure transparency in the aftermath of such disasters. The changes in 

disclosure transparency after the disasters are consistent with managers increasing their 

preference for transparency as their risk salience increases. 

Tan & Zhu (2022) investigate how ESG ratings affect corporate green innovation 

based on data relating to Chinese A-share listed companies between 2010-2018. The results 

show that ESG ratings significantly promote the quantity and quality of corporate green 

innovation, alleviate financial constraints, and increase managers’ environmental awareness. 

In this context, the higher the ESG rating score, the more pronounced the promotion effect. 

Mu et al. (2023) investigate the effect of digital finance on corporate ESG, using a 

large sample of Chinese listed firms over the period 2011-2020. The authors found that digital 

finance positively affects corporate ESG performance, and digital finance enhances the ESG 

by mitigating corporate financial constraints. On a related matter, D. Zhang et al. (2022) 

estimate the impact of green finance and digital finance on environmental protection 

throughout a quantile regression model. The findings reveal that environmental CO2 

emissions decrease due to green finance, renewable energy investment, and technological 
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innovation, whereas CO2 emissions are increased by factors such as economic growth, energy 

consumption, trade, and foreign direct investment. 

Martins (2022) investigates how competition affects firms’ ESG practices in 22 

emerging markets, using the difference-in-differences technique and matched samples, from 

2011 to 2019. The results suggest that firms in emerging markets adjust ESG practices 

negatively after a shock in competition, contrasting with previous results from developed 

economies. Pineau et al. (2022) analyze the importance of ESG factors in sovereign credit 

ratings, by using a data-driven methodology. By employing a statistical shadow rating model, 

the authors compute variable importance scores to explore the relative importance of ESG and 

non-ESG factors in sovereign creditworthiness assessment. They found that the importance of 

ESG factors is different in emerging markets and developing economies (EMDEs) and in 

advanced economies (AEs): governance is the most important factor for AEs and non-ESG 

factors drive the creditworthiness of EMDEs. 

Focusing on the banking sector, Citterio & King (2023) use a sample of 362 American 

and European commercial banks, from 2012 to 2019. They construct a predictive model for 

bank financial distress and subsequently assess the influence of ESG indicators on its 

predictive performance. The outcomes highlight that ESG factors enhance the model’s 

accuracy in correctly identifying distressed banks and significantly reduce the chances of 

misclassifying distressed or defaulted banks as healthy. 

Agnese & Giacomini (2023) analyze whether ESG factors affect the pricing of bank 

bonds in the primary market. Using a dataset of fixed-rate senior bonds issued by 63 EU 

banks between 2006-2021, they find that, caeteris paribus, banks with higher ESG scores 

benefit from lower issuance costs. In accordance with Galletta et al. (2022), these results are 

not driven by the environmental friendliness of the issuer, but are rather attributed to robust 

corporate governance standards, ESG reporting and transparency practices. 

Finally, ESG inherently impacts the energy sector, driving investments away from 

conventional energy sources towards renewables, as heightened global awareness of climate 

risks takes hold (Kumar, 2023). Boldeanu et al. (2022) show that, for renewable electricity 

companies, returns are positively impacted by the environmental and social ESG scores, while 

governance favors traditional energy sources companies. Recent crises have further 

accelerated this investment shift. For instance, following the Russian invasion of Ukraine, 

European stocks linked to the low-carbon transition witnessed gains, reflecting market 

expectations of more robust policy measures in favor of renewable energy sources. This 

response was prompted by Europe’s increased dependence on Russian oil and gas (Deng et 

al., 2022). 

2.2. The Brazilian electric sector 

2.2.1. The Brazilian electricity sector’s history and the role of hydroelectric powerplants 

Electrification in Brazil traces its origins back to the last quarter of the 19th century 

and is intricately linked with the nation’s geographical features. The plateau relief and 

abundant rainfall created favorable conditions for substantial investments in hydroelectric 

power. Initially, national companies supplied energy with imported technology (Cataia, 

2019). 

In a still predominantly agrarian nation with sparse population density, the 

introduction of electricity was a gradual and uneven process. The primary needs revolved 

around lighting services, public transportation, and power for nascent industries (Carneiro, 

2000). Throughout the beginning of the 20th century, there was an upsurge in the expansion 

of electricity services, marked by the establishment of numerous energy companies, 
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encompassing both domestic and international investments, envisioning the industrial 

development (Cataia, 2019). 

Throughout the entirety of the 20th century, the hydroelectric model was dominant, 

even though it coexisted with thermoelectric power stations, with diversification beginning 

only in the 21st century (Carneiro, 2000). Initially, the generation and consumption of 

electricity were local and predominantly within major cities, often state capitals, along the 

Atlantic coast of the country (Cataia, 2019). It was not until the 1960s that long distances 

electric power transmission lines were established. This marked the transition from 

decentralized systems to the formation of a National Interconnected System (SIN), enabling 

energy generation at one location and its widespread distribution throughout the territory 

(Hermes de Araújo, 2006). 

Originally under complete state control, the sector underwent a substantial wave of 

privatizations during the 1990s, in line with the prevailing neoliberal policy stance of the 

government at that time (Campos et al., 2020; Hochberg & Poudineh, 2021). Nevertheless, 

diminished investment yields, coupled with uncertainties surrounding the energy market and 

the currency devaluation that occurred towards the end of the decade, posed obstacles to the 

continued expansion of this model. This led to a mismatch between the growing demand and 

the available supply, ultimately culminating in an energy crisis. The situation was further 

exacerbated by fluctuations in the dollar exchange rates, which escalated operational costs for 

many electric companies, particularly those reliant on natural gas, like thermoelectric plants 

(Campos et al., 2020). 

In 2002-2003, with a change of government, the electrical sector underwent a reform, 

which saw the State, previously relegated to a regulatory role, assuming a more active role, 

especially regarding the market expansion planning and monitoring. The National System 

Operator (ONS) became responsible for the operational planning, programming, and 

dispatching of the generation and transmission activities across the entire interconnected 

system of a competitive market (Campos et al., 2020; Hermes de Araújo, 2006). Brazil’s 

electricity policy has since focused primarily on the security of supply and, to some extent, 

cost efficiency, which is pursued through a combination of auctions, long-term contracts, and 

central coordination mechanisms (Hochberg & Poudineh, 2021). The energy distribution is 

negotiated through auctions in which investors submitted energy price proposals for 

government projects' included plants, with the lowest rate securing the auction (Campos et al., 

2020; Hochberg & Poudineh, 2021). Additionally, Brazil incorporated a bilateral market 

(ACL) within its auction system, allowing industries and large corporations to directly 

negotiate their electricity purchases with electricity suppliers. The Brazilian electricity auction 

system is schematized in Figure 2. 
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Figure 2. Brazil’s market design for long-term electricity auctions 

 
Source: Hochberg & Poudineh (2021). 

According to Hochberg & Poudineh (2021), auctions achieve efficiency and maximize 

social welfare, and have become the mainstay of power generation capacity development in 

Brazil. The country was among the early adopters, introducing both general electrical power 

auctions in 2004 and renewable-specific auctions in 2007, effectively replacing its feed-in 

tariff (FiT) . Tolmasquim et al. (2021) also examined the Brazilian experience with auction 

design for integrating renewable energy sources, highlighting it as a successful model now 

embraced globally. In Brazil, the government maintains a pivotal role in the electricity market 

by specifying critical auction parameters, including eligible technologies, procurement 

volume, and contract duration (Hochberg & Poudineh, 2021).  

Furthermore, Hochberg & Poudineh (2021) provide a comprehensive overview of the 

current workings of the Brazilian electricity sector. While the auction system proves its 

efficiency, they contend that the present market architecture may not be the optimal long-term 

solution for a sustainable market. Their argument is based on several considerations, 

including the neglect of consumer preferences in influencing investment decisions, the 

transfer of risks to consumers, a diminished significance of the short-term market and 

complications stemming from regulatory and design complexities. 

2.2.2. Main characteristics and Regulatory Frameworks of the Brazilian Electrical 

System 

The Brazilian electricity system is the 9th largest globally and is the most extensive in 

Latin America. As of 2020, Brazil’s installed capacity was distributed as follows: 62% hydro, 

25% thermal generation, 10% wind, 2% solar, and 1% nuclear (Hochberg & Poudineh, 2021). 

Figure 3 displays a map of Brazilian transmission lines originating from the SIN, offering a 

visual representation of the scale and interconnectivity of the country’s electrical network. 

Notably, Brazil hosts three of the world’s longest power transmission lines12. 

 
1 https://www.power-technology.com/features/featurethe-worlds-longest-power-transmission-lines-4167964/?cf-

view&cf-closed 
2 https://www.statista.com/statistics/1305820/longest-power-transmission-lines-worldwide/ 

https://www.power-technology.com/features/featurethe-worlds-longest-power-transmission-lines-4167964/?cf-view&cf-closed
https://www.power-technology.com/features/featurethe-worlds-longest-power-transmission-lines-4167964/?cf-view&cf-closed
https://www.statista.com/statistics/1305820/longest-power-transmission-lines-worldwide/
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Figure 3. Brazil’s Power Transmission Lines: 2024 Horizon 

 
Source: (ONS & SIN, n.d.) 

Notable among the primary hydroelectric plants in the country are those situated in the 

Paraná River basin, including Itaipu, the largest hydroelectric plant in Brazil and the second 

largest globally. Additionally, plants like Ilha Solteira and Jupiá have made significant 

contributions to Brazil’s energy matrix (Bentemuller, 2018). Furthermore, within the 

Tocantins-Araguaia basin, powerhouses like Tucuruí and Belo Monte hold substantial 

generation capacities and serve as pivotal contributors to both regional and national energy 

supplies (Falcão et al., 2019). 

There are mainly two types of hydroelectric powerplants: (i) run-of-river powerplants 

and (ii) water storage powerplants. The first type takes advantage of the natural flow of a 

watercourse, positioned on two different levels. Water is collected and routed through a 

channel equipped with a filtering grid to remove solid materials, such as debris, before 

flowing into a reservoir. It then descends a slope through a pressurized pipeline, reaching the 

power plant’s turbine chamber. Here, it drives a turbine, which rotates due to the force of the 

flowing water. A generator, connected directly to the turbine shaft, converts the mechanical 

energy into electrical power. Subsequently, the water is channeled into a drainage conduit and 

returned to the watercourse. The output of run-of-river powerplants is contingent on the flow 

rate of the watercourse and the height differential between the water’s intake and discharge 

points (Enel Green Power, n.d.). 

The second type involves the storage of water in reservoirs, which can be of natural or 

artificial origin, allowing for more control over electricity generation by adjusting the water 

release and flow through the turbines. The water is routed to the dam used to store water at 

higher altitudes. After that, the process is similar to run-of-river powerplants. The water is 

removed from the reservoir and taken through a system of pipelines to the turbine, which will 

generate energy, then it goes into a drainage channel and is reintroduced into the watercourse. 

When power demand is high, water is released from the reservoir to generate electricity, and 
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during low-demand periods, excess energy can be used to pump water back into the reservoir, 

acting as a form of energy storage. This approach offers greater flexibility in managing 

electricity supply according to needs, at certain times of the day or at certain times of the year. 

Because of that, they are also known as regulated flow hydroelectric plants (Enel Green 

Power, n.d.). 

Hydroelectricity stands as a vital renewable technology, making a significant 

contribution to grid regulation. It has the capability to swiftly and effectively respond to 

fluctuations in electricity demand, facilitated by water storage powerplants that enable the 

control of flow intensity from the reservoir (Enel Green Power, n.d.; Gonçalves & Mueller, 

2019). Figure 4 illustrates the two types of hydroelectric powerplants. 

Figure 4. Illustration of hydroelectric powerplants 

 

Source: (Enel Green Power, n.d.) 

Policies and regulatory frameworks have played a fundamental role in stimulating the 

Brazilian energy sector’s development. These evolving policies have consistently aimed to 

promote the expansion and utilization of the nation's abundant hydroelectric potential, all 

while ensuring a sustainable and reliable electricity supply in response to the escalating 

energy demand (Cataia, 2019; Hochberg & Poudineh, 2021). 

One of the central policies and regulatory frameworks in this sector was the 

establishment of the National Electric Energy Agency (ANEEL) in 1996. ANEEL holds a 

central position in the sector, as it is tasked with regulating and overseeing the entire 

electricity industry. This includes setting the rules and guidelines governing power plant 

operation, concessions, and bidding processes. Moreover, ANEEL defines the technical and 

environmental criteria for the establishment and operation of these plants, contributing 

significantly to the sector’s management and sustainability (Golfetto, 2023; Hermes de 

Araújo, 2006). 

Laws 8987/1995, 9074/1995, 9427/1996, 9648/1998 and 2655/1998 played a relevant 

role in shaping the norms for the granting and extension of concessions and permissions for 

public services, encompassing energy generation and transmission contracts (Ganim, 2009; 

Mayon & Parodi, 2018). Notably, Law 9648/1998 was responsible for establishing the ONS, 

which holds the mandate to coordinate and oversee the operation of electricity generation and 
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transmission within the SIN. This oversight and regulation fall under the purview of ANEEL 

(Ganim, 2009). 

Another important milestone was the creation of the Program for Incenting Alternative 

Sources of Electric Energy (PROINFA), in 2002 (Clauberg et al., 2021; Gonçalves & 

Mueller, 2019). The PROINFA program was initiated with the aim of promoting the 

utilization of renewable energy sources through the provision of financial and tariff 

incentives. It was conceived in response to the energy crises of 1999-2001 as a means to 

mitigate hydrological risk, thereby encouraging the growth of smaller hydroelectric projects, 

known as PCH, and alternative sources like wind power plants. This initiative effectively 

facilitated the diversification of the energy matrix and made a significant contribution to the 

sector’s sustainability (Clauberg et al., 2021; Ganim, 2009; Gonçalves & Mueller, 2019). 

These regulatory frameworks provided a favorable environment for the development 

of Brazil’s energy sector, encouraging investments and guaranteeing the necessary legal 

security for the implementation of the powerplants, transmission and distribution projects. 

The creation of bidding mechanisms, auctions and concessions was also essential for 

attracting investors and making these projects economically viable (Gonçalves & Mueller, 

2019; Hochberg & Poudineh, 2021; Melo et al., 2019). 

Regarding recent policies, Costa, Capaz, et al. (2022) model the possible long-term 

consequences of a recently approved law (Ordinary Law 14300/2022) for regulating on-grid 

renewable distributed generation in Brazil. This new law states that compensation for 

electricity injected into the grid by prosumers will no longer be 100%, to safeguard 

distribution companies and conventional consumers. The results show that the new law 

successfully mitigates tariff increases and reduces social inequality, which are its main goals. 

However, it shows negative implications to the decentralized generation business, market 

welfare, and the environment. 

Also, Costa, Bonatto, et al. (2022) propose an optimization of energy tariff pricing in 

Brazil. The existing tariff model, designed for fixed rates and grids lacking distributed energy 

resources, is now being reimagined. The proposed model incorporates static time-of-use rates, 

distributed generation, and energy storage, thus enabling optimization of the regulated 

electricity market. A significant policy insight from this study is the potential to reduce the 

compensation parameter once distributed generation and energy storage systems become 

established in the market. This approach helps avert tariff increases, safeguards traditional 

consumers, aligns with societal interests, and aligns with the Ordinary Law 14300/2022 

analyzed by Costa, Capaz, et al. (2022). 

Public policies and regulations aimed at hydrological risk management play a key role 

in promoting water security and reducing the impacts associated with extreme events by 

establishing guidelines and rules for the operation of hydroelectric plants, reservoir 

management and monitoring of water resources (Assed & Assed, 2020; Esposito, 2018; Melo 

et al., 2019; Mendes et al., 2016). These regulations can address aspects such as defining the 

rules for operating reservoirs, safety criteria and sizing of hydraulic structures, sharing costs 

and benefits, and establishing contingency policies to face extreme events. The 

implementation and compliance with these regulations are essential to ensure water security 

and the reduction of hydrological risks (Assed & Assed, 2020; Melo et al., 2019). 

It is important to highlight that coordination between the different levels of 

government, such as federal, state and municipal, is fundamental for the success of public 

policies and regulations related to hydrological risk management. The harmonization of 

strategies and the exchange of information between the different agents are essential to ensure 

an integrated and effective approach (Bentemuller, 2018; Mayon & Parodi, 2018). 
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2.2.3. Hydrological Risk and the Energy Reallocation Mechanism 

Historically, Brazil has had a strong dependence on hydroelectric generation, which is 

partly due to the abundance of water resources in its territory. From the inception of Brazil’s 

electricity matrix, hydroelectric plants have been responsible for a significant portion of 

energy generation, reaching high levels in relation to other sources. This scenario is the result 

of both the available hydroelectric potential and the incentive policies and investments made 

in the sector (Assed & Assed, 2020). 

The contribution of hydroelectric plants to the stability and reliability of the electrical 

system is still central in Brazil’s energy context. These plants play a key role in ensuring the 

continuous supply of electricity, acting as a reliable and stable source of generation. Its quick 

and flexible response capacity to changes in demand and operational contingencies (for 

instance, with water storage capacity) gives it a significant advantage for balancing the 

electrical system (Golfetto, 2023). 

Hydroelectric plants’ rapid response capacity allows efficient control of the generation 

frequency, keeping it within established limits. This is fundamental to avoid unwanted 

oscillations in the electrical network, guaranteeing the operational stability of the system 

(Gonçalves & Mueller, 2019). These plants are designed and built to operate for many 

decades, with proper maintenance and continuous monitoring. This operational reliability is 

crucial for the availability of electrical energy in a consistent and safe way, reducing the 

probability of supply interruptions (Mayon & Parodi, 2018). 

However, it is important to point out that the percentage of energy generated from 

hydroelectric plants is subject to fluctuations over time, varying accordingly to hydrological 

conditions, and may be influenced by climatic factors, such as rains and droughts, as well as 

the installed capacity and operation of the plants (Assed & Assed, 2020; Getirana et al., 

2021). 

It is noteworthy that, although hydroelectric plants have advantages in terms of 

stability and reliability of the electrical system, their socio-environmental impacts and the 

challenges related to hydrological variability must be taken into account. Relying exclusively 

on hydroelectric plants can expose the electrical system to vulnerabilities in the face of 

extreme events or climate changes (Melo et al., 2019; Paim et al., 2019).  

Hydrological risks refer to issues related to the volume and/or quality of the water, 

which affect the operation of hydroelectric powerplants (Paim et al., 2019). For instance, there 

is the risk of having insufficient water supply to support expected levels of electricity 

generation, carrying the potential for physical, financial, environmental and social impacts 

(Paim et al., 2019). 

Hydrological risk can be mitigated with different approaches. Over the last few 

decades, there has been a gradual diversification of the Brazilian energy matrix, with greater 

incentives for alternative energy sources, such as thermal, wind, solar and biomass generation 

(Esposito, 2018; Melo et al., 2019; Paim et al., 2019). This diversification seeks to reduce the 

exclusive dependence on hydroelectric plants and to mitigate the risks associated with 

hydrological variations, including extended dry spells. This strategy aims to ensure the long-

term stability and reliability of the electrical system (Clauberg et al., 2021; Esposito, 2018; 

Paim et al., 2019).  

Maestri & Andrade (2022) analyze the Brazilian electricity industry’s history, 

focusing on the centralization of the energy generation, and arguing the need for expanding 

decentralized generation (DG). The benefits of DG expansion, according to the authors, are (i) 

the decentralization of the electricity market; (ii) the diversification of the electrical/energy 
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matrix; (iii) the expansion of electricity supply and GDP growth; and (iv) the reliability in the 

electricity supply, especially during periods of water scarcity, that may compensate the 

negative impacts of DG in the electricity tariff. 

Fridgen et al. (2020) also analyze the effects of decentralization, as renewable energy 

sources are inherently decentralized and increasingly prioritized by many nations due to 

climate change concerns. The risk associated with uncertain long-term electricity price trends 

is generally seen as a hindrance to investments. However, the authors argue that investing in 

distributed energy resources can actually serve as a form of insurance for consumers against 

price volatility. This is achieved by enabling prosumers (consumers who also actively 

generate energy) to become more self-reliant and less susceptible to unpredictable price 

fluctuations. 

It is worth noting that this insurance effect may diminish under certain circumstances. 

For instance, when a prosumer evolves into a predominant energy producer, they once again 

face risk in terms of uncertain revenues. Fridgen et al. (2020) underscore that this strategy is 

advisable once the integration of distributed energy resources reaches a significant level and 

the market is well-established. 

Reducing the vulnerability of the electricity sector to hydrological risk requires the 

implementation of strategies that aim to minimize the impacts of variations in hydrological 

conditions and promote security and stability of energy supply (Barroso et al., 2007; Melo et 

al., 2019; Paim et al., 2019). These strategies involve an integrated approach that ranges from 

diversifying the energy matrix to improving the management of water resources and 

strengthening the energy storage systems (Mayon & Parodi, 2018; Melo et al., 2019; Paim et 

al., 2019). 

Brazil has designed its own regulatory mechanism known as the Energy Reallocation 

Mechanism (MRE). This framework is designed to apportion hydrological risks among 

energy generators, facilitating more effective management of water reservoir levels and 

mitigating the financial vulnerability of energy producers (Paim et al., 2019). 

In order to sell energy on the SIN, generators are required to hold a Physical 

Guarantee (PG) certificate. This certificate denotes the maximum volume of energy that each 

enterprise can commit to supply through electricity sales contracts, serving as a representation 

of a power plant’s contribution to the system’s security of supply (CCEE, 2023; Leonel et al., 

2019). 

The calculation of a powerplant’s PG stems from the apportionment of the system’s 

PG. The system’s PG is established as the maximum annual average demand that a specific 

set of generators (both hydro and thermal) can meet while adhering to economic supply 

criteria. This alignment occurs when the anticipated operation marginal cost is equal to the 

expansion marginal cost. Furthermore, the system must uphold a 5% threshold for the annual 

deficit risk in each subsystem (CCEE, 2023; Leonel et al., 2019). Evaluating the connection 

between the energy production volume and the PG of each plant involves a metric known as 

Generation Scaling Factor (GSF), which operates as an adjustment factor in MRE calculations 

(Bentemuller, 2018; Paim et al., 2019). 

If the computed GFS exceeds 100% (indicating more energy produced than the 

physical guarantees), each plant will be able to sell its surplus energy in the Short-Term 

Market. Conversely, if the GSF falls below 100%, the hydroelectric plants must acquire 

energy from the Short-Term Market, proportionally to their physical guarantee and the energy 

produced by all plants (Bentemuller, 2018). 
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The MRE operates through sharing hydrological risks among the participating 

powerplants. Each powerplant contributes with a portion of its energy PG to form an 

aggregate called the energy surplus. This surplus is then used to offset any generation 

shortfalls in other participating hydroelectric plants due to adverse hydrological conditions. In 

essence, plants generating in excess of their PG transfer the surplus to those generating below 

their PG, thereby minimizing the overall impact of hydrological variations on the system as a 

whole (CCEE, 2023; Ferreira et al., 2015). 

It is important to point out that the MRE serves as an accounting mechanism, intended 

to promote the financial sharing of hydrological risk by creating an accounting portfolio of 

hydroelectric production. This portfolio leverages the diversity of hydrological patterns in 

Brazilian watersheds. However, it does not function as a tool capable of mitigating systemic 

risk; its primary role is to reduce the volatility to which an individual hydroelectric generator 

is exposed (CCEE, 2023; Paim et al., 2019). 

During periods of water scarcity, when hydroelectric power plants cannot meet the 

energy demand, other sources, typically thermoelectric power plants, are required to 

compensate. This, unfortunately, incurs a significant economic cost as energy tariffs rise, and 

these thermoelectric plants rely on fossil fuels, which can exacerbate climate-related 

challenges (Getirana et al., 2021; Hunt et al., 2018; Paim et al., 2019). 

By sharing risks among the participating plants, MRE mitigates the negative impacts 

arising from unfavorable hydrological conditions, such as drought or heavy rainfall periods 

(Gonçalves & Mueller, 2019). Its core objective is to minimize the financial repercussions 

resulting from fluctuations in energy generation, thereby enhancing the predictability of the 

financial outcomes for the plants and facilitating more effective management of the electricity 

sector’s resources. 

In addition, MRE promotes the stability and security of energy supply, contributing to 

the sustainability of the sector by averting disruptions in energy provision and reducing the 

associated environmental and socioeconomic impacts linked to water scarcity scenarios 

(Pereira et al., 2018). Participation in MRE assures power plants that any generation deficits 

will be compensated, thereby diminishing exposure to risks and uncertainties. This, in turn, 

permits more precise planning based on reliable forecasts of hydroelectric power generation. 

The security afforded by MRE enhances the overall stability and efficiency of the electrical 

system (Leonel et al., 2019). 

A key feature of MRE is the so-called Reserve Energy Account, a record that tracks 

the energy surpluses and deficits of the participating plants. This account is regularly updated 

to compute the financial outcomes of the mechanism. In essence, it establishes the financial 

sums that powerplants must either pay or receive as a result of hydrological discrepancies that 

have occurred (Pereira et al., 2018). This calculation incorporates various factors, including 

water availability, the generation capacity of each plant and the electrical system’s demand 

(Pereira et al., 2018). 

In summary, the MRE process can be described as follows (Melo et al., 2019): 

(1) For each subsystem, the generation surplus/deficit is determined by comparing the 

total hydroelectricity production with the total physical guarantee; 

(2) In each subsystem with surplus generation, the deficit hydropower generators will 

receive “electricity rights” from the hydropower generators with surplus generation. After 

that, the subsystem’s remaining surplus will be allocated to offset deficits in other 

subsystems; 
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(3) If the system’s total hydroelectric generation is greater than the total physical 

guarantee, the difference is allocated among all the powerplants in the system, proportionally 

to their individual physical guarantee. 

When a powerplant participant in the MRE process is unable to fulfill its contracted 

energy supply, it must purchase the shortfall electricity from the Short-Term Market. This 

transaction is subject to the payment of the Settlement Price for Differences (PLD), which is 

designed to mirror the market equilibrium price (Bentemuller, 2018). The Short-Term Market 

acts as a financial platform involving energy producers, suppliers, and free consumers. Here, 

energy producers hold credit, while energy consumers settle their debts, with the aim of 

achieving a zero balance at the conclusion of operations, except for cases of direct contracting 

(Bentemuller, 2018).  

MRE undergoes periodic adjustments and revisions aimed at enhancing its efficiency 

and aligning with shifts in the electricity sector. These adaptations may be necessary to 

accommodate evolving hydrological conditions, modifications in the energy matrix, or shifts 

in government policies (Gonçalves & Mueller, 2019). 

The implementation of MRE in the Brazilian electricity sector is not free of challenges 

and criticism, which arise due to the complexity and operational aspects of this mechanism 

(Golfetto, 2023). A primary challenge is related to hydrological variability and the inherent 

uncertainties in power generation forecasts. Relying on climatic conditions and water 

resources can lead to substantial disparities between anticipated and actual hydroelectric 

power generation. These discrepancies can impact the distribution of hydrological risks 

among the participating plants, requiring adjustments and adaptations in the mechanism 

(Golfetto, 2023). 

Another issue concerns the definition of rules and criteria, which must be clear, 

transparent, and balanced. The definition of how energy surpluses and deficits are calculated 

and the procedures for financial compensation are crucial aspects for the effectiveness and 

reliability of the mechanism. The rules should be impartial and consistent, considering the 

specific characteristics of the participating plants and the regional hydrological conditions 

(Golfetto, 2023). 

In addition to operational challenges, it also faces criticism related to its ability to 

ensure an equitable distribution of risks among participating powerplants (Mayon & Parodi, 

2018). Some argue that plants with greater water storage capacity have a competitive 

advantage over plants with lower capacity, resulting in an asymmetrical distribution of MRE 

benefits and burdens. This asymmetry can generate distortions and imbalances between 

plants, requiring a review and improvement of the mechanism’s rules (Mayon & Parodi, 

2018). 

Another common criticism is related to Brazil’s high dependence on hydroelectric 

plants (Paim et al., 2019). Some experts argue that diversifying the energy matrix is essential 

to reduce the vulnerability of the electrical system to extreme events, notably extended 

drought. An overdependence on hydroelectric power plants can expose the system to 

additional risks, highlighting the importance of increased integration of alternative energy 

sources such as wind, solar and biomass (Assed & Assed, 2020). 

MRE works well in times of typical hydrological patterns, but during severe drought 

periods it can aggravate financial challenges for some generators, as its design does not 

incorporate measures to mitigate systemic risk (Bentemuller, 2018; Paim et al., 2019). A 

pertinent illustration of this scenario unfolded during the hydrological crisis of 2014-2016, 

one of the greatest in Brazil’s history (Bentemuller, 2018). 
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As previously mentioned, entities unable to produce sufficient energy to fulfill their 

contractual commitments are subject to the Short-Term Market’s PLD, having to bear this 

additional cost (Bentemuller, 2018). In times of hydrological normality, the PLD cost is 

relatively lower for those who did not produce enough to meet their contractual obligations. 

However, during the hydrological crisis, the majority of generators experienced elevated PLD 

costs since the whole system’ electricity generation fell below the levels defined by the GSF 

mechanism (Bentemuller, 2018). In this scenario, the hydroelectric powerplants were exposed 

to the Short-Term Market and compelled to buy energy (for instance, from thermal generators 

or other sources unaffected by the hydrological crisis), at the PLD rates, in order to fulfill 

their energy sale contracts. 

This scenario led to some generators resorting to legal proceedings to request a 

revision of the GSF. In instances where these claims were granted, resulting in alleviated 

individual losses, the other participants in MRE were affected, as any debts exceeding the 

judicially imposed threshold were apportioned among the remaining members of the 

mechanism. This allocation of losses is necessitated by the requirement for the Short-Term 

Market to maintain a balanced account where credits and debits are mathematically annulled 

(Bentemuller, 2018). The financial ramifications extended beyond the generators and 

impacted consumers through elevated tariffs (Mendes et al., 2016). Given this backdrop, the 

GSF calculation is a point of criticism on MRE until today. 

2.2.4. Necessities and Challenges for the Brazilian Electricity Sector 

Examining the electricity sector's exposure to extreme weather events is fundamental 

for comprehending the risks and vulnerabilities it faces in the context of climate change 

(Falcão et al., 2019; Paim et al., 2019). This assessment entails an examination of the 

repercussions of extreme weather events, including storms, droughts and heatwaves, on the 

electricity generation, transmission and distribution (Falcão et al., 2019; Hochberg & 

Poudineh, 2021). Moreover, the deployment of climate and impact models on the electricity 

sector is indispensable for predicting the potential consequences of extreme weather events. 

These models consider climatic variables like temperature, precipitation and winds, and 

simulate the impacts of weather events on the electricity supply (Caceres et al., 2021; 

Fernandes et al., 2019; Lima et al., 2022).  This approach facilitates the evaluation of risks 

linked to various extreme weather events, identifying geographically vulnerable areas and 

specific infrastructure (Leonel et al., 2019; Maceira et al., 2015). Climate change projections 

are also important, as they enable the estimation of how these events may evolve in the 

upcoming decades (Caceres et al., 2021; Domínguez-Tuda & Gutiérrez-Jurado, 2021; C. 

Zhang et al., 2021). 

These projections and analyses are valuable for the strategic planning of the electricity 

sector, assisting the decision-making process and, for instance, guiding the adoption of risk 

adaptation and mitigation measures (Caceres et al., 2021). The insights gained from this 

analysis can contribute to the formulation of public policies to improve the electricity sector’s 

resilience in the face of climate challenges (Caceres et al., 2021; Leonel et al., 2019). 

Strategies such as investments in infrastructure, diversification of the energy matrix, enhanced 

management of water resources and the implementation of energy efficiency measures are 

among the approaches that can be adopted to reduce exposure and mitigate the impacts of 

these events (Leonel et al., 2019). 

Assessing the impacts of supply crises on the electrical system is also essential to 

understand the consequences and challenges faced during periods of energy shortages (Hunt 

et al., 2018; Melo et al., 2019). One of the main aspects considered is the energy supply 

capacity. During a supply crisis, demand may surpass available generation capacity, leading 
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to interruptions in electricity supply (Campos et al., 2020; Hunt et al., 2018; Melo et al., 

2019). These interruptions can have profound impacts on critical sectors including hospitals, 

industries and public services, with repercussions for the economy and the well-being of the 

population (Melo et al., 2019). Extended power supply interruptions can also result in 

substantial economic losses for companies due to reduced productivity, damage to equipment 

and services disruption, besides potential for reputational damage (Falcão et al., 2019). 

Furthermore, the use of certain alternative energy sources, such as diesel generators, to meet 

demand may have adverse environmental implications, including increased GHG emissions 

and air pollution (Borba et al., 2023; Hunt et al., 2018; Melo et al., 2019; Montoya et al., 

2021). 

Another important aspect involves the examination of response and recovery 

mechanisms during supply crises. The response capacity of both private companies and the 

governmental authorities, demonstrated through emergency measures, such as the 

mobilization of additional generation resources, use of strategic energy reserves or 

implementation of rationing plans, can minimize the impacts of crises and expediting the 

restoration of the electric system (Hunt et al., 2018; Melo et al., 2019). 

Additionally, the construction of new powerplants and the expansion of existing ones 

(such as reforming old hydroelectric facilities) are essential to increase generation capacity, 

ensure a secure energy supply and diversify the energy matrix. These investments aim to meet 

the growing demand for electricity, driven by economic growth and the expansion of various 

economy sectors such as industrial, commercial and real estate (Melo et al., 2019). 

Efforts and investments are equally essential in the broader infrastructure of the 

electricity sector. This includes the development and modernization of the transmission and 

distribution network, which is crucial for efficiently transporting energy from the powerplants 

to the final consumers (Barroso et al., 2007). Investments in high voltage transmission lines, 

substations and monitoring and control systems are essential to guarantee the reliability and 

stability of the electrical system, as well as to facilitate the integration of new sources of wind, 

solar and biomass energy (Barroso et al., 2007; Falcão et al., 2019). 

This also involves improving environmental licensing processes, defining socio-

environmental criteria for the implementation of hydroelectric plants (given their high 

socioenvironmental impacts, with dam construction that can flood extensive areas, disrupt 

local ecosystems, and necessitate the relocation of populations) and promoting sustainable 

practices throughout project development (Bentemuller, 2018; Clauberg et al., 2021). 

Investment in advanced technologies, such as digitalizing the electrical network and 

implementing automation and real-time monitoring systems, contribute to operational 

efficiency and the overall optimization of the electrical system (Bentemuller, 2018; Clauberg 

et al., 2021). 

It is important to emphasize that infrastructure investments and the expansion of the 

electricity sector require strategic planning, fostered through public-private partnerships and 

guided by a sustainability-oriented approach. Attracting private investments and ensuring a 

stable and predictable regulatory environment are essential aspects for securing the necessary 

investments within this sector (Esposito, 2018; Ferreira et al., 2015; Paim et al., 2019). 

Assessing the additional challenges imposed by climate change on hydrological risk 

management is extremely important to understand the new demands and complexities 

emerging in this context. Climate change exerts impacts on hydrological patterns, amplifying 

the uncertainty and variability of events, thereby constituting an extra layer of complexity in 

the management of water resources (Caceres et al., 2021; Hunt et al., 2018; Paim et al., 2019). 
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One of the main challenges is the change in rainfall patterns and water availability, 

potentially resulting in a spatial and temporal redistribution of rainfall, resulting in changes in 

runoff patterns and aquifer recharge (Borba et al., 2023; Caceres et al., 2021; Wu et al., 2021). 

This requires a reevaluation of water resource management strategies, including the adoption 

of conservation practices, storage and efficient use of water, to cope with scarcity in certain 

regions and the occurrence of extreme events in others (Caceres et al., 2021; Gonçalves & 

Mueller, 2019). 

Climate change also intensifies extreme weather events, contributing to lengthier 

droughts and more intense rainfall occurrences. This heightened risk increases the potential 

for floods and landslides (Domínguez-Tuda & Gutiérrez-Jurado, 2021; Paltán et al., 2021; 

Verma, 2021; W. Zhang et al., 2021). The ability to predict and adapt to these extreme events 

has become crucial, involving the improvement of early warning systems, the planning of 

resilient infrastructures and the development of post-disaster recovery strategies (Mayon & 

Parodi, 2018). 

Due to Brazil’s high dependency on the hydroelectric system and consequent 

vulnerability to droughts, exploiting the diversification of its electricity matrix could 

contribute to reducing hydrological risk (Borba et al., 2023; Nascimento et al., 2022; Paim et 

al., 2019). Paim et al. (2019) employ Integrated Assessment Modelling (IAM) techniques to 

access this issue, analyzing future macroeconomic and energy scenarios for Brazil within a 

global context, aligned with the Brazilian Nationally Determined Contributions under the 

2015 Paris Agreement on Climate Change. Their analysis reveals that the addition of non-

hydro renewables is advantageous from the perspective of the integrated Water-Energy-Food 

nexus, as it reduces trade-offs amongst the water and energy sectors. 

Furthermore, Pinheiro Neto et al. (2017) show that, in the diversification process, the 

complementarity between sources helps reducing economic risk. The authors propose a 

methodology for risk analysis and portfolio optimization of power generation assets with 

hydro, wind, and solar power. The model, constructed with synthetic time series and Monte 

Carlo simulation, indicates that the initial correlation between the energy resources is altered 

by the cash flow model and, more notably, by the debt. An increase in debt augments the 

correlation, reduces the return and risk and, consequently, affects the diversification process 

and economic outcomes. 

Machado & Bhagwat (2020) investigate the impact of the electricity matrix mix on 

two existing regulatory frameworks for hydropower remuneration in Brazil, namely MRE and 

Insurance Call Option Obligation (ICO). In MRE, as previously explained, individual 

operational risks are mitigated through a risk-sharing principle within a hydro pool structure. 

ICO, on the other hand, offers an insurance approach allowing hydro generators to transfer 

their risks to the consumers. The frameworks are assessed across three long-term scenarios, 

each featuring varying proportions of non-hydro renewables and thermal sources in the 

electricity matrix, using a SDDP approach. The findings indicate that the composition of the 

electricity matrix may considerably influence MRE’s performance and economic feasibility of 

hydropower. Moreover, ICO’s design may lead to an overall improvement in the market level 

welfare when compared to the MRE if a criterion of equivalent welfares (ensuring  the same 

expected results for both generators and consumers) is established as a preferred design goal. 

2.3. Non-life insurance pricing 

The foundation of modern risk theory can be traced back to the works of Filip 

Lundberg in 1903 and Harald Cramér in 1930. Lundberg proposed the Poisson process as a 

solution for the problem of the first passage time. Cramér further expanded on Lundberg’s 

work by modeling the ruin of an insurance company as a first passage time problem (Frees, 
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2015; Minkova, 2012). These seminal contributions paved the way for the development of the 

classical risk model (Cramér-Lundberg), which is a pillar of non-life insurance mathematics, 

and has been extensively treated in the literature (Bergel et al., 2013; Minkova, 2012). The 

Cramér-Lundberg model assumes that a given surplus process has constant deterministic 

gains (premiums) and random losses (claims) which occur at random times (Bergel et al., 

2013; Frees, 2015). 

When we acknowledge Cramér-Lundberg as one of the foundations of actuarial 

science, it is clear how insurance pricing takes an important role in this field, as it defines the 

premium, a vital part of the model. The fundamental premise underlying premium calculation 

is that insurance premiums should be set in a way that balances the risk associated with the 

potential occurrence of an adverse event covered by the policy. In other words, policyholders 

pay prices that correspond to the expected value of the insurance benefits, or the anticipated 

losses (Jha, 2012). This concept is known as actuarially fair price, which accounts for the 

entire insurance risk pool rather than individual risks, aligning with the principle of 

mutualism, a mechanism for sharing risk. Consequently, this calculation is founded on the 

principles of collective risk theory (Cummins, 1991; Vaughan & Vaughan, 2008). 

Therefore, as premiums should match expected losses, one of the main components of 

this calculation is the distribution of aggregate claims. This concept can be defined as it 

follows (Bowers et al., 1987): 

Let X1 denote the amount of the first claim, Xk the amount of the k-th claim: 

S = X1 + X2 +⋯+ X𝑘 +⋯+ X𝑁 

𝑆 = {
0,                 𝑁 = 0

∑ 𝑋𝑖
𝑁
𝑖=1 ,      𝑁 > 0

     (1) 

S represents the aggregate claims generated by the portfolio for the period under study. 

The number of claims, N, is a random variable and it is associated with the frequency of 

claims. The individual claim amounts X1, X2… are also random variables, measuring the 

severity of claims, and are assumed to be independent and identically distributed. 

Now let px denote the common distribution function of the X’s. 

𝑝𝑘 = 𝐸[𝑋
𝑘]      (2) 

It can be deduced (Bowers et al., 1987) that: 

𝐸[𝑆] = 𝐸[𝐸[𝑆|𝑁]] = 𝐸[𝑝1𝑁] = 𝑝1𝐸[𝑁]    (3) 

and 

𝑉𝑎𝑟[𝑆] = 𝐸[𝑉𝑎𝑟[𝑆|𝑁]] + 𝑉𝑎𝑟[𝐸[𝑆|𝑁]] = 𝐸[𝑁]𝑉𝑎𝑟[𝑋] + 𝑝1
2𝑉𝑎𝑟[𝑁]  (4) 

Meaning that the expected value of aggregate claims is the product of the expected 

individual claim amount and the expected number of claims, while the variance of claims is 

the sum of the variability of individual claim amounts and the variability of the number of 

claims. 

Therefore, much of insurance pricing resumes in modelling the distribution of 

aggregate losses, which is usually done based on historical data (Cummins, 1991; Frees, 

2015). 

Other aspects of pricing include mechanisms of risk reduction (e.g., statistical loading, 

deductibles, maximum indemnity limits and reinsurance contracts), loading rates (to 

compensate commercial and administrative expenses, besides taxes and profit margin), 
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commercial decisions (changes in prices due to market competitiveness) and utility matters 

(Guelman et al., 2014; Kaas et al., 2008; Laas et al., 2016; Mourdoukoutas et al., 2021; 

Omerašević & Selimović, 2020; Verschuren, 2022). 

The techniques for non-life insurance pricing modelling are constantly evolving. 

Earlier methods were much simpler and often showed reduced accuracy when compared to 

the new ones. Chang & Fairley (1979) and Sant (1980) both address the case of automobile 

insurance in Massachusetts in the 1970’s, which was then priced based on a multiplicative 

method (instead of using the claim experience of combined variables, it was assumed that the 

claim amount ratios for one variable – e.g. a driver feature, as age – were the same for all 

classes of the second variable – e.g. driving region, so a specific age would present the same 

risk for all driving regions. And the claim amount ratios for the second variable were 

considered the same for all classes of the first variable – driving region risk is constant for all 

ages. Then a risk relativity would be applied for each class of each variable, and they were 

multiplied to achieve the final relativity). Both articles conclude that the traditional pricing 

procedures contained biases that result in overcharging individuals in the highest rated risk 

classes, in comparison with multivariate statistical analysis. Chang & Fairley (1979) state that 

the multiplicative method may still perform well when the differences in claim experiences 

among the classes of the variables of interest are small. However, it becomes an inaccurate 

estimator of claim amounts when substantial differences are found to exist. Sant (1980) also 

defends that increased accuracy is obtained from the use of a large data amount in the 

analysis. Fairley et al. (1981) extended the studies of Chang & Fairley (1979) to the case of 

New Jersey, and found similar results. 

A few years later, Generalized Linear Models (GLM) rose as the main method for 

non-life insurance pricing estimation, and remain as a standard pricing method to this day 

(Andersen & Bonat, 2017; David, 2015; Embrechts & Wüthrich, 2022; Jong & Heller, 2008; 

Karim & Mutaqin, 2020; Laas et al., 2016; Laudagé et al., 2019; Lovick & Lee, 2012; 

Nielsen, 2010; Ohlsson & Johansson, 2010; Omerašević & Selimović, 2020; Verschuren, 

2021; Wuthrich & Buser, 2018). GLM represents an extension of traditional linear models, in 

which the probability distribution of the dependent variable belongs to the family of 

exponential distributions (e.g., Normal, Poisson or Gamma). The expectation of the dependent 

variable is determined by a linear predictor based on nonlinear link function (Omerašević & 

Selimović, 2020). GLM is versatile and can be used to analyze the claims frequency and 

severity based on individual data at the insured level. For example, the number of claims in a 

specific time period can be modeled with a Poisson distribution, while the amount of claims 

with a Gamma distribution, which is a very common practice in auto insurance (Frees, 2015; 

Omerašević & Selimović, 2020). One of the reasons for the popularity of this method is its 

ability to address both frequency and severity effectively. Additionally, a critical requirement 

for pricing models in insurance is transparency and interpretability, as these models need to be 

easily explained to all stakeholders. GLM methods excel in providing this feature (Henckaerts 

et al., 2020). 

Two strategies are commonly used to analyze claims distributions: the two-step and 

the pure premium approaches. While the first decomposes claims cost into a frequency and a 

severity component, as already exemplified, the latter uses the Tweedie distribution to 

accommodate the mass probability at zero (Shi et al., 2016). The Tweedie distribution is 

useful for analyses focused on the indemnifications amount. The Tweedie has a positive mass 

at zero (representing no claims) and a continuous component for positive values (representing 

the total amount for one or more claims), being characterized as highly right-skewed 

distribution, and can be defined as a Poisson sum of Gamma random variables (Denuit et al., 

2021; Omerašević & Selimović, 2020; Qian et al., 2016). 
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Even though GLM methods still predominate in insurance pricing practices, more 

advanced methods have arisen in the past two decades, with the use of machine learning 

(Bellapu et al., 2021; Embrechts & Wüthrich, 2022). Shi et al. (2016) propose a copula 

regression combined with GLM for modelling property-casualty insurance claims. They use 

the Tweedie double GLM to examine the semi-continuous claim cost of each coverage type, 

then a Gaussian copula is specified to accommodate the cross-sectional and temporal 

dependence among the multilevel claims. Estimation and inference are based on the 

composite likelihood approach and the properties of parameter estimates were investigated 

through simulation studies. The authors applied their proposed copula model to a portfolio of 

personal automobile policies from a Canadian insurer, showing that it provides valuable 

insights to an insurer's claims management process. Wolny-Dominiak & Żædlo (2022) 

propose a similar model, also combining copulas and Tweedie, and apply it to the Polish 

insurance market data. 

Yeo et al. (2002) proposed a pricing technique that combines clustering and neural 

networks to achieve an optimal portfolio in automobile insurance. The clustering procedure is 

used for risk group classification and prediction of claim costs, and the neural networks for 

predicting retention rates and price sensitivity analysis. The study shows benefits can come 

from this approach as, for instance, they observed an increase of revenue without affecting the 

predicted market share. 

Henckaerts et al. (2020) predicted both frequency and severity for an insurance 

portfolio using tree-based Machine Learning (ML) methods (simple regression trees, random 

forests and boosted trees). The authors found that boosted trees outperform the classical 

GLMs, allowing the insurer to form profitable portfolios and to prevent against potential 

adverse risk selection. They also present visualization tools to obtain insights from the 

resulting models. Bellapu et al. (2021) conducted a similar analysis, starting from simple 

decision-making trees and developing random and gradient boosting machines to forecast the 

claims frequency for an all-risk insurance. The proposed gradient boost and random forests 

models surpass the individual decision trees. 

Yu et al. (2021) trained and tested a three-layer backpropagation (BP) neural network 

model for automobile insurance pricing in China. The results showed the accuracy of the total 

claim amount prediction by the BP neural network to be over 95%. Then, the predicted total 

claim amount was used to calculate premiums for five cities in Shandong Province, according 

to credibility theory. The combination of BP neural network and credibility theory resulted in 

accurate claim amount estimation and pricing for automobile insurance, presenting itself as a 

method capable of improving the situation of the automobile insurance business and 

promoting the development of insurance industry. 

Huang & Meng (2020) applied a Bayesian method for insurance pricing, as they 

argued that traditional parametric models are often inadequate to describe the distribution of 

losses as they require the data to meet specific distributional assumptions, which are often not 

well satisfied in complex insurance losses due to the existence of complicated features such as 

skewness, heavy tail, and multi-modality in non-life insurance. The authors use automobile 

insurance datasets to develop a Bayesian nonparametric model and compare the results to 

traditional GLM and ANOVA methods. The empirical results show that the proposed 

framework characterizes, with more flexibility, the actual loss distribution in the insurance 

datasets, and presents superior performance regarding the accuracy of data fitting and 

extrapolating predictions. 

Besides the development of pricing methods for traditional insurance, new types of 

insurance coverages have emerged recently, along with digitalization and insurtechs, 
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requiring the adaptation of pricing strategies and methods. That is the case, for instance, of 

cyber insurance, intermittent insurance – also known as pay-as-you-drive (PAYD) when 

applied in automobile insurance –, and pay-how-you-drive (PHYD) – automobile insurance 

that offers different prices according to the policyholder’s driving habits (Arumugam & 

Bhargavi, 2019; Ayuso et al., 2014; Biener et al., 2015; Braun & Schreiber, 2017; Corradin et 

al., 2022; Denuit et al., 2019; Dijksterhuis et al., 2015; Eling & Zhu, 2018; Khakifirooz et al., 

2021; Malavasi et al., 2021; Reimers & Shiller, 2019; Stoeckli et al., 2018; Tselentis et al., 

2018; Volosovych et al., 2021). 

PAYD and PHYD are usually possible through telematics. Telematics is a monitoring 

technology that can effectively gather useful behavior-risk information, including speed, 

driving behavior and position parameters, in real-time (Denuit et al., 2019; Khakifirooz et al., 

2021). The use of telematics data as a foundation for calculating automobile insurance rates is 

a developing trend, and, besides enhancing the predictability of future claims, PHYD tariffs 

offer several benefits, including improvements in driving behavior and mitigating moral 

hazard (Khakifirooz et al., 2021; Laas et al., 2016; Reimers & Shiller, 2019). 

The change that telematics brings to traditional pricing is that the driving-behavior 

data are collected while the contract is in force, thus falling in the category of a posteriori 

(posterior) information, meaning it becomes available after the contract initiates. Therefore, 

they must be included in the actuarial pricing by means of credibility updating mechanisms, 

instead of being incorporated in the score as ordinary a priori (prior) observable features 

(Denuit et al., 2019). 

Another challenge for insurers is cyber risk, as it is an emerging dynamic and 

difficult‐to‐quantify risk category (Eling & Zhu, 2018). According to Strupczewski (2021, p. 

6), cyber risk can be defined as “an operational risk associated with performance of activities 

in the cyberspace, threatening information assets, ICT resources and technological assets, 

which may cause material damage to tangible and intangible assets of an organization, 

business interruption or reputational harm. The term ’cyber risk’ also includes physical threats 

to the ICT resources within organization”. 

Given this concept’s recency, the amplitude of risks it comprehends, and the high 

potential severity, the understanding, mitigation, reporting, risk management and insurance 

modeling related to cyber risk are still in early stages of development (Malavasi et al., 2021). 

There is no unique pricing method for cyber insurance, and a lot still needs to be developed 

regarding this issue (Eling & Zhu, 2018; Malavasi et al., 2021; Xu & Hua, 2019). 

By way of example, Malavasi et al. (2021) found that no OLS-based technique would 

be able to correctly estimate relevant parameters for a cyber risk model. Thus, combining 

methods as peaks-over-threshold (POT) and Generalized Additive Models for Location Shape 

and Scale (GAMLSS) regression may better capture the complex and heterogeneous nature of 

cyber risk. This approach shows that time trends, as well as influence of factors like company 

size, business sector and contagion, vary concerning the type of cyber risk, both in terms of 

frequency and severity. 

Xu & Hua (2019) propose a combination of stochastic processes (Markov and non-

Markov), copulas and Monte-Carlo simulation to price cyber insurance. Fahrenwaldt et al. 

(2018) propose a network model based on Markov chains to the same end. Similarly, Antonio 

et al. (2021) use a Markov-based dynamic model with clustering structure to determine cyber 

insurance premiums. On another hand, Mukhopadhyay et al. (2013) propose a Copula-aided 

Bayesian Belief Network (CBBN) model for cyber-vulnerability assessment (C-VA) and 

expected loss computation. Then they use it as an input to compute the premium that a cyber 

risk insurer can charge following the concepts of collective risk modeling theory. 
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Among these emerging types of insurance is Parametric Insurance (Eabrasu, 2021; Lin 

& Kwon, 2020), object of our study. 

2.4. Parametric insurance for climate related issues 

In the literature, there is a growing number of instances where Parametric Insurance 

(PI) has been applied to address climate-related issues, particularly in recent years. 

Agriculture insurance is one of the most common applications of PI, with the initial 

parametric schemes primarily designed for this purpose (Horton, 2018). A review conducted 

by Jibril et al. (2022) examined the literature on weather index insurance for agricultural 

purposes between 2001 and 2020, analyzing 58 papers that met the review criteria. Their 

findings highlighted that rainfall and temperature-based indices were the most prevalent, 

while indices based on droughts, floods, vegetation, soil moisture, humidity, and sunshine 

hours were relatively underrepresented, despite their potential. 

Kusuma, Jackson, & Noy (2018), for instance, developed a model to assess the 

applicability, feasibility, and estimated cost of implementing a weather-index insurance 

scheme based on droughts for rice production in Indonesia. They created district-specific 

indices based on the estimation of Panel Geographically Weighted Regressions models to 

reduce basis risk and calculated an actuarially robust and welfare-enhancing price for this 

scheme. It shows effectiveness in some districts, but not in all. 

Another applicability of index-based insurance is regarding natural disasters and 

associated social matters. Linnerooth-Bayer et al. (2009) examined the costs, benefits and 

risks of public-private insurance programs that offer affordable economic security to 

vulnerable communities and governments by providing financial security against increasing 

severity and frequency of weather disasters such as droughts, floods, tropical cyclones, and 

other forms of weather extremes. As Lin & Kwon (2020) stated, PI can protect vulnerable 

populations in developing countries against natural disaster and weather risks where 

traditional insurance is too costly or infeasible, while reducing problems of moral hazard and 

adverse selection. As a matter of fact, there are 3 major regional parametric insurance 

schemes that address this issue: the Caribbean Catastrophe Risk Insurance Facility (CCRIF), 

the African Risk Capacity (ARC) and the Pacific Catastrophe Risk Assessment and Financing 

Initiative (PCRAFI) (Broberg, 2020; Horton, 2018).  

Figueiredo, Martina, Stephenson, & Youngman (2018) proposed a generic 

probabilistic framework for parametric trigger modeling based on logistic regression and 

applied it to flood-related disasters in Jamaica, from 1998 to 2016, using gridded precipitation 

data as the hazard variable. The model has substantial skill at predicting the probability of loss 

occurrence on each day. They also demonstrated that the system can provide considerable 

utility to involved parties. 

Regarding the energy generation applications, Han et al. (2019) studied the weather 

risks faced by wind power producers, especially in China, and discuss the feasibility of a 

wind-power generation index insurance, for which they establish a model. The simulation 

results show that wind power enterprises can effectively avoid economic losses caused by 

weather risks through weather index insurance. 

Solar geoengineering (SG) entails using technology to modify the Earth’s radiative 

balance to offset some of the climate changes caused by long-lived greenhouse gases. Horton 

et al. (2021) proposed the use of parametric insurance as a compensation mechanism for SG 

with the potential to ease disagreements about the technology, and to facilitate cooperative 

deployment. The plausibility of this mechanism is tested by exploring PCRAFI, a sovereign 
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risk pool providing parametric insurance coverage against tropical cyclones and 

earthquakes/tsunamis to Pacific Island countries since 2013. 

Boyle et al. (2021) developed an irradiance-based weather derivative to hedge cloud 

risk for solar energy systems, i.e., a financial instrument tied to an underlying weather 

variable that act as PI for the contract holder. The design and evaluation of contracts are based 

on a linear optimization model (LEELO) outputting optimal sizes of solar photovoltaic, 

battery storage, and power-to-gas systems, as well as the operation of these systems for a 

given mine’s load, irradiance, and technology costs. Their results indicate contracts are 

effective in cloudier climates with increasing utility for mines installing solar energy systems 

until the year 2030. 

Regarding the applicability of this type of insurance, both Clarke (2016) and Cole, 

Stein, & Tobacman (2014) studied the demand for index insurance products, which is shown 

to be fundamentally different from the demand for indemnity insurance products. Enríquez et 

al. (2020) provided a report describing the characteristics, (dis)advantages, and potential 

markets for parametric insurance for renewable energy power producers. Their research 

focuses especially on Central America countries, where are already subjected to large 

fluctuations in precipitations (causing both floods and droughts), which tend to increase with 

climate change. The authors analyzed business opportunities, cost, willingness to pay, 

subsequent willingness to lend/invest, impact on interest rates, bank requirements, bundling 

feasibility, and insurance companies’ willingness to offer parametric insurance. 

According to this report, some of the PI main challenges for the renewable energy 

market are (i) the lack of familiarity with the product from both insurance companies, energy 

generators and regulators; (ii) premium costs and concerns about the value of parametric 

insurance relative to the costs of other types of insurance; (iii) inadequate network of local 

hydrometeorological stations or insufficiently reliable data from the stations; (iv) profitability 

in small countries’ markets, and; (v) legal barriers to entry for transnational reinsurance 

companies, as this mechanism appears to be a fundamental support for local insurers to be 

able to provide PI (Enríquez et al., 2020). 

The last three points should not be a concern for Brazil, as it is a large country with an 

energy matrix three times more renewable than the world energy matrix (Montoya et al., 

2021), meaning that there is a large market for PI. Also, there is an well-established and 

resilient (re)insurance market in Brazil (Carvalho & Guimarães, 2023): only in the direct 

market, there are over 130 insurance companies in more than 100 lines of business (Carvalho 

& Bonetti, 2023), with the reinsurance companies operating in 19 different non-life lines of 

business up to 2021 (Song & Carvalho, 2022). Moreover, Brazil’s National Institute of 

Meteorology (INMET) provides highly reliable data. Aguiar & Lobo (2020) showed that 

monthly rainfall data from Brazilian surface stations managed by INMET are highly 

correlated with NASA’s Prediction of Worldwide Energy Resource online database, as 

coefficients are between 0.75 and 0.95 for almost all locations, with a p-value under 0.01. 

Also, simple linear models showed good fit for estimated (satellite) and observed (ground) 

rainfall relationship data. Therefore, these data may be useful to insurance companies in the 

developing of parametric insurance products (Rodrigues, 2022). 

Regarding the first two points, Enríquez et al. (2020) proposed that insurers can 

conduct controlled experiments to assess various product specifications and pricing strategies 

before implementing parametric insurance as a new product line. Additionally, governments 

and development assistance organizations should consider offering short-term incentives to 

facilitate market development and assist in disseminating information about how parametric 

insurance works. 
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Studies on this subject have typically combined historical observations of a weather-

index and the economic outcomes of the insurance product to create actuarial pricing models. 

The majority of the empirical literature has applied ordinary least square-based correlation or 

linear regression techniques (Jibril et al., 2022) to determine the insurance premiums. 

However, some research have shown that the use of more modern methodologies (e.g., neural 

networks and copulas) can potentially reduce the basis risk, defined as the variance of the 

policyholder’s loss distribution given a specific value of the index (Lin & Kwon, 2020), and 

improve effectiveness of the model in comparison to simple regressions (Bokusheva, 2018; 

Cesarini et al., 2021; Pai et al., 2022). 

Cesarini et al. (2021) introduce a methodology that leverages ML algorithms (neural 

network and support vector machines) to identify extreme flood and drought events in the 

Dominican Republic context. They utilize rainfall and soil moisture data spanning from 2000 

to 2019. Their results demonstrate strong improvements compared to baseline logistic 

regression models, for both hazards. 

Additionally, Bokusheva (2018) develops a copula-based design for weather index 

insurance, highlighting the superior suitability of copulas in modeling tail dependence 

compared to standard linear correlation. The author employs three Archimedean copulas to 

capture the left-tail dependence in the joint distribution of wheat yield data and cumulative 

precipitation. To handle relatively short time series, a hierarchical Bayesian model is applied 

for obtaining consistent estimates of tail dependence. The study shows that copula-based 

weather insurance contracts may provide significantly greater risk reduction compared to 

regression-based indemnification schemes. 

Pai et al. (2022) propose a Bayesian spatial quantile regression model to mitigate the 

basis risk associated with earthquake parametric insurance. They incorporate spatial 

correlation to establish prior distributions for latent variables and apply the model to 

earthquake loss data from Yunnan Province spanning from 1992 to 2019. Their findings 

indicate that the loss ratio is more reasonable compared to existing earthquake insurance 

schemes, resulting in a reduction in basis risk. 

In our research, we aim to evaluate the performance of the traditional OLS as well as 

spatial econometrics and copulas methodologies in the pricing of a parametric insurance for 

hydroelectric energy generation in Brazil, using a rainfall index as a key parameter. 
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3. METHODOLOGY 

In this section, we outline the general methodology for the insurance pricing, as well 

as introduce two specific methods: spatial econometrics (3.2) and copulas (3.3). 

3.1. The linear regression method 

As stated by Han et al. (2019), in regions where the development of a weather index 

insurance was successful, the actuarial pricing method – specifically the classical convolution 

analysis method – is the most widely used, which can work simply based on historical data 

(Cummins, 1991; Frees, 2015; Omerašević & Selimović, 2020). This method is well-suited 

for our model because it allows us to anticipate low levels of energy generation. We can 

achieve this by using historical data on factors like reservoir water levels, river discharges, 

and their correlations with rainfall indexes. 

This method assumes that the probability distribution of future loss is consistent with 

that of historical experience, and takes the expected value of compensation as the optimal 

estimate of pure premium (Han et al., 2019). Regarding the climate change and rain 

frequency, Wu et al. (2021) suggested that increasing drought risk should be a problem for 

South America in the future, varying its impact depending on the level of carbon emissions 

we experience. So, for an initial parametric scheme, the rainfall historical data should be 

enough, but as the climate situation increasingly changes, the model can be reviewed and 

improved. Kapphan, Calanca, & Holzkaemper (2012) examined the hedging effectiveness and 

profitability of weather-index insurance contracts that relied on historical data to be designed, 

and they showed that both hedging benefits and expected profits substantially increase for 

adjusted contracts, which suggests that a revision of the contracts estimations is encouraged 

from time to time. 

The calculation of the risk premium, based on Han et al. (2019) and Kusuma et al. 

(2018), is as follows. First, a probability distribution is fitted on historical empirical data. 

Then, the model parameters are estimated. Finally, the expected payout value is weighted by 

the probabilities of occurrence, resulting in the risk premium (P), as shown in Equation (5).  

𝑃 = 𝑒−𝑟(𝑇−𝑡) [
1

𝑛
∑ 𝐿(𝐼𝑖)
𝑛
𝑖=1 × ℙ(𝐼𝑖)],   (5) 

where 𝐼𝑖 represents the weather index in the i-th year, 𝐿(𝐼𝑖) represents the economic loss in 

the i-th year, n represents the total number of observed years, 𝑒−𝑟(𝑇−𝑡) represents the risk-free 

discount factor and ℙ(𝐼𝑖) represents the probability of occurrence of a certain level for the 

weather index in the i-th year. 

Because the intended product is a short-term insurance, the risk-free discount factor 

can often be neglected in practical application, so the premium calculus is simplified as 

follows: 

𝑃𝑚 = 
1

𝑀
∑ (𝑆(𝐼𝑤,𝑚) × ℙ(𝐼𝑚))
𝑀
𝑚=1     (6) 

where M is the total number of months during the insurance term, 𝐼𝑤,𝑚 represents the 

generation capacity of the power plant at the m-th month and 𝑆(𝐼𝑤,𝑚) represents the payout 

value at the m-th month. This equation represents a monthly pricing, and can be extended to 

incorporate the term established in the contract, by multiplying 𝑃𝑚 by M. 

The payout value, 𝑆(𝐼𝑤,𝑚), is a variable that combines the historical observed losses 

with the loss occurrence probability (that is, severity and frequency), as it is already common 

for insurance pricing (Frees, 2015). In our PI scheme, the frequency will be estimated by 

fitting a distribution to the chosen parameter, and the severity depends on the historical 
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generation levels associated with the index’s levels and the on-grid price of energy, which is 

why the payout is expressed in terms of the generation capacity of the power plants (𝐼𝑤,𝑚). 

In that way, following Kusuma et al. (2018), we can define the payout as: 

𝑆(𝐼𝑤,𝑚) = 𝐺𝑤 × (𝐼𝑤,𝑚) = 𝐺𝑤 × {

0 𝑅𝑜,𝑚 > 𝑅𝑇𝑟 

𝛽(𝑅𝑇𝑟 − 𝑅𝑜,𝑚) 𝑅𝐸 < 𝑅𝑜,𝑚 ≤ 𝑅𝑇𝑟

𝛽(𝑅𝐸 − 𝑅𝑜,𝑚) 𝑅𝑜,𝑚 ≤ 𝑅𝐸 < 𝑅𝑇𝑟 

               (7) 

where 𝐺𝑤 is the on-grid power price, 𝑅𝑜,𝑚 is the observed precipitation in each month m, 𝑅𝑇𝑟 

is the precipitation trigger, 𝑅𝐸 is the precipitation exit threshold and 𝛽 is the estimated 

coefficient that represents the energy variation in terms of rain variation. This means that the 

payout value increases as the observed precipitation levels fall further from the defined 

trigger, until reaching a specified exit threshold. Beyond this exit threshold, the payout value 

remains constant, serving as a maximum retention limit (MRL) value. 

Given the trigger and exit thresholds, we can rewrite ℙ(𝐼𝑚) as: 

ℙ(𝐼𝑚) = (𝐹(𝑅𝑇𝑟) − 𝐹(𝑅𝐸))                                                    (8) 

where 𝐹(𝑅𝑇𝑟) = ℙ(𝑅 ≤ 𝑅𝑇𝑟) is the cumulative distribution function, which measures the 

probability of precipitation (R) being less than 𝑅𝑇𝑟 and 𝐹(𝑅𝐸) = ℙ(𝑅 ≤ 𝑅𝐸) does the same 

for 𝑅𝐸. Hence, the insurance monthly premium can be expressed as: 

𝑃𝑚 = 
1

𝑀
∑ 𝐺𝑤 × (𝐹(𝑅𝑇𝑟) − 𝐹(𝑅𝐸)) × {

0 𝑅𝑜,𝑚 > 𝑅𝑇𝑟 

𝛽(𝑅𝑇𝑟 − 𝑅𝑜,𝑚) 𝑅𝐸 < 𝑅𝑜,𝑚 ≤ 𝑅𝑇𝑟
𝛽(𝑅𝑇𝑟 − 𝑅𝐸) 𝑅𝑜,𝑚 ≤ 𝑅𝐸 < 𝑅𝑇𝑟 

𝑀

𝑚=1

        (9) 

To determine the trigger value, we adopt a similar approach to Kusuma et al. (2018). 

They used a cluster analysis involving a drought index and yield data to propose a parametric 

scheme for rice crops. The goal of the clustering model is to maximize the similarity of 

observations within each cluster while maximizing the difference between clusters. In our 

case, we follow a similar procedure by applying k-means clustering to the rainfall index and 

the power plant’s energy generation data. We will explore various trigger levels to identify the 

one that optimizes the insurance design. Our starting points are the average precipitation of 

the lower generation cluster, the same as Kusuma et al. (2018), and the 2.5% precipitation 

quantile within the same cluster as the exit threshold. 

To estimate the 𝛽 coefficient, we develop an energy generation predictive model. To 

do so, as an innovation, we employ spatial econometrics to incorporate the strong 

interconnections between weather and location into the model. We subsequently compare the 

outcomes obtained from the spatial model to those from the conventional OLS method. 

3.2. Spatial Econometrics 

Spatial econometrics addresses the interrelationships between economic units in 

spatial contexts, encompassing geographic, economic, or social interaction spaces. It accounts 

for interdependence, spillover effects and heterogeneity that may exist within the data or 

econometric model, recognizing spatial autocorrelation and other effects (Anselin, 1988; 

Paelinck & Klaasen, 1979). 

In spatial models, the spatial interactions are typically accounted for by a weighting 

matrix (Anselin, 1988; Kelejian & Piras, 2017; Moran, 1948). The 𝑤𝑖𝑗 element of this matrix 

describes the “closeness” between units i and j in terms of a distance measure. If 𝑤𝑖𝑗 ≠ 0, unit 

j is said to be a neighbor of unit i. Units that are viewed as neighbors interact in a meaningful 

way (e.g. spillovers, externalities or geographic proximity issues) (Kelejian & Piras, 2017). 
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Denoting a n×n weighting matrix as 

𝑊 = [
𝑊1

…
𝑊𝑛

] =  [

𝑤11 𝑤12  … 𝑤1𝑗 … 𝑤1𝑛−1 𝑤1𝑛
…

𝑤𝑛1 𝑤𝑛2  … 𝑤𝑛𝑗 … 𝑤𝑛𝑛−1 𝑤𝑛𝑗
]    (10) 

then a general fixed-effects spatiotemporal model of panel data, with n observations in the 

cross-section and t periods of time, can be defined as (Anselin, 1988): 

𝑦𝑖𝑡 = 𝜌𝑊𝑦𝑖𝑡 + 𝛼𝜄𝑛 + 𝑋𝑖𝑡𝛽 +𝑊𝑋𝑖𝑡𝜃 + 𝑢𝑖𝑡   (11) 

𝑢𝑖𝑡 = 𝜆𝑊𝑢𝑖𝑡 + 𝜇𝑖 + 𝜏𝑡 + 𝜈𝑖𝑡,    t=1,…,T             (12) 

where 𝑦𝑖𝑡 is a n×1 vector of observations on each unit i being explained at time t, 𝜄𝑛 is a 

vector n×1 of 1’s associated with the constant term (𝛼), 𝑋𝑖𝑡 is a n×k matrix of observations on 

k exogenous variables whose values vary over both cross-sectional units and time, W is the 

n×n nonnegative exogenous weighting matrix, as previously defined, representing the specific 

omitted effects of each locality, 𝑢𝑖𝑡 a vector n×1 of disturbances, 𝜈𝑖𝑡, 𝜇𝑖 and 𝜏𝑡 are n×1 

vectors of iid white noise variables, where 𝜈𝑖𝑡 represents the stochastic errors and 𝜇𝑖 and 𝜏𝑡 
may represent either fixed or random effects for the individuals and time. 𝛽 and 𝜃 are k×1 

parameter vectors, and 𝛼, 𝜌 and 𝜆 are scalar parameters. 

𝜌 determins the strength of spatial lag of the dependent variable, 𝜃 measures the 

influence of the neighboring values of independent variables and 𝜆 is responsible for filtering 

out the spatial dependence in the residual term, accounting for global effects. 

This model can be seen as several stacked cross-sections, and it assumes the W matrix 

is invariant over time, meaning the panel is balanced. 

There are several ways to construct a weighting matrix (Anselin, 1988). For this study, 

we consider the geographic distance between the units (i.e., hydroelectric powerplants) 

through georeferenced (by latitude and longitude) data and select the optimum weighting 

matrix, among k-nearest neighbors and Euclidian distance matrixes, by the AIC criterion, as 

recommended by Kubara & Kopczewska (2023). 

Spatial models’ specifications derive from the introduction of restrictions in the 

general spatial model parameters. For instance, the spatial autoregressive model (SAR) only 

has 𝜌 as a remaining parameter, while the spatial error model (SEM) has 𝜆, and the SARAR 

model combines both features (Kubara & Kopczewska, 2023). Models with 𝜃 are called 

spatial Durbin models (SDM and SDEM). The spatial models can be more easily estimated by 

starting from the traditional OLS model (a particular case of GLM) and testing for the 

different spatial effects (𝜃, 𝜌 or 𝜆) inclusion (Anselin, 1988). 

We start by testing for the existence of spatial interaction in our data through the 

application of Lagrange Multipliers (LM) in the OLS residuals (Anselin, 1988; Florax et al., 

2003). Figure 5 schematizes the LM procedure based on Florax et al. (2003). 
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Source: own elaboration. 

Based on the tests results, we estimate a model to predict the energy generation by the 

hydroelectric powerplants. Our initially proposed OLS model was as in Equation 13: 

𝐸𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝐴𝑡 + 𝛽3𝑅𝑡 + 𝛽4𝑇𝑡 + 𝛽5𝐻𝑡 + 𝛽6𝑊𝑆𝑡 + 𝛽7𝑅𝐺𝑡 + 𝑢𝑡                (13) 

where E is the generated energy, V is the reservoir’s water volume, A is the affluent flow, R is 

the rain index value, T is the average temperature, H is the air relative humidity level, WS is 

the average wind speed, and RG indicates the Brazilian macroregion in which the powerplant 

is located. T, H and WS are used as controls for R. 

As we evolved with the model testing, this proposal equation was shown not to be the 

best one, and our final model, as we will present in the results, can be expressed by Equation 

14, in a fixed-effects, two-ways, SARAR form: 

𝐸𝑖𝑡 = 𝜌𝑊𝐸𝑖𝑡 + 𝛽1𝑉𝑖𝑡 + 𝛽2𝐴𝑖𝑡 + 𝛽3𝑅_3𝑀𝑖𝑡 + 𝛽4𝑊𝑆𝑖𝑡 + 𝛽5𝐻𝑖𝑡 + 𝛽6𝑉𝑖𝑡 × 𝑅_3𝑀𝑖𝑡

+ 𝛽7𝐴𝑖𝑡 × 𝑅_3𝑀𝑖𝑡 + 𝛽8𝑊𝑆𝑖𝑡 × 𝐻𝑖𝑡 + 𝑢𝑖𝑡                                                             (14) 

𝑢𝑖𝑡 = 𝜆𝑊𝑢𝑖𝑡 + 𝜇𝑖 + 𝜏𝑡 + 𝑣𝑖𝑡                                                                                     (15)  

where 𝜇𝑖  represents the individual fixed effects and 𝜏𝑡 the time fixed effects. 𝑣𝑖𝑡 are stochastic 

errors. R_3M is the average precipitation of the last 3 months. The detailed information 

regarding the data structure, modeling process and results are presented in section 4. 

3.3. The Copulas models 

As argued by Bokusheva (2018), the use of regression analysis introduces some 

restrictive assumptions on the joint distribution of the variables employed in the model. In 

particular, the use of regression models limits the scope of the analysis to a linear correlation 

dependence structure. Hence, it is implicitly assumed that the sensitivity of the energy 

generation variable to weather remains constant over its whole distribution, as it is captured 

Figure 5. Lagrange Multipliers tests procedure 
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by the effect of weather on the energy generation conditional mean. Furthermore, linear 

correlation is inadequate for representing dependency in the tails of multivariate distributions, 

jeopardizing the assessment of extreme losses (Bokusheva, 2018). 

By using copulas, we are able to overcome these issues. A copula links marginal 

distributions to form a joint distribution of random variables. A d-dimensional copula 𝐶(𝑢) =
𝐶(𝑢1, . . . , 𝑢𝑑) is a multivariate distribution function on [0, 1]𝑑 with standard uniform marginal 

distributions (McNeil et al., 2005). 

According to Sklar’s theorem, any continuous multivariate distribution can be 

uniquely described by two parts: the marginal distributions 𝐹1, . . . , 𝐹𝑑 and the multivariate 

dependence structure captured by the copula C (Nelsen, 2006). That is, if F is a joint 

distribution function with marginal distributions 𝐹1, . . . , 𝐹𝑑, then there exists a copula C such 

that for all (𝑥1, . . . , 𝑥𝑑) in �̅� = [−∞,+∞]: 

𝐹(𝑥1, . . . , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), . . . , 𝐹𝑑(𝑥𝑑))    (16) 

Also, any joint probability density function 𝑓(𝑥1, 𝑥2) can be expressed as (Czado, 

2019): 

𝑓(𝑥1, 𝑥2) = c12(𝐹1(𝑥1), 𝐹2(𝑥2)) × 𝑓1(𝑥1) × 𝑓2(𝑥2),  (17) 

and any conditional density 𝑓(𝑥1|𝑥2) can be expressed as (Czado, 2019): 

𝑓(𝑥1|𝑥2) = c12(𝐹1(𝑥1), 𝐹2(𝑥2)) × 𝑓2(𝑥2),   (18) 

where c is the copula density and f and Fi denote the probability density and cumulative 

marginal distribution functions, respectively. 

There are many different types of copulas (organized in ‘copula families’): copulas 

from elliptical family (e.g., Gaussian and t-Student copulas), Archimedean family (e.g., 

Clayton and Joe copulas) and extreme-value family (e.g., Tawn and Galambos copulas), 

among others. Given a data set, one way to choose the copula that best fits the data is using a 

model selection criterion, as AIC or BIC. Once the copula has been chosen, its parameters can 

be estimated using a two-step procedure: in the first step, the parameters of marginal 

distributions are obtained by fitting a parametric distribution to the empirical data. In the 

second step, the copula parameters are estimated by the maximum likelihood method 

(Bokusheva, 2018; Czado, 2019). 

When 𝑑 > 2, many of d-dimensional copulas do not have an explicit formula or 

computing their likelihood function isn´t feasible. To get through this, we can use a vine 

copula structure, where the joint probability density function 𝑓(𝑥1, … , 𝑥𝑑) is rewritten using 

conditional densities as: 

𝑓(𝑥1, … , 𝑥𝑑) = 𝑓𝑑|1…(𝑑−1)(𝑥𝑑|𝑥1, … , 𝑥𝑑−1) × 𝑓𝑑−1|1…(𝑑−2)(𝑥𝑑−1 |𝑥1, … , 𝑥𝑑−2) × …× 𝑓1(𝑥1) 

  (19) 

Note that the decomposition structure in Equation 18 is not unique: from the law of 

total probability, it is possible to decompose a bivariate distribution as a product of a 

conditional and a univariate distribution. From Equation 18, each conditional density can be 

expressed in terms of a copula density c so Equation 19 can be rewritten as (Joe, 1996): 
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𝑓(𝑥1, … , 𝑥𝑑) =∏∏𝑐𝑖,(𝑖+𝑗)|(𝑖+1),…,(𝑖+𝑗−1)(𝐹(𝑥𝑖|𝑥𝑖+1, … , 𝑥𝑖+𝑗−1), 𝐹(𝑥𝑖+𝑗|𝑥𝑖+1, 𝑥𝑖+𝑗−1))

𝑑−𝑗

𝑖=1

𝑑−1

𝑗=1

×∏𝑓𝑘(𝑥𝑘)

𝑑

𝑘=1

                                                                                                          (20) 

Our choice for vine copulas is based on the fact that they are very adequate to model 

conditional structures, while also being a flexible tool for multivariate non-Gaussian 

(asymmetric) distributions (B. Chang & Joe, 2019), which seems to be the case of our data, as 

we will describe in section 4.1. 

Once we have modelled the variables’ causal dependence structure (in the graphical 

sense) throughout the vine copulas, we will be able to assess the joint probability of 

occurrence of the variables. The variable(s) directly related to the energy generation will be 

chosen as index(es) for the PI, and the thresholds levels can be defined by observing the 

quantiles of this(these) variable(s) that directly relate to low levels of energy generation. The 

payout can still be set as in Equation 7, except for the beta coefficient, as this method does not 

provide coefficients. Instead, we use the copula parameters to weight the index’s values. The 

probabilities of occurrence 𝐹(𝑅𝑇𝑟) and 𝐹(𝑅𝐸) are given by the copula distribution itself.  
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4. RESULTS 

In sections 4.1 and 4.2, we present a brief description of our database as well as some 

exploratory graphs that will base our further analyses. In section 4.3, we present the various 

estimated linear and spatial models, evaluating the best model choice. In section 4.4, we 

define the insurance thresholds, and in section 4.5 we present the insurance results with the 

spatial econometrics model. In section 4.6, we assess the variable’s interdependencies through 

copulas, carrying out an endogeneity robustness check, and presenting a second approach for 

the parametric insurance design, with the copula models. 

4.1. The data 

We gathered the data for Brazilian powerplants energy generation and reservoirs 

levels from the National Electrical System Operator (ONS) official database, and the 

Standardized Precipitation Index (SPI) measures from the National Institute of Meteorology 

(INMET). 

After treatment, the databases comprehend the generated energy by hydroelectric 

powerplants (in MWmed), the powerplants’ location (state, region and coordinates) and 

identification variables, such as name, hydrographic basin, system and subsystem, alongside 

with a variable indicating if the powerplant operates as run-of-river or with water storage, and 

quantitative variables regarding water volume in the reservoirs (in meters), water flow (in 

m3/s) and meteorological data, such as precipitation levels (mm), temperature (ºC), wind 

speed (m/s) and air relative humidity (%). 

Our dataset is structured as a monthly panel spanning from January 2006 to December 

2022, encompassing 151 powerplants. Originally, this panel was unbalanced, due to the fact 

that some powerplants were either under construction or not operational during the entire data 

collection period. To address this, we balanced the panel by assigning zero values for 

generation, water volume, and affluent flow on the dates when these powerplants did not exist 

or were non-operational. 

Furthermore, to ensure that we did not lose observations during the model estimation, 

we applied a similar approach to powerplants with null volume, particularly those categorized 

as run-of-river powerplants, setting their volume to zero. As part of a robustness test, we 

conducted a comparison of the results obtained from OLS regressions using both the balanced 

and unbalanced datasets. The analysis revealed that the resulting coefficients did not exhibit 

significant differences between the two datasets (such results are presented in Annex 1). A 

balanced panel is best for the development of econometric models, particularly when dealing 

with spatial analysis, as it allows the neighborhood matrix to remain consistent across the 

entire panel. This stability reduces the overall complexity.  

The data is originally available on an hourly basis, but we have aggregated it into 

monthly summaries. This approach aligns with the requirements of parametric insurance 

design, which considers monthly measurements for trigger events. Such a design is especially 

relevant in the context of energy generation, where issues typically arise after extended 

periods of insufficient rainfall, often spanning several days or even weeks. 

To ensure data quality, we excluded the years prior to 2006 due to the limited 

coverage of INMET's meteorological meters, which were insufficient to adequately monitor 

all powerplant locations during that period. In the end, our panel comprises 30,804 month-

powerplant observations. Descriptive statistics for our database can be found in Tables 1 to 7 

and Figures 6 to 21. 
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Table 1. Time span of our data 

Number of months First date Last Date  

204 01/01/2006 31/12/2022  

Source: own elaboration. 

Table 2. Powerplants by year 

Year 
Number of Powerplants 

(unbalanced panel) 

Number of Powerplants 

(balanced panel) 

2006 107 151 

2007 108 151 

2008 110 151 

2009 116 151 

2010 123 151 

2011 128 151 

2012 130 151 

2013 135 151 

2014 137 151 

2015 140 151 

2016 144 151 

2017 144 151 

2018 146 151 

2019 147 151 

2020 148 151 

2021 148 151 

2022 151 151 

Source: own elaboration.   

Table 3. Powerplants by Brazilian geographic macroregions 

Region Number of powerplants 

Center-West (CO) 22 

North (N) 18 

Northeast (NE) 09 

South (S) 31 

Southeast (SE) 70 

Total 150 
Note: The one missing powerplant is Itaipu 50 Hz, the Paraguayan portion of Itaipu. It is counted in the other metrics as usually Brazil buys a 

fraction of the generated energy from Paraguay. 

Source: own elaboration. 

Table 4. Powerplants by electricity subsystems 

Region Number of powerplants 

North (N) 10 

Northeast (NE) 08 

South (S) 30 

Southeast (SE) 103 

Total 151 
Source: own elaboration.     

It is noteworthy that the region where a powerplant is located is not always the one (or 

the only one) where the generated energy is consumed. Powerplants located in the northern 

regions of Brazil (where Amazon Rainforest is located), for example, might produce 

electricity that is primarily directed to the densely populated southeast, which serves as the 

country’s residential and industrial hub. This is made possible by Brazil’s well-developed 



49 

 

electrical network infrastructure, which includes extensive long-distance transmission 

powerlines (Barroso et al., 2007; Cataia, 2019). Consequently, the number of power plants 

across different electric subsystems may diverge from the geopolitical macroregions due to 

this intricate distribution and transmission of energy. 

 

Table 5. Ranking of powerplants’ average monthly energy generation 

Ranking Powerplant name Powerplant type 
State and 

region 

Basin name and 

subsystem 

Generation 

(Mwmed) 

1 Itaipu 60 HZ Run-of-River PR (S) Paraná (SE) 3,490,762.0 

2 Itaipu 50 HZ Run-of-River - Paraná (SE) 2,949,235.0 

3 Tucuruí Storage water volume PA (N) Tocantins (N) 2,847,237.8 

4 Belo Monte Run-of-River PA (N) Amazonas (N) 1,888,693.7 

5 Ilha Solteira Storage water volume SP (SE) Paraná (SE) 1,203,226.2 

6 Xingó Run-of-River AL (NE) São Francisco (NE) 1,144,363.1 

7 Santo Antônio Run-of-River RO (N) Amazonas (SE) 1,071,824.2 

8 Jirau Run-of-River RO (N) Amazonas (SE) 1,051,988.1 

9 São Simão Storage water volume MG (SE) Paranaíba (SE) 841,826.4 

10 Paulo Afonso IV Run-of-River BA (NE) São Francisco (NE) 831,938.8 

... 

142 Batalha Storage water volume MG (SE) Paranaíba (SE) 16,633.766 

143 Santa Branca Storage water volume SP (SE) Paraíba do Sul (SE) 16,608.905 

144 Ourinhos Run-of-River SP (SE) Paranapanema (SE) 16,541.247 

145 Itutinga Run-of-River MG (SE) Grande (SE) 16,079.630 

146 Santa Clara (MG) Run-of-River MG (SE) Mucuri (SE) 14,511.686 

147 Barra do Braúna Run-of-River MG (SE) Paraíba do Sul (SE) 13,784.478 

148 Anta Run-of-River RJ (SE) Paraíba do Sul (SE) 12,696.291 

149 Camargos Storage water volume MG (SE) Grande (SE) 12,353.470 

150 Limoeiro Run-of-River SP (SE) Grande (SE) 9,536.961 

151 Jaguari Storage water volume SP (SE) Paraíba do Sul (SE) 7,028.905 
Note: Itaipu 60 Hz represents the Brazilian portion of Itaipu, while Itaipu 50 Hz represents the Paraguayan portion. These averages only take 

into account the periods when the powerplant was operational (thus its generation was greater than zero). 

Source: own elaboration. 
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Table 6. 10 largest powerplants by monthly average energy generation and type 

Ranking 

Run-of-River Storage Water Volume 

Powerplant’s 

name 
State 

Basin’s 

name 

Generation 

(Mwmed) 

Powerplant’s 

name 
State 

Basin’s 

name 

Generation 

(Mwmed) 

1 Itaipu 60 HZ PR Paraná 3,490,762.0 Tucuruí PA Tocantins 2,847,237.8 

2 Itaipu 50 HZ - Paraná 2,949,235.0 Ilha Solteira SP Paraná 1,203,226.2 

3 Belo Monte PA Amazonas 1,888,693.7 São Simão MG Paranaíba 841,826.4 

4 Xingó AL 
São 

Francisco 1,144,363.1 
Salto Santiago PR Iguaçu 574,044.3 

5 Santo Antônio RO Amazonas 1,071,824.2 Itumbiara MG Paranaíba 537,399.8 

6 Jirau RO Amazonas 1,051,988.1 
Água 

Vermelha 
SP Grande 524,462.0 

7 
Paulo Afonso 

IV 
BA 

São 

Francisco 
831,938.8 

Gov. Ney 

Braga 
PR Iguaçu 510,703.7 

8 
Porto 

Primavera 
SP Paraná 766,231.7 Marimbondo MG Grande 469,828.9 

9 Jupiá SP Paraná 677,780.2 
Gov. Bento 

Munhoz 
PR Iguaçu 463,135.1 

10 Itá SC Uruguai 573,442.4 Luiz Gonzaga PE 
São 

Francisco 
462,178.7 

Note: Itaipu 60 Hz represents the Brazilian portion of Itaipu, while Itaipu 50 Hz represents the Paraguayan portion. These averages only take 

into account the periods when the powerplant was operational (thus its generation was greater than zero). 

Source: own elaboration 

Table 7. Descriptive statistics for the model’s variables 

Generation 

Min. 1st Qu. Median Mean 3rd Qu. Max. NAs 

0 19,813 56,297 216,517 178,554 6,836,348 0 

Useful Volume 

Min. 1st Qu. Median Mean 3rd Qu. Max. NAs 

-8.294 0 0 22.32 45.23 194.01 0 

Affluent flow 

Min. 1st Qu. Median Mean 3rd Qu. Max. NAs 

-12.97 47.88 198.10 917.57 719.04 54,385.86 0 

Precipitation 

Min. 1st Qu. Median Mean 3rd Qu. Max. NAs 

0 224.6 748.5 1037.2 1563.7 9234.8 0 

Temperature 

Min. 1st Qu. Median Mean 3rd Qu. Max. NAs 

9.94 22.35 24.87 24.40 27.04 34.03 0 

Wind Speed 

Min. 1st Qu. Median Mean 3rd Qu. Max. NAs 

0.12 1.75 2.17 2.23 2.65 6.32 0 

Humidity 

Min. 1st Qu. Median Mean 3rd Qu. Max. NAs 

25.08 58.59 66.65 64.61 72.73 92.18 0 
Note: Generation is the total generated energy in MWmed unit; Useful Volume refers to the available volume in the reservoir (in m3) 

between the maximum normal operating level and the minimum normal operating level; Affluent Flow is the average water flow (in m3/s) 
that reaches a hydroelectric facility or a hydraulic structure; Precipitation is the total amount of rain (mm); Temperature is the average 

temperature (°C); Wind Speed is the average wind speed (m/s); and Humidity is the average air relative humidity (%). The meteorological 

variables’ values correspond to the result of the kriging technic later explained in section 4.2. 

Source: own elaboration. 
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Figure 6. Histograms of the model’s variables 

Source: own elaboration. 

Figure 7. QQ-Plots of the model’s quantitative variables 

Source: own elaboration. 

The histograms and qq-plots provide strong evidence that the data deviate from a 

Normal distribution, particularly in the case of generation, water volume, affluent flow and 

precipitation. These variables exhibit left-skewed distributions with heavy-tails. While 

temperature, wind speed and humidity show distributions that are relatively closer to a 

Gaussian shape, the qq-plots reveal non-normality even in these cases. 

It is worth noting that climate data can significantly vary by region due to the vast 

expanse of Brazilian territory. To illustrate this regional variability, we have included 

histograms for precipitation, temperature, and energy generation specific to different regions 

in Figures 8 to 10. 
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Figure 8. Histograms of precipitation by region 

 
Source: own elaboration. 

Figure 9. Histograms of temperature by region 

 
Source: own elaboration. 
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Figure 10. Histograms of energy generation by region 

 
Source: own elaboration. 

By examining the histograms, we verify typical climate characteristics specific to each 

region in Brazil. For instance, the North region stands out with its high precipitation levels 

and elevated temperatures. The Northeast region experiences the highest temperatures but 

comparatively lower precipitation. In contrast, the South region tends to have lower 

temperatures. 

Regarding electricity generation, we observe the heaviest tails on South and North 

regions. This reflects the substantial power generation from major facilities like Itaipu, 

Tucuruí and Belo Monte, as shown in Tables 5 and 6. 

Furthermore, our analysis extends to the examination of time series data, particularly 

focusing on key variables of interest such as generation and precipitation. This temporal 

analysis is visually depicted in Figures 11 to 21, providing insights into the behavior of these 

variables over time. 
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Figure 11. Energy generation time series 

 

Note: the series is the sum of all energy generated in each month by all the powerplants 

Source: own elaboration. 

Figure 12. Precipitation time series 

 

Note: the series is the average precipitation in each month taking all regions into account. 

Source: own elaboration. 

In Figure 11, we see a consistent upward trend for energy generation up until mid-

2012. However, this positive trajectory was disrupted by a significant hydric crisis in Brazil, 

leading to an energy crisis in 2014, with extended periods of drought. This crisis caused a 

noticeable drop in energy generation. A similar pattern of reduced generation is visible in 

2021, coinciding with yet another drought crisis. The impact of these droughts is further 

evident in Figure 12, where we observe that the peaks in precipitation are notably lower from 

2013 to 2015 and again in 2021, accompanied by reduced valleys. 
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From 2016 to 2022, except for the 2021 crisis, energy generation stabilizes. During 

this period, its seasonality closely follows the seasonality of precipitation, as seen in Figure 

12. Moreover, Figure 12 clearly shows the typical seasonality of pluviometry, characteristic of 

tropical and subtropical climates, with high levels of precipitation during the summer and 

lower levels during the winter. The amplitude of peaks and valleys in the series serves as a 

clear reflection of the two major droughts experienced in this timeframe, which occurred in 

2014 and 2021. 

Figure 13. Top 5 powerplants energy generation time series 

Source: own elaboration. 

Figure 13 provides a compelling view of the time series for energy generation, 

highlighting the predominant contribution from the top 5 powerplants, notably Itaipu and 

Tucuruí initially, and later Belo Monte after 2016. It is noteworthy remarkable speed at which 

Belo Monte’s generation capacity expanded once it became operational in 2016. 

Furthermore, this shift in energy generation by Belo Monte dynamics is accompanied 

by a notable decline in production from Itaipu and, particularly, Tucuruí. This shift likely 

reflects changes in energy demand, with the new powerplant, Belo Monte, playing a 

significant role in supplying a substantial portion of the energy consumption, thereby 

impacting the generation patterns of Itaipu and Tucuruí. 
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Figure 14. Energy generation time series by region 

Note: the series are the sum of the energy generated in each month by all the powerplants in each region. 

Source: own elaboration. 

Figure 14 shows that regional energy generation patterns are also strongly influenced 

by the output of the major powerplants. Notably, none of the powerplants from the center-

west region are among the top ten largest in terms of generation capacity. This absence in the 

top ranks is a contributing factor to the relatively lower levels of energy generation in the 

central-west region. 

Figure 15. Precipitation time series by region 

Note: the series are the average of precipitation in each region and month. 

Source: own elaboration. 

The series depicted in Figure 15 exhibit behavior similar to the overall time series 

shown in Figure 7. However, there are noticeable variations in precipitation levels, as well as 
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differences in the months when each region reaches its peak, owing to the distinct climatic 

conditions in these regions. 

For a more comprehensive view, we present the interplay between energy generation 

and precipitation levels by region throughout time in Figures 16 to 21.  

Figure 16. Generation x Precipitation - North 

Source: own elaboration. 

The northern region consistently experiences the highest levels of precipitation, even 

when comparing the lowest points in the precipitation levels to other regions. However, at the 

beginning of the time series, energy generation levels in this region were not particularly 

remarkable. This can be attributed to the relatively small number of powerplants, with 

Tucuruí being the sole significant contributor. It is noteworthy that Santo Antonio was 

inaugurated in 2012, followed by Jirau in 2014, and Belo Monte in 2016 (Castilho, 2019). 

The installation of these powerplants, particularly Belo Monte, catalyzed substantial growth in 

energy generation, to the extent that it even surpassed the generation levels of Itaipu. 
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Source: own elaboration. 

The northeast region of Brazil stands out as the driest among all the regions, 

characterized by scant rainfall and elevated temperatures. It is the region that has borne the 

brunt of hydric crises, as clearly shown in Figure 17, where both curves experience a notable 

decline. In response to these challenges, wind energy generation has gained prominence in 

this region. It is an efficient source of power and serves as a valuable complement to 

electricity generation during periods of drought, effectively diversifying the electricity matrix 

(de Jong et al., 2016; De Jong et al., 2013). 

Figure 18. Generation x Precipitation - South 

Source: own elaboration. 
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Figure 17. Generation x Precipitation - Northeast 
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The southern region exhibits time series with higher volatility, marked by substantial 

energy generation levels, primarily driven by Itaipu, and moderate levels for precipitation. 

Like in other regions, the most significant peaks in precipitation are typically observed during 

the summer. However, this region also experiences smaller peaks during the spring months. 

Even during the winter months, when both precipitation and energy generation reach their 

lowest points, the energy generation levels in the south surpass those of northeast and central-

west regions. 

Since 2016, there is a trend of decreased energy generation, attributable to Belo Monte 

gradually compensating for a portion of the demand.  However, this trend experienced an 

upturn in 2022, particularly in response to the hydric crisis. The lowest point in the generation 

curve was reached in July 2020, coinciding with the initial signs of the 2021 hydric crisis, 

which predominantly impacted the southern and southeastern regions during that period. 

Figure 19. Generation x Precipitation - Southeast 

Source: own elaboration. 

The southeastern region of Brazil boasts the highest concentration of powerplants, 

mirroring its status as the most densely populated area in the country, with approximately 

45% of the Brazilian population residing there. Moreover, this region serves as the industrial 

hub, particularly in São Paulo. Consequently, the cumulative energy generation in the 

southeast is substantial, and its electrical subsystem also receives energy from powerplants 

situated in other regions, including the south and even the north. 

During both energy crises (2014-2016 and 2020-2021), the energy generation series 

registers significant declines. The precipitation series, on the other hand, reflects the 

characteristic climate seasonality but is notably less volatile compared to regions like the 

northeast or the south. It is worth noting that this series exhibits lower peaks during periods of 

hydric crises. 
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Source: own elaboration. 

The central-west region displays relatively modest levels of energy generation. As the 

least populated area in Brazil, it lacks an independent electrical subsystem. Most of its 

powerplants primarily supply energy to the southeast region, while some also contribute to the 

electrical subsystems of the north and south, given its shared hydrographic basins with these 

three regions.  

Precipitation levels in the central-west region closely resemble those of the southeast. 

However, it is important to note that part of the region is covered by the Amazon Rainforest, 

where the climate conditions are more akin to those in the north. 
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Figure 20. Generation x Precipitation – Center-west 
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Figure 21. Generation x Precipitation - Brazil 

 

Source: own elaboration. 

The nationwide time series for Brazil serves as a synthesis of the regional data. The 

hydric and energy crises of 2014 and 2021 are clearly discernible in the country-wide time 

series. What is particularly noteworthy is the close alignment between energy generation and 

precipitation, as they tend to move together. In periods of increased rainfall, energy 

generation surges, while in times of drought, the energy generation diminishes. This 

correlation is fundamental to the parametric design we advocate, and it holds great 

significance for a nation that heavily relies on hydroelectric energy. 

4.2. Spatial exploratory analysis 

In addition to traditional descriptive statistics, we perform an exploratory analysis to 

delve into the data’s spatial characteristics. Figure 22 provides a visual representation of the 

geographical distribution, illustrating the positions of hydroelectric powerplants marked in 

blue points and INMET's meteorological meters pinpointed in red points. 
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Figure 22. Map of Brazilian hydro powerplants (blue) and meteorological meters (red) 

 
Source: own elaboration. 

The map illustrates that there are sufficient meteorological meters in close proximity 

to each powerplant to enable obtaining accurate precipitation measurements for insurance 

purposes. To assign the corresponding meteorological measures to each powerplant for the 

model (given that the data from powerplants’ generation, water volume and water flow 

originates from a distinct database than the meteorological data), we employed a kriging 

technique. 

 Our choice of kriging parameters (e.g., distribution to be fitted and the fitting method) 

was based on a thorough graphical analysis of the kriging plots. For computational efficiency 

and due to the relatively close proximity of most meteorological meters to one another, we 

applied the kriging technique using only the three nearest meters to interpolate the data. This 

method was executed separately for each time period (month) and the results were 

subsequently organized and stacked in the panel structure. 

As an illustrative example of the kriging analysis, Figure 23 displays the fitted data for 

December 2022. 
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Figure 23. Kriging models fitness to meteorological data – December 2022 

 

Source: own elaboration. 

In general, the kriging technique proved to be effective in interpolating the data, 

particularly when dealing with shorter distances. All the statistics presented up to this point 

pertain to the kriged database. In Figure 24, we provide histograms comparing the original 

INMET’s database with the data post-kriging, which has been merged with the locations of 

the powerplants. 

Figure 24. Histograms of meteorological data – original and kriged 

 
Source: own elaboration. 
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As expected, the distributions exhibit minimal deviation from the original data, 

providing us with confidence in utilizing this dataset for the model. Figure 25 offers a visual 

representation of the precipitation levels at each geographical point, encompassing both 

meteorological meters and powerplants locations on the map. 

Figure 25. Map of precipitation 

 
Source: own elaboration. 

Figure 26 shows a theoretical expansion of this interpolation as a heat map.  

Figure 26. Heat map of precipitation 

 
Source: own elaboration. 
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Finally, we examine the correlations between variables, which serve as additional 

information to guide the selection of variables to include in the model. Tables 8 to 10 display 

these correlations. 

Table 8. List of Variables 

Variable Generic Code 

Generation Y 

Upstream Level X1 

Downstream Level X2 

Useful Volume X3 

Affluent flow X4 

Effluent Flow X5 

Turbine Flow X6 

Spilled Flow X7 

Transferred Flow X8 

Natural Flow X9 

Artificial Flow X10 

Incremental Flow X11 

Net Evaporation Flow X12 

Consumptive Use Flow X13 

Precipitation X14 

Temperature X15 

Wind Speed X16 

Humidity X17 

month_dummy X18 

year_dummy X19 

Average Precipitation in the Last 3 Months X20 

Note: Generation is the generated energy in MWmed unit; Upstream Level is the water level (in meters) immediately upstream of a 

hydroelectric facility; Downstream Level is the water level (in meters) immediately downstream of a hydroelectric facility; Useful Volume 

refers to the available percentual of the reservoir’s volume between the maximum normal operating level and the minimum normal operating 
level; Affluent Flow means the water flow (in m3/s) that reaches a hydroelectric facility or a hydraulic structure; Effluent Flow is the water 

flow (in m3/s) that leaves a hydroelectric plant or hydraulic structure; Turbine Flow is the water flow (in m3/s) that passes through the 

turbines of a hydroelectric plant; Spilled Flow (in m3/s) is the water flow released by a reservoir through surface spillways and/or bottom 
spillways; Natural Flow is the flow (in m3/s) that would occur in a section of the river if there were not upstream, anthropic actions in the 

basin, such as the regularization of reservoirs, flow transfers and abstraction for various purposes; Incremental Flow is the flow (in m3/s) 
resulting from the difference in natural flows between two completed sections of a watercourse; Net evaporation flow is the difference 

between actual evaporation from the reservoir lake and estimated actual evapotranspiration for that area under natural conditions and; 

Consumptive use flow is the water flow (in m3/s) destined to the set of activities in which its use causes a decrease in available water 
resources, such as irrigation, animal husbandry and urban, rural and industrial supplies; Precipitation is the total amount of rain (mm); 

Temperature is the average temperature (°C); Wind Speed is the average wind speed (m/s); Humidity is the average air relative humidity 

(%); month_dummy is a dummy variable indicating the month of each observation, as year_dummy is the year for each observation; and 

Average Precipitation in the Last 3 Months is the average precipitation for each locality considering the observation’s month and the 

previous two months. 

Source: own elaboration. 

 

  



 
 

Table 9. Pearson’s Correlations 

 Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 

Y 1.0000 -0.0773 -0.1320 0.0641 0.6877 0.6813 0.6609 0.2256 0.1620 0.6744 0.6123 0.4583 0.1889 0.5450 0.0367 0.0660 0.1191 0.0049 -0.0148 -0.0058 0.0495 

X1 -0.0773 1.0000 0.8795 0.4155 -0.1375 -0.1350 -0.1151 -0.0909 -0.0561 -0.1348 -0.0736 -0.1059 0.0482 -0.0505 -0.0460 -0.2716 0.0498 -0.1514 0.0088 0.1220 -0.0563 

X2 -0.1320 0.8795 1.0000 0.3625 -0.1405 -0.1385 -0.1000 -0.0803 -0.0428 -0.1394 -0.1094 -0.1009 0.0536 -0.0461 -0.0369 -0.2041 -0.0072 -0.1824 0.0122 0.1636 -0.0473 

X3 0.0641 0.4155 0.3625 1.0000 -0.0287 -0.0250 -0.0103 -0.0166 -0.0413 -0.0282 -0.0890 0.0226 0.1802 -0.0133 -0.0291 -0.0984 0.0405 -0.0460 -0.0544 -0.0157 0.0197 

X4 0.6877 -0.1375 -0.1405 -0.0287 1.0000 0.9851 0.7982 0.7439 0.2134 0.9795 0.4983 0.7556 0.1067 0.4112 0.1000 0.1184 -0.0176 0.0700 -0.0686 0.0341 0.1357 

X5 0.6813 -0.1350 -0.1385 -0.0250 0.9851 1.0000 0.8120 0.7441 0.0974 0.9625 0.4956 0.7175 0.1153 0.4275 0.0885 0.1175 -0.0065 0.0548 -0.0547 0.0266 0.1245 

X6 0.6609 -0.1151 -0.1000 -0.0103 0.7982 0.8120 1.0000 0.3152 0.0247 0.7767 0.4171 0.5417 0.1414 0.5004 0.0646 0.1308 -0.0105 0.0064 -0.0237 0.0973 0.0891 

X7 0.2256 -0.0909 -0.0803 -0.0166 0.7439 0.7441 0.3152 1.0000 0.1622 0.7271 0.1543 0.6623 -0.0090 0.0395 0.0920 0.0589 -0.0773 0.1025 -0.0696 0.0127 0.1290 

X8 0.1620 -0.0561 -0.0428 -0.0413 0.2134 0.0974 0.0247 0.1622 1.0000 0.2035 0.1178 0.3450 -0.0178 -0.0080 0.0141 0.0508 -0.0691 0.0358 -0.0281 0.0685 0.0173 

X9 0.6744 -0.1348 -0.1394 -0.0282 0.9795 0.9625 0.7767 0.7271 0.2035 1.0000 0.5424 0.7400 0.1095 0.3726 0.1184 0.1238 -0.0331 0.0976 -0.1081 0.0366 0.1607 

X10 0.6123 -0.0736 -0.1094 -0.0890 0.4983 0.4956 0.4171 0.1543 0.1178 0.5424 1.0000 0.2061 0.2012 0.5866 0.0300 0.0228 0.1136 0.0183 -0.0452 -0.0123 0.0445 

X11 0.4583 -0.1059 -0.1009 0.0226 0.7556 0.7175 0.5417 0.6623 0.3450 0.7400 0.2061 1.0000 0.0185 0.1393 0.0998 0.0861 -0.1068 0.1081 -0.0692 0.0525 0.1328 

X12 0.1889 0.0482 0.0536 0.1802 0.1067 0.1153 0.1414 -0.0090 -0.0178 0.1095 0.2012 0.0185 1.0000 0.3827 -0.1182 0.0483 0.0574 -0.1855 -0.0109 0.0140 -0.1201 

X13 0.5450 -0.0505 -0.0461 -0.0133 0.4112 0.4275 0.5004 0.0395 -0.0080 0.3726 0.5866 0.1393 0.3827 1.0000 -0.0969 0.0412 0.1378 -0.1762 0.0320 0.0594 -0.1069 

X14 0.0367 -0.0460 -0.0369 -0.0291 0.1000 0.0885 0.0646 0.0920 0.0141 0.1184 0.0300 0.0998 -0.1182 -0.0969 1.0000 -0.0098 -0.1053 0.5870 -0.0649 -0.0305 0.7966 

X15 0.0660 -0.2716 -0.2041 -0.0984 0.1184 0.1175 0.1308 0.0589 0.0508 0.1238 0.0228 0.0861 0.0483 0.0412 -0.0098 1.0000 -0.2236 -0.3400 -0.0192 0.0617 -0.0046 

X16 0.1191 0.0498 -0.0072 0.0405 -0.0176 -0.0065 -0.0105 -0.0773 -0.0691 -0.0331 0.1136 -0.1068 0.0574 0.1378 -0.1053 -0.2236 1.0000 -0.2081 0.2026 -0.2367 -0.1819 

X17 0.0049 -0.1514 -0.1824 -0.0460 0.0700 0.0548 0.0064 0.1025 0.0358 0.0976 0.0183 0.1081 -0.1855 -0.1762 0.5870 -0.3400 -0.2081 1.0000 -0.2265 -0.0820 0.6218 

X18 -0.0148 0.0088 0.0122 -0.0544 -0.0686 -0.0547 -0.0237 -0.0696 -0.0281 -0.1081 -0.0452 -0.0692 -0.0109 0.0320 -0.0649 -0.0192 0.2026 -0.2265 1.0000 0.0000 -0.3377 

X19 -0.0058 0.1220 0.1636 -0.0157 0.0341 0.0266 0.0973 0.0127 0.0685 0.0366 -0.0123 0.0525 0.0140 0.0594 -0.0305 0.0617 -0.2367 -0.0820 0.0000 1.0000 -0.0372 

X20 0.0495 -0.0563 -0.0473 0.0197 0.1357 0.1245 0.0891 0.1290 0.0173 0.1607 0.0445 0.1328 -0.1201 -0.1069 0.7966 -0.0046 -0.1819 0.6218 -0.3377 -0.0372 1.0000 
 Source: own elaboration. 

  



 
 

Table 10. Pearson’s Correlation: Selected Model Variables 

 Y X3 X4 X14 X15 X16 X17 X20 

Y 1,0000 0,0641 0,6877 0,0367 0,0660 0,1191 0,0049 0,0495 

X3 0,0641 1,0000 -0,0287 -0,0291 -0,0984 0,0405 -0,0460 0,0197 

X4 0,6877 -0,0287 1,0000 0,1000 0,1184 -0,0176 0,0700 0,1357 

X14 0,0367 -0,0291 0,1000 1,0000 -0,0098 -0,1053 0,5870 0,7966 

X15 0,0660 -0,0984 0,1184 -0,0098 1,0000 -0,2236 -0,3400 -0,0046 

X16 0,1191 0,0405 -0,0176 -0,1053 -0,2236 1,0000 -0,2081 -0,1819 

X17 0,0049 -0,0460 0,0700 0,5870 -0,3400 -0,2081 1,0000 0,6218 

X20 0,0495 0,0197 0,1357 0,7966 -0,0046 -0,1819 0,6218 1,0000 
 Source: own elaboration. 

Although Effluent Flow and Turbine Flow exhibit strong correlations with Energy 

Generation, they were excluded from consideration due to their high correlation with Affluent 

Flow. Essentially, when we have information about the water flow reaching the powerplant, it 

becomes redundant to also know the water flow reaching the turbines and subsequently 

exiting the system. This is especially true when there is a high degree of correlation between 

these flows, making Affluent Flow the more informative variable. Furthermore, among these 

three variables, Affluent Flow demonstrates the highest correlation with energy generation. 

We kept both precipitation measures to assess which one yields superior results for the 

model. 

4.3. The spatial model estimation 

We started the modeling process by testing Equation 13 against some variations (i.e., 

inclusion/removal of variables and interactions). We then selected the best OLS fit by the 

adjusted R-squared value. Throughout these tests, we conducted the Hausman Test, which 

consistently favored fixed-effects, with a highly significant p-value (<0.01). 

All models discussed in this section were estimated using Maximum Likelihood 

estimators. The chosen OLS model is represented by Equation 21: 

𝐸𝑖𝑡 = 𝛽0 + 𝛽1𝑉𝑖𝑡 + 𝛽2𝐴𝑖𝑡 + 𝛽3𝑅3𝑀𝑖𝑡 + 𝛽4𝑊𝑆𝑖𝑡 + 𝛽5𝐻𝑖𝑡 + 𝛽6𝑉𝑖𝑡 × 𝑅3𝑀𝑖𝑡 + 𝛽7𝐴𝑖𝑡 × 𝑅3𝑀𝑖𝑡
+ 𝛽8𝑊𝑆𝑖𝑡 × 𝐻𝑖𝑡 + 𝜇𝑖 + 𝜏𝑡 + 𝑣𝑖𝑡                                                                          (21) 

where E is the generated energy, V is the reservoir’s water volume, A is the affluent flow, 

R_3M is the average precipitation in the last 3 months, WS is the average wind speed and H 

is the air relative humidity level, 𝜇 and τ are fixed effects for individuals and time, 

respectively, and 𝑣𝑖𝑡 is the disturbance term. 

We found that the inclusion of a moving precipitation average increased the model’s 

performance when compared to using only the monthly precipitation (𝑅𝑖𝑡). We incorporated 

H and WS as control variables for precipitation, considering that their interaction might be 

related to air monsoons, which correlate with rainfall patterns. Temperature, on the other 

hand, exhibited little or no significance in most models, prompting its exclusion. 

Table 11 presents the model coefficients, standard errors, and significance indicators. 

It also includes some of the other models we tested, offering a basis for comparison. 



 
 

Table 11. OLS results 

 OLS 1 OLS 2 OLS 3 OLS 4 OLS 5 OLS 6 OLS 7 

Formula 
V+A+R+T+

WS+H 

V*R+A*R+WS+

H*R 

V+A*R+W

S*H 

V+A*R+WS*H*

R+T 

V*R_3M+A*R_3M+WS*H*R

_3M+T 

V*R_3M+A*R_3M+

WS*H 

V*R_3M+A*R_3M+W

S*H+T 

V 
1592.9494*** 1628.1*** 1587.3*** 1577.8*** 1574.3*** 1602.6*** 1573.4*** 

(60.381) (67.3430) (59.918) (60.2990) (74.22) (73.568) (74.245) 

A 
63.3813*** 73.873*** 73.667*** 73.922*** 88.256*** 87.791*** 87.8600*** 

(0.5567) (0.8797) (0.87944) (0.8826) (1.0863) (1.0809) (1.0811) 

R 
7.1098*** 22.3710* 11.359*** -94.01**    

(1.3977) (9.7036) (1.3771) (34.3860)    

R_3M 
    -166.22*** 16.065*** 18.13*** 

    (35.86) (1.9687) (2.0935) 

T 
-912.3535°   -1833.6*** -1412.6000**  -1455.7** 

(492.118)   (521.3800) (526.02)  (502.43) 

WS 
7593.9173*** 8057*** 53166*** 42634*** 30345* 54884*** 55018*** 

(2214.2409) (2189.5000) (9919) (11695) (12373) (9840.5) (9839.4) 

H 
-177.955 -199.1600 1455.8*** 1090* 658.58 1533.9*** 1347.1*** 

(158.0674) (146.6700) (387.99) (462.21) (494.89) (387.82) (393.1) 

V*R 
 -0.0398      

 (0.0314)      

A*R 
 -0.0050*** -0.0050*** -0.0051***    

 (0.0003) (0.0003) (0.0003)    

V*R_3M 
    -0.0778* -0.0806* -0.0764* 

    (0.0372) (0.0372) (0.0372) 

A*R_3M 
    -0.0106*** -0.0103*** -0.0104*** 

    (0.0004) (0.0004) (0.0004) 

WS*H 
  -699.53*** -611.03** -433.24*** -706.18*** -715.96*** 

  (149.78) (187.38) (200.84) (149.11) (149.13) 

WS*R    58.242***    
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 OLS 1 OLS 2 OLS 3 OLS 4 OLS 5 OLS 6 OLS 7 

   (14.351)    

H*R 
 -0.1264  1.3734**    

 (0.1274)  (0.45)    

WS*R_3M 
    80.91*   

    (15.561)   

H*R_3M 
    2.3975***   

    (0.4766)   

WS*H*R 
   -0.7523***    

   (0.1882)    

WS*H*R_3

M 

    -1.0481***   

    (0.2066)   

Adjusted R2 0.31839 0.32351 0.32396 0.32457 0.3344 0.33371 0.33387 

AIC 833,318 833,087.8 833,066.4 833,042.3 832,591.7 832,619.9 832,613.4 

BIC 834,635 834,421.4 834,391.7 834,401 833,958.7 833,953.5 833,955.4 

        

n 151 151 151 151 151 151 151 

t 204 204 204 204 204 204 204 

Note: The standard errors are shown between parentheses. The models include a µ and τ vectors for spatial and temporal fixed-effects. 

Statistical significance: *** p<0.001; ** p<0.01; * p<0.05; ° p<0.1. 

Source: own elaboration. 



 
 

None of the models exhibited statistical significance for R_3M when it was already 

included in the model along with R. Consequently, we faced the decision of selecting between 

these two variables for the final model and the insurance index. The models featuring R_3M 

presented best fit, hence we opted for this variable as the index. It better captures the 

dynamics of drought crises since it considers a more extended time frame. Additionally, 

R_3M exhibits significant interaction with volume, while R does not. This is likely because 

storage powerplants take longer to manifest the effects of drought, as they possess larger 

water reserves, and the water usage can be adjusted according to the energy demand to 

prevent rapid depletion of these reserves. 

Models 5 (by adjusted R-squared and AIC criterion) and 6 (by BIC criterion) were 

considered the best. The discrepancy in the statistical measures between them is negligible, 

prompting our decision in favor of Model 6 for the sake of simplicity and ease of 

interpretation. In this selected model (Model 6), the precipitation index interacts solely with A 

and V, rendering it a more straightforward and direct measure for the PI. The interaction of 

WS and H can be attributed to the influence of air monsoons, but the inclusion of a temporally 

lagged precipitation measure would add complexity to the interpretation. The inclusion of 

temperature does not yield improvements to this model, as shown in model 7. Besides, the 

BIC criterion is particularly suited for large samples, as it is the case of our dataset. 

As expected, the positive coefficients for water volume, affluent flow and precipitation 

signify a direct, proportional relationship with generation. In other words, higher levels of rain 

or increased water flow/volume correspond to higher energy generation, while a lack of rain 

or reduced water flow/volume results in decreased energy output. The negative signs for the 

interactions indicate that they slightly reduce the individual effects of the variables, which is 

also true for wind speed and humidity. 

The decision not to transform the variables into logarithmic form was based on the 

presence of zero values in many of them, which would make impossible the application of 

logarithmic functions without prior treatment. With the OLS chosen, we conducted LM tests 

on the model residuals to assess spatial dependency. 

We crafted four different weighting matrices: k-nearest neighbors for 3 and 5 

neighbors, and inverse distance for 15 and 30 kilometers. All matrices were binary in style. 

The results for LM tests for all the weighting matrices are presented in Table 12. 

Table 12. LM Tests 

 3-knn Matrix 5-knn Matrix 15 km Dist. Matrix 30 km Dist. Matrix 

LMlag 129.38 110.3 4.2512 4.3012 

p-value <0.001 <0.001 0.03922 0.03809 

LMerror 64.79 65.75 3.3725 3.4198 

p-value <0.001 <0.001 0.06629 0.06442 

RLMlag 83.945 50.624 2.7931 2.7747 

p-value <0.001 <0.001 0.09467 0.09576 

RLMerror 19.354 6.0691 1.9144 1.8933 

p-value <0.001 0.01376 0.1665 0.1688 
Source: own elaboration. 

From Table 9, we infer that the SAR model (LMlag and RLMlag) appears to be more 

suitable for all matrices. For the distance matrixes, the SEM model (LMerror and RLMerror) 

does not exhibit significance in the robust LM tests. For the 5-knn matrix, although both are 

significant in all tests at a 5% significance level, SAR yields a smaller p-value. Meanwhile, 
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for the 3-knn matrix, both SAR and SEM are significant at the 1% significance level, possibly 

indicating a SARAR model. 

Since the LM tests indicated the existence of spatial effects, we estimated SLX 

models, with the same variables as the OLS, to determine the most suitable weighting matrix. 

The results are presented in Table 13. 

Table 13. SLX models’ results for different W matrices 

 3-knn Matrix 5-knn Matrix 15 km Dist. Matrix 30 km Dist. Matrix 

Useful Volume 
1525.2*** 1537.8*** 1584.7*** 1584.5 

(74.125) (74.224) (73.746) (73.765) 

Affluent Flow 
88.185*** 87.987*** 87.736*** 87.739 

(1.0801) (1.0812) (1.0809) (1.0809) 

Average 3-months 

Precipitation 

16.065*** 19.982*** 16.247*** 16.276 

(1.9687) (2.1961) (1.9836) (1.9849) 

Wind 
52983*** 50749*** 55150*** 55063 

(9932.2) (9978.8) (9855.5) (9856.7) 

Humidity 
1734.8*** 1739.8*** 1601.7*** 1601.2 

(392.03) (392.74) (388.72) (388.78) 

Useful Volume * 

Average 3-months 

Precipitation 

-0.0694° -0.0711° -0.0813* -0.0815 

(0.0372) (0.0372) (0.0373) (0.0373) 

Affluent Flow * 

Average 3-months 

Precipitation 

-0.0105*** -0.0104*** -0.0103*** -0.0103 

(0.0004) (0.0004) (0.0004) (0.0004) 

Wind 

Speed*Humidity 

-725.46*** -703.35*** -724.85*** -723.48 

(149.16) (149.45) (149.35) (149.36) 

Laged Useful Volume 
188.64*** 141.93*** 9.0193*** 8.6544 

(33.316) (24.578) (2.283) (2.2738) 

Laged Affluent Flow 
2.8154*** 1.5791*** 0.0185 0.0199 

(0.3299) (0.259) (0.024) (0.024) 

Laged Average 3-

months Precipitation 

-3.7288*** -1.4725* 0.0108 0.0109 

(0.8463) (0.5911) (0.017) (0.017) 

Laged Wind Speed 
3438.6** 3274*** 59.287* 60.045 

(1092.4) (734.79) (24.386) (24.35) 

Laged Humidity 
-85.037 -67.011 -2.6189 -2.6784 

(74.541) (50.295) (1.8238) (1.8216) 

AIC 832,177.2 832,214.7 832,303.1 832,303.8 

BIC 832,293.9 832,331.4 832,419.8 832,420.5 

n 151 151 151 151 

t 204 204 204 204 

Note: The standard errors are shown between parentheses. The models include a µ and τ vectors for spatial and temporal fixed effects. 

Statistical significance: *** p<0.001; ** p<0.01; * p<0.05; ° p<0.1. 

Source: own elaboration. 

The significance of lagged variables from the SLX models, particularly in the case of 

knn-type matrices, could be attributed to the spatial proximity of powerplants within the same 

basin. This suggests that the energy generation of a powerplant may not only be explained by 
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its own water flow/volume levels but also by the levels of its nearest neighbors, as they share 

common watercourses and meteorological conditions. 

From Table 13, the weighting matrix using the 3 nearest neighbors is the most 

suitable, given its lower AIC and BIC. We then proceeded to test the spatial models using this 

particular W matrix. As shown in Table 12, both SAR and SEM exhibit significance for this 

matrix. Therefore, we tested both of them, in addition to SARAR, which combines the spatial 

lag and error. The results and comparison of the models are presented in Table 14. 

Table 14. Results for different model structures estimation 

 OLS SLX SAR SEM SARAR 

Useful Volume 
1602.6*** 1525.2*** 1600*** 1605.1*** 1613.4*** 

(73.568) (74.125) (75.127) (75.342) (74.99) 

Affluent Flow 
87.791*** 88.185*** 88.961*** 88.751*** 89.061*** 

(1.0809) (1.0801) (1.0742) (1.0758) (1.0743) 

Average 3-months 

Precipitation 

11.3590*** 16.065*** 20.704*** 20.805*** 20.604*** 

(1.3771) (1.9687) (2.3001) (2.3048) (2.2967) 

Wind Speed 
54884*** 52983*** 38915*** 38985*** 3844*** 

(9840.5) (9932.2) (10333) (10352) (10319) 

Humidity 
1533.9*** 1734.8*** 1762.8*** 1791.1*** 1755.5*** 

(387.82) (392.03) (407.05) (407.77) (406.59) 

Useful Volume* 

Average 3-months 

Precipitation 

 

-0.0806* -0.0694° -0.068° -0.0707° -0.0701° 

(0.0372) (0.0372) (0.037) (0.0371) (0.037) 

Affluent Flow* 

Average 3-months 

Precipitation 

 

-0.0103*** -0.0105*** -0.0106*** -0.01056*** -0.0106*** 

(0.0004) (0.0004) (0.0003) (0.0003) (0.0003) 

Wind 

Speed*Humidity 

 

-706.18*** -725.46*** -688.6*** -682.53*** -688.13*** 

(149.11) (149.16) (154.35) (154.62) (154.17) 

Laged Water 

Volume 

 188.64***    

 (33.316)    

Laged Affluent 

Flow 

 2.8154***    

 (0.3299)    

Laged Average 3-

months 

Precipitation 

 -3.7288***    

 (0.8463)    

Laged Wind Speed 
 3438.6**    

 (1092.4)    

Laged Humidity 
 -85.037    

 (74.541)    

ρ 
  0.0267945***  0.0345518*** 

  (0.0021289)  (0.0044424) 

λ 
   0.0151150*** -0.0133444* 

   (0.002443) (0.0054031) 

AIC 832,619.9 832,177.2 831,693.1 831,868.8 831,671.8 

BIC 833,953.5 832,293.9 831776.4 831,952.2 831,763.5 

n 151 151 151 151 151 
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t 204 204 204 204 204 

Hausman Test – 

Fixed x random 

Effects 

Fixed Effects 

p<0.001 

Fixed Effects 

p<0.001 

Fixed Effects 

p<0.001 

Fixed Effects 

p<0.001 

Fixed Effects 

p<0.001 

Haussman Test – 

Fixed Effects x 

Pooling 

Fixed Effects 

p<0.001 

Fixed Effects 

p<0.001 

Fixed Effects 

p<0.001 

Fixed Effects 

p<0.001 

Fixed Effects 

p<0.001 

Note: The standard errors are shown between parentheses. The models include a µ and τ vectors for spatial and temporal fixed effects. The 
SARAR model returned null log-likelihood, so we could not calculate its AIC nor its BIC. Statistical significance: *** p<0.001; ** p<0.01; * 

p<0.05; ° p<0.1. 

The fixed-effects SARAR is the most suitable model, with smaller AIC and BIC 

values, for explaining and predicting the powerplant’s energy generation. The chosen model, 

therefore, can be expressed as in Equation 22: 

𝐸𝑖𝑡 = 𝜌𝑊𝐸𝑖𝑡 + 𝛽1𝑉𝑖𝑡 + 𝛽2𝐴𝑖𝑡 + 𝛽3𝑅3𝑀𝑖𝑡 + 𝛽4𝑊𝑆𝑖𝑡 + 𝛽5𝐻𝑖𝑡 + 𝛽6𝑉𝑖𝑡 × 𝑅3𝑀𝑖𝑡
+ 𝛽7𝐴𝑖𝑡 × 𝑅3𝑀𝑖𝑡 + 𝛽8𝑊𝑆𝑖𝑡 × 𝐻𝑖𝑡 + 𝜇 + 𝜏 + 𝜆𝑊𝑢𝑖𝑡 + 𝜇𝑖 + 𝜏𝑡 + 𝑣𝑖𝑡            (22) 

The presence of a ρ term, associated with the W matrix, implies that the powerplant’s 

energy generation can be explained not only by its own measurements of water flow/volume 

and the regional meteorological conditions, but also by the energy generated by its 

neighboring powerplants. This suggests that the conditions of a powerplant are closely related 

to those of its nearest neighbors, often sharing the same basin and, as a result, experiencing 

similar watercourses and meteorological conditions. The positive sign of ρ further indicates 

that variations in energy generation typically occur in the same direction for a powerplant and 

its neighbors. 

The interpretation of the λ term suggests the existence of random shock effects on 

neighboring powerplants, which negatively affect the energy generation of the observed 

powerplant but are not captured by the variables in the model. One such effect could be the 

MRE mechanism. Given the highly interconnected nature of the Brazilian electrical system, 

with minimum energy generation targets established for each powerplant and periodically 

revised by ONS, a powerplant’s energy generation is also contingent on the energy demand 

and the generated levels by all other suppliers in the electrical system. This is an omitted 

variable to the model, which the λ term helps capture. 

In addition to the model’s coefficients, it is important to assess the direct and indirect 

effects of the variables when dealing with a SARAR model. The interpretation of the 

coefficients in this case is not straightforward due to the spillovers between the terms in the 

data generation process (Kelejian & Piras, 2017; LeSage & Pace, 2009). Table 15 presents 

such effects. 

Table 15. Direct, Indirect and Total Effects for SARAR model 

 Direct Indirect Total 

Useful Volume 1613.44 57.72 1671.16 

Affluent Flow 89.06 3.19 92.25 

Average 3-months Precipitation 20.60 0.74 21.34 

Wind Speed 38440.31 1375.17 39815.49 

Humidity 1755.51 62.80 1818.31 

Useful Volume* Average 3-months Precipitation -0.07 0.00 -0.07 

Affluent Flow* Average 3-months Precipitation -0.01 0.00 -0.01 

Wind Speed* Humidity -688.14 -24.62 -712.76 
Source: own elaboration. 
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In Table 15, the total effects encompass the coefficients derived from the SARAR 

model presented in Table 14, augmented by the spillovers’ effects. These total effects are 

further divided into direct and indirect effects.  Direct effects pertain to the impact that a 

change in a specific variable (𝑥𝑖𝑡) has on the predicted energy generation (𝑦𝑖𝑡), for the same 

powerplant. In contrast, indirect effects denote the influence that this change in 𝑥𝑖𝑡 has on the 

energy generation 𝑦𝑗𝑡, for neighboring powerplants, where 𝑖 and 𝑗 represent neighboring 

units. 

For instance, ceteris paribus, an increase of 1 meter in the useful volume of a 

powerplant’s reservoir yields a direct effect of 1,613.44 MWmed increase in that 

powerplant’s energy generation. This change also induces a 57.72 MWmed increase for the 

three nearest neighboring powerplants energy generation, cumulatively resulting in a 1,671.16 

increase in energy generation for the entire system. 

We will use the direct effect coefficients to estimate the insurance payout, as they 

serve as predictors for a powerplant’s expected energy generation. 

4.4. Defining the Insurance Trigger 

Following Kusuma et al. (2018), we employ a clustering technique to identify 

instances in which both E and R_3M were low levels. We compute the average R_3M and 

designated it as the initial trigger (other scenarios will be assessed further in this section). 

Additionally, the 2.5% quantile of R_3M within the lower cluster was designated as the exit 

threshold, meaning the maximum indemnity limit. The chosen technique was the k-means 

clustering, a widely employed and well-established clustering algorithms (Hair Jr et al., 

2014). 

As each powerplant exhibits unique characteristics, we cannot define a one-size-fits-

all trigger that applies to all of them. Therefore, this aspect of the insurance contract must be 

tailored to each powerplant individually. We will present the calculations for the two largest 

energy generators from each region, one representing a run-of-river powerplant and another 

with water storage. The selected powerplants are: Itaipu and Salto Santiago (South), Belo 

Monte and Tucuruí (North), Xingó and Luiz Gonzaga (Northeast) and Porto Primavera and 

Ilha Solteira (Southeast). 

For all these powerplants, we conducted data clustering into three groups. This number 

was determined as optimal based on a scree plot analysis, the results of which are displayed in 

Figure 27.  
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Figure 27. Scree Plots 

 
Source: own elaboration. 

When we clustered the energy generation based solely on precipitation, the resulting 

clusters did not exhibit a well-ordered structure concerning generation values, as one can see 

on Figure 28. This discrepancy is likely due to the fact that low levels of rainfall do not 

always immediately translate to low levels of energy generation. Powerplants typically 

maintain water reserves for weather drought periods, which means it may require an extended 

period of low rainfall levels to jeopardize their generation capacity, especially for larger 

powerplants. Consequently, low levels of precipitation can still be associated with some 

instances of medium or high energy generation, as illustrated in Figure 28. 
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Figure 28. Energy Generation x Average Precipitation Clusters 

 
Note: for Belo Monte, it was considered only the data from January 2020 forward, when the series gains stationarity, so that there is no bias 

from the early years when the energy generation levels were lower. 

Source: own elaboration. 

Belo Monte stands as an exception, where the variables display a more distinct 

correlation and low levels of R_3M consistently correspond to low levels of energy 

generation. 

Relying the parametric insurance scheme solely on the precipitation index would 

result in the insurance being triggered more frequently than necessary. To address this issue, 

we decided to set the trigger not only on precipitation, but as a combination of precipitation 

and water flow (for run-of-river powerplants) or precipitation and water volume (for water 

storage powerplants). These variables exhibit stronger correlations with energy generation and 
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interact with the R_3M variable in the econometric model. This adjustment led to a redefined 

cluster structure, now in a 3-D perspective, as depicted in Figure 29. 

 Figure 29. Clusters in a 3-D Perspective 

 

Note: for Belo Monte, it was considered only the data from January 2020 forward, when the series gains stationarity, so that there is no bias 

from the early years when the energy generation levels were lower. 

Source: own elaboration. 

An inquiry may arise concerning the need for two triggering indexes, prompting a 

consideration of utilizing either Affluent Flow or Useful Volume as the sole trigger. When 

examining Affluent Flow, there is an evident structure in the observations that is substantial 

enough to allow a PI mechanism triggered solely by this variable. In contrast, when focusing 

on Useful Volume, the data exhibits even greater dispersion than with the average 

precipitation, rendering it unfeasible to use solely this variable. Therefore, for water storage-

type powerplants, a combination of both volume and rainfall levels is imperative. These 

results are presented in Figure 30. 
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Figure 30. Energy Generation x Affluent Flow/Useful Volume 

 
Note: for Belo Monte, it was considered only the data from January 2020 forward, when the series gains stationarity, so that there is no bias 

from the early years when the energy generation levels were lower. 

Source: own elaboration. 

For the sake of standardization, and given the variables interactions in the SARAR 

model, we will employ the bivariate trigger for all powerplants, although it is worth noting 

that the results of an affluent flow trigger for the run-of-river powerplants could also be 

assessed. Utilizing the 3-D lower clusters, the defined trigger and exit thresholds for each 

simulated scenario, as outlined in Table 16. 

  



 
 

Table 16. Triggers and Exit Thresholds 

 
R_3M Trigger R_3M Exit Threshold 

Powerplant Average Median 35% Quantile 30% Quantile 1st Quartile 5% Quantile 2.5% Quantile 1% Quantile 

Itaipu 1046.11 858.50 642.69 634.24 642.69 195.76 165.50 138.41 

Salto Santiago 1046.37 973.85 719.08 623.11 589.21 322.70 291.88 264.90 

Belo Monte 722.89 789.96 555.17 452.48 356.65 199.06 175.88 161.97 

Tucuruí 608.42 466.80 322.84 290.47 243.72 119.84 93.06 74.84 

Xingó 242.67 230.26 152.81 130.72 106.29 47.10 46.13 34.34 

Luiz Gonzaga 266.31 267.59 178.13 158.40 131.17 37.52 34.38 30.76 

Porto Primavera 540.72 464.62 272.85 260.94 186.96 83.67 77.35 56.86 

Ilha Solteira 631.62 505.96 368.34 267.07 223.40 33.77 12.00 6.94 
 

A/V Trigger A/V Exit Threshold 

Powerplant Average Median 35% Quantile 30% Quantile 1st Quartile 5% Quantile 2.5% Quantile 1% Quantile 

Itaipu 9160.68 7146.32 6282.79 6212.97 6282.79 5107.42 4849.49 4752.89 

Salto Santiago 37.82 35.49 30.76 28.56 24.54 12.36 9.76 8.25 

Belo Monte 1964.42 1399.96 1107.74 934.07 871.16 818.85 751.87 711.69 

Tucuruí 53.10 41.11 30.07 28.04 26.26 19.06 16.87 15.87 

Xingó 732.81 745.03 696.37 648.41 609.81 562.17 556.47 554.07 

Luiz Gonzaga 27.17 23.34 19.00 18.42 17.14 11.63 11.01 10.35 

Porto Primavera 4845.22 4723.92 4216.74 4352.28 4213.87 3582.68 3538.91 3201.40 

Ilha Solteira 32.49 22.84 0.00 0.00 0.00 0.00 0.00 0.00 
Source: own elaboration. 

Ilha Solteira presents a great deal of zeros in its volume data. However, these zeros are, most likely, measurement errors, as there is 

energy generation in all months, besides this being the largest hydroelectric plant in the state of São Paulo, with large reservoirs that would 

hardly ever be at zero capacity. 

To calculate the payout and premium with 2 triggers, we redefine Equation 7 as: 

𝑆(𝐼𝑤,𝑚) = 𝐺𝑤 × (𝐼𝑤,𝑚) 
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 = 𝐺𝑤 ×

{
 
 

 
 

0 𝑅_3𝑀𝑜,𝑚 > 𝑅_3𝑀𝑇𝑟 𝑜𝑟 𝐴𝑜,𝑚 > 𝐴𝑇𝑟
𝛼(𝑅_3𝑀𝑇𝑟 − 𝑅_3𝑀𝑜,𝑚) + 𝛽(𝐴𝑇𝑟 − 𝐴𝑜,𝑚) + 𝜙(𝑅_3𝑀𝑇𝑟 − 𝑅_3𝑀𝑜,𝑚)(𝐴𝑇𝑟 − 𝐴𝑜,𝑚) 𝑅_3𝑀𝐸 < 𝑅_3𝑀𝑜,𝑚 < 𝑅_3𝑀𝑇𝑟 𝑎𝑛𝑑 𝐴𝐸 < 𝐴𝑜,𝑚 < 𝐴𝑇𝑟
𝛼(𝑅_3𝑀𝐸 − 𝑅_3𝑀𝑜,𝑚) + 𝛽(𝐴𝐸 − 𝐴𝑜,𝑚) + 𝜙(𝑅_3𝑀𝐸 − 𝑅_3𝑀𝑜,𝑚)(𝐴𝐸 − 𝐴𝑜,𝑚) 𝑅_3𝑀𝑜,𝑚 < 𝑅_3𝑀𝐸  𝑎𝑛𝑑 𝐴𝑜,𝑚 < 𝐴𝐸  𝑎𝑛𝑑 𝑅_3𝑀𝑜,𝑚 < 𝑅_3𝑀𝑇𝑟 𝑎𝑛𝑑 𝐴𝑜,𝑚 < 𝐴𝑇𝑟
𝛼(𝑅_3𝑀𝐸 − 𝑅_3𝑀𝑜,𝑚) + 𝛽(𝐴𝑇𝑟 − 𝐴𝑜,𝑚) + 𝜙(𝑅_3𝑀𝐸 − 𝑅_3𝑀𝑜,𝑚)(𝐴𝑇𝑟 − 𝐴𝑜,𝑚) 𝑅_3𝑀𝑜,𝑚 < 𝑅_3𝑀𝐸  𝑎𝑛𝑑 𝑅_3𝑀𝑜,𝑚 < 𝑅_3𝑀𝑇𝑟 𝑎𝑛𝑑 𝐴𝑜,𝑚 < 𝐴𝑇𝑟
𝛼(𝑅_3𝑀𝑇𝑟 − 𝑅_3𝑀𝑜,𝑚) + 𝛽(𝐴𝐸 − 𝐴𝑜,𝑚) + 𝜙(𝑅_3𝑀𝑇𝑟 − 𝑅_3𝑀𝑜,𝑚)(𝐴𝐸 − 𝐴𝑜,𝑚) 𝐴𝑜,𝑚 < 𝐴𝐸  𝑎𝑛𝑑 𝑅_3𝑀𝑜,𝑚 < 𝑅_3𝑀𝑇𝑟 𝑎𝑛𝑑 𝐴𝑜,𝑚 < 𝐴𝑇𝑟

  (23)  

where 𝑅_3𝑀𝑜,𝑚 is the observed precipitation at each month m, 𝑅_3𝑀𝑇𝑟 is the precipitation trigger, 𝑅_3𝑀𝐸  is the precipitation exit threshold, 

𝐴𝑜,𝑚 is the observed affluent flow at each month m, 𝐴𝑇𝑟 is the affluent flow trigger and 𝐴𝐸  is the affluent flow exit threshold. 𝛼, 𝛽 and 𝜙 are the 

direct effects coefficients estimated for the SARAR model for R_3M, A and their interaction, respectively. In the case of water storage 

powerplants, A is replaced by V (useful volume). The precipitation measure 𝑅_3𝑀 is the average precipitation in the last 3 months.



 
 

And Equation 9 as: 

𝑃𝑚 = 
1

𝑀
∑ ℙ(𝐼𝑖) × 𝑆(𝐼𝑤,𝑚)

𝑀

𝑚=1

=
1

𝑀
∑(𝐹(𝑅𝑇𝑟) − 𝐹(𝑅𝐸)) × (𝐹(𝐴𝑇𝑟) − 𝐹(𝐴𝐸)) × 𝑆(𝐼𝑤,𝑚)

𝑀

𝑚=1

 (24) 

It is important to point out that, when we simply multiply (𝐹(𝑅𝑇𝑟) − 𝐹(𝑅𝐸)) and 

(𝐹(𝐴𝑇𝑟) − 𝐹(𝐴𝐸)), we are treating these variables as independent, which may not be entirely 

accurate, as shown in Table 9 and evident in the econometric model, where they interact. 

Ideally, the most appropriate approach would be to assess their joint distribution. However, to 

simplify the calculations, we will assume their independence here. 

4.5. Results with spatial econometrics and clusters 

For simplification purposes, we assume a constant on-grid energy price (𝐺𝑤) of 260,46 

R$/MWh, which is the current generation energy tariff for residential consumers in Brazil3. 

Since the tariff is stated in MWh, we need to multiply the MWmed energy generation data by 

the number of productive hours on each month to obtain the corresponding MWh 

measurement. We utilize the measure from the powerplants’ latest official reports. In cases 

where this information is not explicitly stated, we assume it to be 95% of the total amount of 

hours in a month, accounting for a small allocation of hours for maintenance purposes. 

To determine 𝐹(𝑅_3𝑀𝑇𝑟), 𝐹(𝑅_3𝑀𝐸), 𝐹(𝐴𝑇𝑟) (or 𝐹(𝑉𝑇𝑟)) and 𝐹(𝐴𝐸) (or 𝐹(𝑉𝐸)), we 

estimate the distributions of R_3M, A and V for the measurements of each powerplant. The 

best-fit results, chosen based on the BIC, are presented in Table 17 and depicted in Figures 31 

to 46. 

  

 
3 https://www.enel.com.br/pt-saopaulo/Para_Voce/tarifa-energia-eletrica.html 

https://www.enel.com.br/pt-saopaulo/Para_Voce/tarifa-energia-eletrica.html


 
 

Table 17. Distributions and Frequency Probabilities 

Distributions with best fit 𝑭(𝑹_𝟑𝑴𝑻𝒓) 𝑭(𝑹_𝟑𝑴𝑬) 

Powerplant R_3M A/V Average Median 35% Quantile 30% Quantile 1st Quartile 5% Quantile 2.5% Quantile 1% Quantile 

Itaipu Weibull Gamma 0.4442 0.3305 0.2051 0.2005 0.2051 0.0229 0.0166 0.0118 

Salto Santiago Weibull Weibull 0.4078 0.3678 0.2301 0.1818 0.1655 0.0576 0.0481 0.0403 

Belo Monte Weibull Student-t 0.2860 0.3329 0.1771 0.1197 0.0749 0.0230 0.0178 0.0150 

Tucuruí Gamma Weibull 0.3402 0.2494 0.1554 0.1347 0.1057 0.0375 0.0255 0.0182 

Xingó Gamma Student-t 0.4122 0.3905 0.2460 0.2031 0.1558 0.0503 0.0488 0.0316 

Luiz Gonzaga Gamma Weibull 0.4991 0.5012 0.3419 0.3027 0.2467 0.0527 0.0470 0.0405 

Porto Primavera Weibull Student-t 0.3435 0.2821 0.1334 0.1249 0.0759 0.0220 0.0194 0.0120 

Ilha Solteira Weibull Normal 0.5817 0.4886 0.3691 0.2702 0.2251 0.0269 0.0080 0.0042 

Distributions with best fit 𝑭(𝑨𝑻𝒓)  or 𝑭(𝑽𝑻𝒓) 𝑭(𝑨𝑬)  or 𝑭(𝑽𝑬) 

Powerplant R_3M A/V Average Median 35% Quantile 30% Quantile 1st Quartile 5% Quantile 2.5% Quantile 1% Quantile 

Itaipu Weibull Gamma 0.3269 0.1017 0.0470 0.0437 0.0470 0.0110 0.0074 0.0063 

Salto Santiago Weibull Weibull 0.1529 0.1306 0.0909 0.0751 0.0506 0.0082 0.0044 0.0028 

Belo Monte Weibull Student-t 0.5631 0.3937 0.2537 0.1555 0.1201 0.0922 0.0600 0.0435 

Tucuruí Gamma Weibull 0.3459 0.2030 0.1002 0.0851 0.0729 0.0340 0.0253 0.0218 

Xingó Gamma Student-t 0.1391 0.1523 0.1024 0.0617 0.0366 0.0158 0.0141 0.0134 

Luiz Gonzaga Gamma Weibull 0.1996 0.1530 0.1056 0.0998 0.0874 0.0423 0.0381 0.0339 

Porto Primavera Weibull Student-t 0.1633 0.1346 0.0446 0.1249 0.0443 0.0037 0.0029 0.0003 

Ilha Solteira Weibull Normal 0.1509 0.0822 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 
Source: own elaboration. 

  



 
 

 

It is noteworthy that, aside from Ilha Solteira’s water volume, all best-fitted 

distributions are heavy-tailed. This is in accordance with the histograms presented in Figure 

24, which show that, generally, the explicatory variables data is right-skewed. Figures 31 to 

46 show the distributions adjustment to the data, recalling that our interest relies mainly on 

the left tails, where the triggers are localized. 

Figure 31. Average 3-months Precipitation – Weibull Fit - Itaipu 

 

Source: own elaboration. 

Figure 32. Affluent Flow – Gamma Fit - Itaipu 

 

Source: own elaboration. 
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Figure 33. Average 3-months Precipitation – Weibull Fit – Salto Santiago 

 

Source: own elaboration. 

Figure 34. Useful Volume – Weibull Fit – Salto Santiago 

 

Source: own elaboration. 
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Figure 35. Average 3-months Precipitation – Weibull Fit – Belo Monte 

 

Source: own elaboration. 

Figure 36. Affluent Flow – Student-t Fit – Belo Monte 

 

Source: own elaboration. 
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Figure 37. Average 3-months Precipitation – Gamma Fit - Tucuruí 

 

Source: own elaboration. 

Figure 38. Useful Volume – Weibull Fit - Tucuruí 

 

Source: own elaboration. 
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Figure 39. Average 3-months Precipitation – Gamma Fit - Xingó 

 

Source: own elaboration. 

Figure 40. Affluent Flow – Student-t Fit - Xingó 

 

Source: own elaboration. 
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Figure 41. Average 3-months Precipitation – Gamma Fit – Luiz Gonzaga 

 

Source: own elaboration. 

Figure 42. Useful Volume – Weibull Fit – Luiz Gonzaga 

 

Source: own elaboration. 
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Figure 43. Average 3-months Precipitation – Weibull Fit – Porto Primavera 

 

Source: own elaboration. 

Figure 44. Affluent Flow – Student-t Fit – Porto Primavera 

 

Source: own elaboration. 
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Figure 45. Average 3-months Precipitation – Weibull Fit – Ilha Solteira 

 

Source: own elaboration. 

Figure 46. Useful Volume – Normal Fit – Ilha Solteira 

 

Source: own elaboration. 

Based on these premises and following Equations 23 and 24, we can compute the total 

indemnity amount that an insurance company would have paid if the powerplants had such a 

contract throughout the analyzed period, as well as the received premiums. An illustration of 

these calculations is presented on Table 18, specifically for Itaipu. 

  



 
 

Table 18. Payout and Premium Calculation for Itaipu 

Month Precipitation 
Affluent 

Flow 
Bellow Triggers? Bellow Exit(s)? 

Predicted 

"loss" of 

generation 

(Mwmed) 

Productive 

Hours 

Energy 

Tariff 
Payout 

Probabilit

y 
Premium 

𝑚 𝑅_3𝑀𝑜 𝐴𝑜 
𝑅_3𝑀𝑜 < 𝑅_3𝑀𝑇𝑟 

and 𝐴𝑜 < 𝐴𝑇𝑟 

𝑅_3𝑀𝑜 < 𝑅_3𝑀𝐸 

or 𝐴𝑜 < 𝐴𝐸 
(𝐼𝑤.𝑚) 

97.25%
4
 of 

the hours in 

the month 

𝐺𝑤 𝑆(𝐼𝑤.𝑚) ℙ(𝐼𝑖) 𝑆(𝐼𝑤.𝑚) × ℙ(𝐼𝑖) 

2006-01 1553.57 11911.99 No No 0.00 706.8 260.46 R$ 0.00 0.0295906 R$ 0.00 

2006-02 1469.76 11030.25 No No 0.00 638.4 260.46 R$ 0.00 0.0295906 R$ 0.00 

……………………………….……………………………….……………….……………………………….……………………………….……………………………………………………….…. 

2021-04 761.92 6238.02 Yes No 82005.69 700.2 260.46 R$ 14.955.713.947,83 0.0295906 R$ 442.547.993,36 

2021-05 630.31 5869.04 Yes No 115540.85 706.8 260.46 
R$ 21.270.275.671,89 

0.0295906 
R$ 629.399.428,85 

2021-06 205.31 5704.03 Yes No 132485.49 700.2 260.46 R$ 24.161.920.715,38 0.0295906 R$ 714.964.833,21 

2021-07 263.81 4688.48 Yes Yes 203147.29 706.8 260.46 
R$ 37.398.019.269,18 

0.0295906 
R$ 1.106.628.439,19 

2021-08 192.58 4946.10 Yes No 195018.35 706.8 260.46 
R$ 35.901.538.162,72 

0.0295906 
R$ 1.062.346.720,98 

2021-09 120.36 6992.60 Yes Yes 219447.13 700.2 260.46 R$ 40.021.471.648,84 0.0295906 R$ 1.184.257.871,69 

2021-10 535.37 8743.67 No No 0.00 706.8 260.46 
R$ 0,00 

0.0295906 
R$ 0,00 

2021-11 644.19 7104.32 Yes No 8065.02 700.2 260.46 R$ 1.470.850.270,90 0.0295906 R$ 43.523.287,37 

2021-12 638.17 6297.71 Yes No 78246.37 706.8 260.46 
R$ 14.404.618.263,83 

0.0295906 
R$ 426.240.761,89 

2022-01 838.21 5664.86 Yes No 132056.41 706.8 260.46 
R$ 24.310.677.171,13 

0.0295906 
R$ 719.366.620,46 

Source: own elaboration. 

  

 
4 Retrieved from Itaipu’s 2022 Report (Itaipu Binacional, 2022) 



 
 

The calculations in Table 18 were conducted using the Itaipu’s lower cluster medians 

as triggers and the 2.5% quantiles as exit thresholds. This scenario was determined to be the 

most favorable in terms of feasibility for both the insurer and the powerplant. With these 

parameters, 4.4% of the observed months would have qualified for indemnification, a 

reasonable proportion for insurance contracts covering extreme losses. The total payout would 

have amounted to R$ 213,895,085,121.69, with the majority of claims concentrated in the 

year 2021, which indeed witnessed the most severe drought of Itaipu’s history. Hence, the 

insurance would effectively fulfill its intended purpose of mitigating high-cost systemic risks. 

Given the substantial magnitude of the payouts, which aligns with the characteristic of 

covering extreme losses, it becomes imperative for such an operation to be backed by a 

reinsurance company. The monthly actuarially fair premium (risk premium), as defined in 

Equation 24, would be: 

𝑃𝑚 =
1

𝑀
∑ ℙ(𝐼𝑖) × 𝑆(𝐼𝑤,𝑚)

𝑀

𝑚=1

=
0,029590563 × R$ 213,895,085,121.69

204

= R$ 31,025,862.53                                                                                             (25) 

or R$ 372,310,350.41 annually. This value must be adjusted to account for the insurer’s 

loadings, commissions and tax obligations, resulting in the actual commercial premium. Only 

to provide an example, if these loadings amounted to 70%, the resulting annual commercial 

premium would be R$ 632,927,595.70, which represents only 4% of Itaipu’s annual 

operational earnings5 (Itaipu Binacional, 2022), therefore making it a viable (and useful) 

contract for both parties. It offers low frequency, high severity coverage with an affordable 

premium6. 

We reiterate the concern regarding the assumption of independence between R_3M 

and A. The expected claim probability for the claims was of 2.96% (as indicated in Table 18), 

yet the actual claims occurred with a frequency of 4.4%. This underscores that the 

independence assumption led to an underestimation of the actual claim frequency.  

Results for the other powerplants were computed using the same methodology applied 

to Itaipu and are summarized in Table 19. Detailed results considering the other triggers and 

thresholds are available upon request. 

  

 
5 Considering a R$ 5.00 per dollar exchange rate. 
6 We intended to evaluate the proportion of the insurance premium over the operational revenue for other 

powerplants as well. However, this information was not available for other powerplants, as most are not publicly 

traded companies, and some are part of energetic conglomerates that only provide information for the Holding 

Company. 



 
 

Table 19. Insurance Design Results 

Powerplant 
Chosen 

Triggers 

Chosen Exit 

thresholds 

Expected 

Frequency 

(ℙ(𝐼𝑖)) 

Claims 

Frequency 
Total Payout Annual Risk Premium Loss ratio 

Payouts during 

droughts of 2014-

2016 or 2021-

2022? 

Itaipu Median 2,5% Quantile 3.0% 4.4% R$ 213,895,085,121.69  R$ 372,310,350.41  3,379.5% Yes 

Salto 

Santiago 
35% Quantile 2,5% Quantile 1.6% 4.9% R$ 977,802,834,915.26 R$ 906,490,705.94 6,345.1% Yes 

Belo Monte Median 2,5% Quantile 10.5% 2.9% R$ 42,900,183,589.93  R$ 265,345,353.84 951.0% Yes 

Tucuruí 30% Quantile 2,5% Quantile 0.7% 3.9% R$ 138,481,582,463.52 R$ 53,192,874.73 1,5314.0% Yes 

Xingó 35% Quantile 2,5% Quantile 1.7% 3.9% R$ 14,305,445,807.28 R$ 841,496,812.19  5,737.9% No 

Luiz 

Gonzaga 
30% Quantile 2,5% Quantile 1.6% 5.9% R$ 293,992,187,415.39 R$ 272,668,571.27 6,342.4% Yes 

Porto 

Primavera 
35% Quantile 2,5% Quantile 0.5% 3.4% R$ 65,118,491,029.56 R$ 18,217,030.36 21,027.0% Yes 

Ilha Solteira Median 2,5% Quantile 3.2% 4.9% R$ 1,377,013,860,716.78 R$ 2,602,104,207.31 3,112.9% Yes 

Note: for Itaipu, we used a 97.25% proportion for operational hours (Itaipu Binacional, 2022) and for Porto Primavera, 96.2% (PWC, 2023). For the other powerplants, this information was not available, so we used 

95%. 

Source: own elaboration. 

  



 
 

The triggers were chosen in order to standardize the claims frequency level among the 

different powerplants. The exit threshold choice did not show expressive variations on the 

payout or premium amounts, so we kept the intermediate level (2.5) as exit for all 

powerplants. 

Belo Monte stands out with the lower frequency, even when utilizing the highest of its 

proposed triggers (from table 17). This is due to its historical series comprehending mostly 

drought periods (from 2020-2022), so the generated lower cluster corresponds to extremely 

low levels of precipitation and affluent flow, hence it is very unlikely to activate the 

insurance. For the same reason, it is the only powerplant to present a lower frequency than the 

expected, as its history through droughts implies that it would reach low levels of 

precipitation and affluent flow very often. Given that, these parameters must be revisited 

when additional data is available. 

Given the high proportion of zero volume measurements for Ilha Solteira, the payout 

and premium values are much higher than on other powerplants. 

The resulting loss ratios are very elevated, but can be mitigated with mechanisms like 

loadings, deductibles and, most of all, reinsurance. Also, these numbers reflect a 16 years 

period, with the claims concentrated on sparse windows of successive claims. Therefore, 

during most of the period there is no claims, so the received premiums must be financially 

applicated and the yields can also serve as part of the loss ratio mitigation. 

Furthermore, these results show that this product might not be solely sustainable, 

especially because it is individualized and would hardly constitute a policies portfolio, as 

there is a limited number of buyers (powerplants). However, when incorporated in the 

aggregate portfolio of the insurer, other products can compensate the loss ratio, while the 

elevated premium revenues can be used for yields and funding other projects of the insurer 

(while always maintaining provisions for the claims, of course). 

Table 19 illustrates that Parametric Insurance (PI) can be a practical option for 

alleviating hydrological risk in energy generation, particularly during drought crises. It is 

important to note that the design of this insurance product must be tailored to each 

powerplant’s unique characteristics. Furthermore, the substantial loss ratio, premiums and 

payouts associated with this product make it more suitable for offerings backed by 

reinsurance companies. 

As for differences in results between run-of-river and water storage powerplants, a 

more detailed analysis of these variations may require further examination. The water storage 

powerplants needed lower quantiles as triggers to present a claims ratio near the level 

achieved with the median for Itaipu. Utilizing the median as trigger for these powerplants 

resulted in frequencies around 15% or higher, therefore unfeasible for an extreme losses 

insurance. These distinctions may arise from the distinct operational and hydrological 

characteristics of the two types of powerplants, necessitating specific insurance contract 

designs for each category. 

Two main questions could arise from this modelling:  

1. How about possible endogeneity in the model? Can we assure that generation is 

indeed dependent on the other variables, or it can serve as an explanatory variable 

for the others as well? In other words, what is the direction of the correlation? 

2. Can we assess the joint distribution of the variables, in order to better estimate the 

frequency and avoid typical problems caused by linear models given that all 

marginal probability distributions are heavy-tailed? 
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These questions can be answered using a different type of modeling: through copulas. 

4.6. Assessing the interdependence among the variables through copulas 

As previously explained, copulas are mathematical functions that link the joint 

distribution of random variables with their marginal distributions. In particular, vine copulas 

are structures that decompose multidimensional copulas into a product of two-dimensional 

copulas and marginal distributions. 

In the context of multidimensional copulas or any typical joint multivariate statistical 

function, it is possible to break it down into conditional copulas. These conditional copulas 

are structures that enable the derivation of the joint distribution of two variables, X and Y, 

conditioned on a set of random variables 𝑍𝑖. This means that they allow obtaining the copula 

density 𝑐(𝑋, 𝑌|𝑍𝑖). A situation with a relevant interpretation for this study is the case in which 

c is an independent copula. If 𝑐(𝑋, 𝑌|𝑍𝑖) is an independent copula, then it can be said that X is 

exogenous to 𝑍𝑖 and, therefore, Y can be (partially) explained by 𝑍𝑖 (this set contains 

explanatory variables for Y, which are independent of X). 

In this section, we delve into the examination of the dependency structure of the 

variables presented in Table 10. To streamline our analysis, the powerplants were categorized 

into two distinct groups: run-of-river and water storage powerplants. 

The variables were labeled as in Table 20: 

Table 20. Labels for Copula Structures 

Variable Copula Label 

Energy Generation 1 

Useful Volume 2 

Affluent flow 2 

Average Precipitation in the Last 3 Months 3 

Temperature 4 

Wind Speed 5 

Humidity 6 

Note: The useful volume was used only when the powerplant is classified as water storage type, and the affluent flow when it is classified as 

run-of-river. 

Source: own elaboration. 

4.6.1. Run-of-River Powerplants 

We conducted an analysis of the dependence between the six variables for the same set 

of powerplants as studied in the previous section: Itaipu, Belo Monte, Xingó and Porto 

Primavera. The results for these powerplants were remarkably similar. For the sake of 

discussion and to avoid redundancy, we will take Itaipu as the reference case. 

Table 21 presents the structure of the most suitable vine copula (determined by the 

lowest BIC value) for Itaipu. Additionally, it includes the most well-fitted copula (as obtained 

through maximum likelihood estimation) for each variable pair at every edge of the vine 

copula. The table also provides dependence measures, including Kendall’s tau, lower tail 

coefficients, and upper tail coefficients. The notation (𝑎, 𝑏|𝑐, 𝑑) indicates that variables a and 

b are conditioned on variables c and d: 
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Table 21. Vine Copula for Itaipu 

Tree Edge 
Copula Dependence measures 

Family Parameters Kendall´s tau Upper tail Lower tail 

1 

(2,1) TawnII180* 3.07/0.64 0.47  0.56 

(6,2) Frank 3.45 0.34   

(3,4) Frank 1.66 0.18   

(6,3) Gaussian 0.55 0.37   

(6,5) TawnII90* -2.13/0.24 -0.18   

2 

(6,1|2) Independent - 0.00   
(3,2|6) Frank 1.04 0.11   

(6,4|3) Clayton90* -0.75 -0.27   

(5,3|6) Joe 1.11 0.06 0.14  

3 

(3,1|6,2) Independent - 0.00   
(4,2|3,6) Gumbel 1.26 0.21 0.26  

(5,4|6,3) Frank -2.23 -0.24   

4 
(4,1|3,6,2) Independent - 0.00   
(5,2|4,3,6) Independent - 0.00   

5 (5,1|4,3,6,2) Frank -1.65 -0.18   
Note: * means the copula is rotated to the degrees presented in the family’s name.  

Source: own elaboration. 

The results in Table 21 can be also represented by a tree structure. The tree structure 

for Itaipu is shown in Figure 48. 

Figure 47. Vine Copula Tree for Itaipu 

Tree 0 

 

 

 

 

 

 

 

 

 

 

 

 

Tree 1 

 

 

 

 

 

 

 

 

 

 

 

Tree 2 

 

 

 

 

 

1 2

1 

6

1 

3

1 

4

1 

5

1 

(2,1) (6,2) (6,3) (3,4) 

(6,5) 

2,1

1 

6,2

1 

6,3

1 

3,4

1 

6,5

1 

(6,1|2) (3,2|6) (6,4|3) 

(5,3|6) 

6,1|2 3,2|6

1 

6,4|3

16 

5,3|6

1 

(3,1|6,2) (4,2|3,6) (5,4|6,3) 



97 

 

Tree 3 
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Source: own elaboration 

Let 𝑓123456 be the joint density of the six analyzed variables and 𝑓𝑖, with 1 ≤ 𝑖 ≤ 6, 

their marginal univariate densities. Figure 47 displays the optimal decomposition, so that the 

Equation 20 can be rewritten as: 

𝑓123456 = 𝑓1 ∙ 𝑓2 ∙ 𝑓3 ∙ 𝑓4 ∙ 𝑓5 ∙ 𝑓6 ∙ 𝑐21 ∙ 𝑐62 ∙ 𝑐63 ∙ 𝑐65 ∙ 𝑐34 ∙ 𝑐61|2 ∙ 𝑐32|6 ∙ 𝑐64|3 ∙ 𝑐53|6 

∙ 𝑐31|62 ∙ 𝑐42|36 ∙ 𝑐54|63 ∙ 𝑐41|362 ∙ 𝑐52|436 ∙ 𝑐51|4362                                  (26) 

Furthermore, in the first tree (Tree 1), the strongest correlation (0.47) is observed 

between energy generation and affluent flow, represented by the pair (2,1). For this same pair, 

a strong lower tail dependence (0.56) is noticeable, indicating that low flow values correlate 

with low generation values, which is consistent with the proposed Itaipu model. 

In the subsequent trees, we have highlighted specific cells. They reveal that energy 

generation is independent of humidity given affluent flow (6,1|2), just as energy generation 

and precipitation are also independent given afluent flow and humidity (3,1|6,2). Likewise, 

energy generation is independent of temperature given the affluent flow, precipitation, and 

humidity (4,1|3,6,2). 

In other words, these results mean that: (i) given the affluent flow, humidity is 

exogenous to it and exhibits no correlation with energy generation. This suggests that either 

humidity influences the affluent flow value, or variations in humidity have no direct impact 

on the energy generation processes; (ii) precipitation is exogenous to affluent flow and 

humidity, and it does not correlate with energy generation. Th precipitation serves as an 

explanatory variable for changes in affluent flow and/or in humidity, but does not directly 

explain the variation in energy generation directly; and (iii) temperature is exogenous to 

affluent flow, precipitation and humidity, and it is also not correlated with energy generation. 

These findings can be summarized in the network structure in the Figure 49. The 

direction of each arrow indicates the causal inference (in the graphical sense), while its width 

represents the strength of dependence (indicated by the respective Kendall’s tau value) among 

the six analyzed variables. 
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(4,1|3,6,2) (5,2|4,3,6) 
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Figure 48. Network representing Itaipu’s Vine Copula 

 

Source: own elaboration 

Arrows in solid lines indicate the unconditional dependency relationship, while dotted 

lines indicate conditional dependencies. In Figure 49, becomes evident that meteorological 

factors (precipitation, temperature, wind speed and humidity, indicated by the numbers 3, 4, 5 

and 6 respectively) are clearly associated, but the nature of this association is diffuse, and it is 

challenging to determine causal relationships among them. Also, these meteorological factors 

collectively impact the affluent flow which, in turn, influences variations in energy 

generation. Thus, as a result, the focus should be on understanding the relationship between 

the pair (2,1) to derive the required quantiles to price the insurance. 

These findings align with the spatial econometrics estimated model and cluster 

analysis. Temperature is exogenous to the model and was not included in the SARAR 

equation. Affluent Flow exhibits the highest correlation with energy generation and could 

serve as a single trigger for the run-of-river powerplants. The relationship between Affluent 

Flow and R_3M can be conditioned on humidity, explaining the underestimation of frequency 

in the previous model. 

As previously explained in this section, the conclusions drawn for Itaipu hold for the 

other run-of-river powerplants under analysis. Table 22 shows the same information 

previously shown, but this time for Belo Monte: 

Table 22. Vine Copula for Belo Monte 

Tree Edge 
Copula Dependence measures 

Family Parameters Kendall´s tau Upper tail Lower tail 

1 

(2,5) Tawn90* -20.0/0.11 -0.11   

(2,1) Surv.Gumbel 4.31 0.77  0.83 

(4,2) Gumbel270* -2.13 -0.53   

(4,3) Gumbel270* -2.07 -0.52   

(6,4) Clayton90* -2.59 -0.56   

2 

(1,5|2) Independent - 0.00   

(4,1|2) Independent - 0.00   
(6,2|4) Independent - 0.00   

(6,3|4) Independent - 0.00   

3 

(4,5|1,2) Independent - 0.00   

(6,1|4,2) Independent - 0.00   
(3,2|6,4) Independent - 0.00   

4 
(6,5|4,1,2) TawnII180* 8.75/0.19 0.18  0.19 

(3,1|6,4,2) Independent - 0.00   

5 (3,5|6,4,1,2) Independent - 0.00   
Note: * means the copula is rotated to the degrees presented in the family’s name. 

Source: own elaboration. 
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What is noteworthy for Belo Monte is the emergence of predominantly independent 

copulas in all trees after the first one. The significant relations here are primarily direct, rather 

than conditional. This characteristic might result from the limited number of observations 

available. It also shows why this was the only powerplant to present the possibility of 

designing a PI indexed solely on precipitation, as indicated in Figure 28. 

Despite this unique feature, the findings echo the same principles already discussed in 

the analysis of Itaipu. The strongest correlation (0.77) is observed between energy generation 

and affluent flow, represented by the pair (2,1). Moreover, there is a robust dependence (0.83) 

in the lower tail, meaning that low affluent flow values are related to low energy generation 

values, which is consistent with the expectations for run-of-river powerplants. Table 22 also 

enables the construction of a network structure, similar to the one developed for Itaipu.  

Figure 49. Network representing Belo Monte’s Vine Copula 

Source: own elaboration. 

This network presented in Figure 49 also highlights the diffuse dependence between 

meteorological factors (3, 4, 5 and 6) and their impact on the affluent flow. Consequently, this 

impact on the affluent flow leads to variations in the amount of generated energy. This 

supports the strategy of focusing only on the relationship (2,1) to derive the necessary 

quantiles for insurance pricing. 

A consistent pattern of behavior is observed for the other run-of-river powerplants. For 

Xingó, there is a strong correlation (0.88) between energy generation and affluent flow, along 

with a significant dependence parameter of 0.88 in the lower tail. Similar results are observed 

for Porto Primavera, with a correlation of 0.72 between energy generation and affluent flow, 

and a lower tail dependence parameter of 0.79. Figures 50 and 51 depict the networks for 

Xingó and Porto Primavera. 
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Figure 50. Network representing Xingó’s Vine Copula 

 

Source: own elaboration. 

 

 

 

 

 

Source: own elaboration. 

4.6.2. Water Storage Powerplants 

Similar to the previous section, the dependence structure among the six variables will 

be analyzed individually for the Tucuruí, Ilha Solteira, Salto Santiago and Luiz Gonzaga 

powerplants. Table 23 provides the copula information for Tucuruí. 
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Figure 51. Network representing Porto Primavera’s Vine Copula 
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Table 23. Vine Copula for Tucuruí 

Tree Edge 
Copula Dependence measures 

Family Parameters Kendall´s tau Upper tail Lower tail 

1 

(4,3) Frank -5.39 -0.48   

(1,2) Gaussian 0.58 0.40   

(4,5) BB8 2.66/0.87 0.36   

(6,1) Frank 4.00 0.39   

(6,4) TawnII90* -3.52/0.79 -0.59   

2 

(6,1|2) Gumbel 1.24 0.20 0.25  
(3,2|6) Clayton90 -0.47 -0.19   

(6,4|3) Gumbel90 -1.10 -0.09   

(5,3|6) Independent - 0.00   

3 

(3,1|6,2) Independent - 0.00   
(4,2|3,6) Independent - 0.00   

(5,4|6,3) Independent - 0.00   

4 
(4,1|3,6,2) Independent - 0.00   
(5,2|4,3,6) Clayton270* -0.36 -0.15   

5 (5,1|4,3,6,2) Independent - 0.00   
Note: * means the copula is rotated to the degrees presented in the family’s name. 

Source: own elaboration. 

Several notable differences are observed in the case of Tucuruí in contrast to the run-

of-river powerplants. First, the correlation between energy generation and water volume, 

while still significant, is not as strong (0.40) as it was for affluent flow. Furthermore, it is 

nearly identical to the correlation between energy generation and humidity (0.39). Second, the 

strong dependence observed in the lower tail between variables in run-of-river powerplants is 

no longer present for Tucuruí. In this case, there is no strong dependence in the lower tail 

between any two variables. Finally, the presence of conditional independence relationships 

given the unconditional dependence, such as wind speed and precipitation being independent 

given humidity. However, there is no longer a structured dependence between wind and 

precipitation unconditionally. 

These findings suggest a more diffuse set of dependencies, making it challenging to 

infer causal relationships when constructing the network structure. The dependencies between 

variables in Tucuruí exhibit a different pattern than those in run-of-river powerplants. 

Figure 52. Network representing Tucuruí’s Vine Copula 

 

Source: own elaboration 

The same diffuse patterns are observed in the case of other water storage powerplants.  

In these instances, either there is a weak dependency between energy generation (1) and water 
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volume (2) with no observable dependency between energy generation and other variables (as 

seen in the case of Ilha Solteira), or a causal relationship cannot be firmly established within 

this dependency structure, as observed in the cases of Salto Santiago and Luiz Gonzaga. 

The bidirectionality in the pair (1,2) can be due to the operational characteristics of 

water storage powerplants, especially the higher human intervention. As the water flow that 

leaves the reservoirs can be controlled to meet the energy demand (Enel Green Power, n.d.), 

at certain times the volume remaining in the reservoirs can be caused by the expected energy 

generation levels, while, at the other end, the amount of generated energy depends on the 

available water volume. 

This diffuse nature of these relationships suggests that this study is limited to 

parameterizing insurance contracts exclusively for run-of-river powerplants. This is because 

there is no clear and well-defined relationship between energy generation and other variables 

for water storage powerplants that would allow obtaining the calculation of necessary 

quantiles to price the insurance.  

Furthermore, if we were to set only the water volume as index, in an attempt of 

standardization with the copulas model for run-of-river powerplants, we would incur in the 

same problem pointed out when analyzing Figure 30, where we saw that the claims frequency 

would end up being much higher than actually necessary. This may happen because these 

powerplants’ structure allows for greater control of the water use, in response to the energy 

demand and available water volume. Also, this human managing characteristic could, in some 

cases, induce moral hazards, as the water volume could be intentionally put to a lower level to 

activate the insurance, while the energy generation would not immediately be jeopardized. 

Therefore, with this methodology, we will limit the insurance design to run-of-river 

powerplants. 

4.6.3. The relation between Energy Generation and Affluent Flow at the run-of-river 

powerplants 

Considering the findings presented in sections 4.6.1 and 4.6.2, we analyzed the 

dependence structure between affluent flow and energy generation specifically for the run-of-

river powerplants. To do so, we must identify the copula family and its corresponding 

parameter value(s) that were derived for each power plant, as summarized in Table 24. 

Table 24. Bivariate Estimated Copulas for Energy Generation and Affluent Flow 

Powerplant Copula Parameter(s) 

Itaipu TawnII180* 3.07/0.64 

Belo Monte SurvGumbel 4.31 

Xingó t-Student 0.98/2.00 

Porto Primavera TawnII180* 6.31/0.84 
Note: * means the copula is rotated to the degrees presented in the family’s name. 

Source: own elaboration. 

Figure 53 shows the dependency structures’ copula density for each plant. 
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Figure 53. Bivariate Copulas Densities 

 
Source: own elaboration.  

 

In all cases the densities are highly concentrated on the main diagonals of the cubes, 

which represents some form of linear association (as it was already shown on Table 9, these 

two variables have an 0.89 Pearson’s correlation). Interestingly, the highest densities are 

always in the tails, our main interest, particularly the lower tails. The estimated distributions, 

as presented on Table 24, are best fitted to model heavy-tailed distributions, and the 180º 

rotation, especially, is best to capture dependence in the lower tails. 

Comparing the density functions of these four powerplants, Xingó presents the 

heaviest tails and Itaipu the lightest. This may be due to the influence of other variables onto 

energy generation or affluent flow in the case of Itaipu. As it is shown in Figure 48, there is a 

direct and unconditional relationship between these two variables, with a 0.47 correlation, 
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however, they are also impacted by the other variables to some extent. The other powerplants, 

conversely, present stronger correlations between energy generation and affluent flow, from 

0.72 in Porto Primavera to 0.88 in Xingó, so their distributions present higher densities, as the 

relation between the variables is stronger and less influenced by the other variables in the 

network. 

With the use of these copulas, we are able to develop a PI scheme, similar to what was 

done in sections 4.4 and 4.5. This time, we utilize solely the affluent flow as trigger, given the 

results of the first-level estimated vine copulas, presented in section 4.6.1. To measure the 

energy levels associated with the affluent flow levels (which was previously done by the 

coefficients of the spatial models), we utilize the copulas’ estimated distributions, extracting 

the expected value of generation within the interval of affluent flow thresholds (limited 

between 0.5% and 5% quantiles of the energy generation, as an attempt to standardize the 

indemnifications levels with the frequency observed in the previous model). As for the 

frequency probabilities, they can be directly assessed with the copula density 𝑐(𝐹𝐸 , 𝐹𝐴) of 

energy generation and affluent flow. 

These concepts are illustrated in Figure 54. The premium calculation can be expressed 

as in Equations 27-30. 

Figure 54. Pricing through copulas - illustration 

 

Source: own elaboration. 

𝑃 = 𝐺𝑤 × ∑ 𝔼[𝐸|𝐴 ∈ ∆𝐴] × ℙ[𝐴 ∈ ∆𝐴]

𝐴∈∆𝐴

                                   (27) 

𝑃 = 𝐺𝑤 × ∑ ∑𝑒 × ℙ[𝐸 = 𝑒|𝐴 ∈ ∆𝐴] × ℙ[𝐴 ∈ ∆𝐴]

𝐸𝐴∈∆𝐴

              (28) 

𝑃 = 𝐺𝑤 × ∑ ∑𝑒 ×
ℙ[𝐸 = 𝑒, 𝐴 ∈ ∆𝐴]

ℙ[𝐴 ∈ ∆𝐴]
× ℙ[𝐴 ∈ ∆𝐴]

𝐸𝐴∈∆𝐴

               (29) 

𝑃 = 𝐺𝑤 × ∑ ∑𝑒 × 𝑐(𝐹𝐸 , 𝐹𝐴)

𝐸𝐴∈∆𝐴

                                                         (30) 
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where E is the energy generation, A is the Affluent Flow, ∆𝐴 is the difference between the 

trigger and the observed affluent flow (𝐴𝑇𝑟 − 𝐴𝑂), or between the trigger and the exit 

threshold (𝐴𝑇𝑟 − 𝐴𝐸), when 𝐴𝑜 < 𝐴𝐸 , is the on-grid power price and 𝑐(𝐹𝐸 , 𝐹𝐴) is the copula 

density. The monthly premium is simply 𝑃𝑚 =
𝑃

𝑚
. The Payout is the term 𝐺𝑤 × ∑ ∑ 𝐸𝐸𝐴∈∆𝐴  of 

Equation 30. 

To ensure comparability between the econometric and the copulas designs, we will 

utilize the same affluent flow triggers and exit thresholds defined in Table 19, which were 

chosen through the k-means clusters. The results of this insurance design are presented on 

Table 25. 

Table 25. Insurance results through copulas 

Powerplant 

Expected 

Frequency 

(𝑐(𝐹𝐸 , 𝐹𝐴)) 

Claims 

Frequency 
Total Payout 

Annual Risk 

Premium 
Loss ratio 

Payouts 

during 

droughts 

of 2014-

2016 or 

2021-

2022? 

Itaipu 0.4% 8.3% 
R$ 

3,750,851,384,377.34 

R$ 

73,407,913.25 

300564.76

% 
Yes 

Belo Monte 3.3% 4.4% 
R$ 

3,002,022,470,305.01 

R$ 

526,596,850.45 
33534.11% Yes 

Xingó 0.8% 12.3% 
R$ 

2,256,691,459,358.79 

R$ 

51,430,492.34 

258108.66

% 
No 

Source: own elaboration. 

We were not able to obtain valid results for Porto Primavera due to the lack of 

observations of lower occurrences of energy generation and water flow, jeopardizing a correct 

assessment of the probabilities. 

It is noteworthy that, compared to the spatial econometrics results, this design presents 

lower expected frequencies and consequently lower premiums. The payout values, however, 

are much higher. This is most likely due to the construction of the energy generation 

prediction in both models: with the spatial econometrics, the predicted value was a result of 

the difference between the observed affluent flow and the trigger pondered by the model 

coefficients; in the copulas model, the observed energy level is used directly, subtracted from  

a predicted energy (through the estimation of a theoretical copula with the same parameters 

found in table 24) associated with the affluent flow trigger (at the 5% energy quantile). 

When utilizing one trigger instead of two, the insurance design becomes less 

restrictive, causing the claims ratio to be higher. The fact that the copulas were not able to 

correctly estimate the frequencies (except for Belo Monte, where the estimation is more 

approximate to the observed values) could be due to this estimation being made statically over 

time. The densities reflect very low probabilities of occurrence for values in the lower tails, 

however, the empirical data shows these values have occurred with a higher frequency than 

predicted. Our hypothesis is that the data distribution has been changing over time, as climate 

change increases the frequency of extreme events, the static copula no longer reflects the 

current probabilities. Since the copula for Belo Monte only comprehends data spanning from 

2020-2022, it adjusts better to the real occurrences. 

This combination of low premiums and high payouts leads to extremally high loss 

ratios, which make it unviable to offer this insurance product. In this sense, the spatial 
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econometrics design is more robust, and the copulas analyses serve as support for the 

construction of the spatial regression, ensuring the non-endogeneity of the model. 

To improve the insurance designs, a dynamic structure should be incorporated (in both 

the SARAR and the copulas), accounting for the changes in the data distribution over time 

and the increasing climate change effects. Moreover, the payout values could be defined in 

different ways or even be a fixed value. Different triggers can also be tested, and the discount 

rate could be reintroduced into the premium for long term contracts, as the claims are sparse 

over time. 
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5. CONCLUDING REMARKS 

This study aimed to design a parametric insurance product for Brazilian hydroelectric 

companies, addressing an insurance protection gap. Such product could improve the 

companies’ operations sustainability and mitigate effects of drought crises, as the Brazilian 

electricity system is highly dependent on water and subject to systemic hydrological risk, 

especially with the increasing climate changes and drought periods. 

We were pioneers into designing a parametric insurance for energy generators 

utilizing spatial econometrics, and also in applying the models to Brazilian hydroelectric 

generators, as most studies in the literature observe other energy sources, such as wind, most 

common in other countries. This study also stands out for utilizing copulas as an endogeneity 

robustness check. 

There are two main types of hydroelectric powerplants, each with its unique 

operational characteristics and contributions to the nation’s energy mix. The run-of-river 

powerplants utilize the natural flow of watercourses to generate energy and are valued for 

their minimal environmental impact. The water storage powerplants utilize reservoirs and the 

energy generation occurs through the water release, which can be controlled to meet the 

energy demand. 

These powerplants ensure flexibility in managing the electricity supply and play a 

significant role in providing a reliable and sustainable source of electricity in line with 

Brazil’s commitment to environmental sustainability and energy security. However, as 

hydroelectricity represents 65% of Brazil’s energy matrix, in times of rain scarcity there can 

be severe energy crises. 

Besides initiatives toward diversifying its energy matrix, Brazil counts with an 

accounting balancing mechanism, the MRE, which promotes the sharing of hydrological risk 

among the participating powerplants, minimizing the financial repercussions of fluctuating 

energy generation. While MRE enhances the generators financial stability and the energy 

security, it does not mitigate systemic risk. Given this scenario, we propose the parametric 

insurance design. 

We evaluated two different methodologies to price this product: (i) spatial 

econometrics, and (ii) vine copulas models. Spatial econometrics expands the traditional 

actuarial pricing GLM models by incorporating relations among the observed powerplant and 

its neighbors, a key feature when dealing with climate subjected models, as weather and 

location are intrinsically related, most of all in a country as extensive and diverse as Brazil. 

Vine copulas models allow us to elucidate the intricate conditional non-linear dependency 

structures that exist among the model’s variables in each powerplant, therefore providing a 

better understanding of which variables can be considered causal to the energy generation. In 

both cases, we used a k-means clustering technique to define the triggers and exit thresholds 

that limit the insurance claims. 

Given the diverse characteristics of each powerplant, we found better results when 

designing the insurance differently for run-of-river and water storage powerplants. Also, the 

threshold levels needed to be defined individually, to account for the different levels of energy 

generation typical of each plant and for the climate characteristics of each location, with 

different levels of precipitation, for instance. 

This product would initially be indexed on Brazil’s National Institute of Meteorology 

(INMET) rainfall index, but our results show that an insurance indexed solely on this 

parameter would not be feasible, as this variable presents low correlation with the amount of 

generated energy. Instead, the spatial econometrics model points to the joint use of 
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precipitation and water flow or volume, depending on the powerplant type, whilst the copulas 

models allow a sole trigger of affluent flow for run-of-river powerplants, but do not point a 

clear path for water storage powerplants, as the networks show diffuse relations and no 

specific variable can be highlighted as main cause for the energy generation. 

Our main finding is that energy generation levels for hydroelectric powerplants can be 

robustly modeled by spatial econometrics, with significant gains towards the traditional 

models. This is especially interesting for climate-related applications, given the intrinsic 

relation of weather and location, and integrated systems such as Brazil’s electricity system. 

The most suitable model to explain and predict the powerplant’s energy generation 

was a fixed-effects SARAR. This model possesses both an autoregressive and an error term 

associated with the neighborhood matrix. This translates to the powerplant’s energy 

generation being explainable not only by its own measurements of water flow/volume and the 

regional meteorological conditions, but also by the energy generated by its neighboring 

powerplants. Hence, the conditions of a powerplant are closely related to those of its nearest 

neighbors, often sharing the same basin and, as a result, experiencing similar watercourses 

and meteorological conditions. Furthermore, random shocks effects on neighboring 

powerplants negatively affect the energy generation of the observed powerplant. One such 

effect could be the MRE mechanism. Given the highly interconnected nature of the Brazilian 

electrical system, with minimum energy generation targets established for each powerplant 

and periodically revised by ONS, a powerplant’s energy generation is also contingent on the 

energy demand and the generated levels by all other suppliers in the electrical system. 

The copulas models for the individual powerplants endorse the non-endogeneity of the 

SARAR, especially for run-of-river powerplants, as they show that generation is indeed 

dependent on the other variables, with a directional causality from meteorological conditions 

to the affluent flow and then to the generated energy, and not the way around. It, therefore, 

serves as a robustness check for physical implication. However, it is worth pointing out that 

other possible endogeneity sources, such as omitted variables or measurement errors, are not 

captured by this methodology. 

The insurance design results show that Parametric Insurance can be a practical option 

for alleviating hydrological risk in energy generation, particularly during drought crises. The 

design of this insurance product must be tailored to each powerplant’s unique characteristics. 

It is especially well-suited for run-of-river powerplants, while water storage powerplants 

present more diffuse results, likely due to the operation differences among these plants. Run-

of-river powerplants are more subjected to climate conditions and water availability, while 

water storage plants can control, to a certain point, the water levels in the reservoir and its 

release to meet energy demands, taking a longer time to suffer the effects of drought crises. 

Furthermore, the substantial loss ratio, premiums and payouts associated with this 

product make it more suitable for offerings backed by reinsurance companies. The premium 

proportion in relation to the powerplants’ revenues points this product as viable and attractive 

for customers. The high loss ratios, however, suggest that improvements in the design must be 

made before insurers would offer such contract. Measures that aim to reduce the payout 

values should be taken to ensure the feasibility of this product for the insurers. 

Future studies can delve into improvements of these estimations, such as, but not 

limited to: (i) incorporating time dynamics into both the spatial and copulas models, 

accounting for the changes in the data distribution through time and the increasing climate 

change effects; (ii) assessing  different estimations of the payouts, to reduce the expressive 

loss ratios; (iii) estimating regional models or a GWR, to account for the diversity of Brazil’s 

climate, hence utilizing coefficients more adherent to each powerplant and not simply the 
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global means; (iv) verifying other techniques to define the trigger and exit threshold values; 

(v) price the insurance as a long term contract, including a discount rate, as the loss 

occurrence is concentrated in a few crises windows sparse over time; (vi) include variables 

predictive of climate change as instruments in the model, such as indicators of El Niño or La 

Niña occurrence and GHG levels. 

Furthermore, this study can be extended for other renewable energy sources and/or 

other countries. Different methods, such as machine learning algorithms, can also be tested 

against the already presented models. 
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Annex 1 

In the following table, we present the results for the chosen OLS regression using both 

the balanced and unbalanced data. 

 Balanced Unbalanced 

Formula V*R_3M+A*R_3M+WS*H V*R_3M+A*R_3M+WS*H 

V 
1602.6*** 1842*** 

(73.568) (75.597) 

A 
87.791*** 81.668*** 

(1.0809) (1.2234) 

R_3M 
16.065*** 23.667*** 

(1.9687) (2.2137) 

WS 
54884*** 60266*** 

(9840.5) (10412) 

H 
1533.9*** 1434.8*** 

(387.82) (415.89) 

V*R_3M 
-0.0806* -0.1449*** 

(0.0372) (0.0378) 

A*R_3M 
-0.0103*** -0.0099*** 

(0.0004) (0.0004) 

WS*H 
-706.18*** -685.23*** 

(149.11) (158.59) 

   

Adjusted R-Square 0.33371 0.25821 

AIC 832,619.9 698610.2 

BIC 833,953.5 699916.3 

   

n 151 151 

t 204 8-204 

Source: own elaboration. 


