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RESUMO

MORAES, K. L. The Lucas Tree Model in the Age of AI: An Agent-Based
Reinforcement Learning Approach. 2023. 66p. Dissertação(Mestrado) - Faculdade de
Economia, Administração, Contabilidade e Atuária, Universidade de São Paulo, São
Paulo, 2023.

Esta dissertação explora a integração da teoria econômica com técnicas avançadas de
aprendizado de máquina (aprendizado por reforço), com um foco específico na modelagem
baseada em agentes (ABM) para simulação de mercados financeiros. O principal objetivo é
desenvolver um ambiente de simulação de mercado de ativos, fundamental para aprofundar
a compreensão das dinâmicas dos mercados financeiros. Utilizando o modelo de árvore
de Lucas, esta dissertação estabelece um quadro para testar e validar as técnicas de
simulação desenvolvidas, dado que o modelo tem solução analítica em alguns casos. O
modelo é replicado por meio de uma abordagem baseada em agentes, criando um ambiente
simulado propício para gerar os dados necessários ao treinamento de modelos de inteligência
artificial. O projeto computacional desenvolvido para este estudo é caracterizado pela sua
flexibilidade, permitindo a exploração de diversos cenários econômicos e o relaxamento de
várias hipóteses tradicionais em modelos de macro-finanças. Esta flexibilidade é crucial, pois
permite abordar cenários que são desafiadores de serem tratados com métodos analíticos
tradicionais. Os resultados corroboram com a eficácia da modelagem baseada em agentes
na replicação do modelo econômico clássico e na geração de dados para análises mais
aprofundadas. Este trabalho não apenas oferece novas perspectivas sobre o modelo de
árvore de Lucas, mas também estabelece uma base para pesquisas futuras, que podem
expandir e explorar outras facetas complexas dos mercados financeiros.

Palavras-chave: Modelo de Árvore de Lucas. Aprendizado de Máquina. Aprendizado por
Reforço. Modelo Baseado em Agentes. Economia. Precificação. Finanças.





ABSTRACT

MORAES, K. L. The Lucas Tree Model in the Age of AI: An Agent-Based
Reinforcement Learning Approach. 2023. 66p. Dissertation (Master) - Faculdade de
Economia, Administração, Contabilidade e Atuária, Universidade de São Paulo, São
Paulo, 2023.

This dissertation explores the integration of economic modeling and advanced machine
learning techniques (reinforcement learning), with a specific focus on agent-based modeling
(ABM) for the simulation of financial markets. The main goal is to develop an asset
market simulation environment, crucial for deepening our understanding of the dynamics
of financial markets. Utilizing the Lucas tree model, this research establishes a framework
to test and validate the developed simulation techniques, given that the model has
an analytical solution in some cases. The model is replicated through an agent-based
approach, creating a simulated environment conducive to generating the necessary data for
training artificial intelligence models. The computational project developed for this study
is characterized by its flexibility, allowing the exploration of various economic scenarios and
the relaxation of several traditional hypotheses in macro-finance models. This flexibility
is crucial, as it enables the addressing of scenarios that are challenging to be dealt with
using traditional analytical methods. The results corroborates with the effectiveness of
agent-based modeling in replicating the classical economic model and in generating data
for more in-depth analyses. This work not only offers new perspectives on the Lucas tree
model but also establishes a basis for future research, which can expand and explore other
complex facets of financial markets.

Keywords: Lucas Tree Model. Machine Learning. Reinforcement Learning. Agent-based
model. Economics. Asset Pricing. Finance.
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1 INTRODUCTION

This dissertation originated from a broader initial ambition: to develop a method
for deriving, directly from data, an optimal functional form for the stochastic discount
factor. This dissertation represents the first step of this ambitious journey, laying the
foundation upon which future investigations will be built.

The initial approach to tackling this challenge involved applying advanced machine
learning techniques to identify these functional forms within a pre-defined function space.
To do so, it is essential to generate a significant volume of data, preferably prices, from a
simulated economy with a known stochastic discount factor. With several such simulated
data sets and knowledge of the true functional forms of the stochastic factor, it becomes
feasible to train an artificial intelligence model capable of correctly estimating this func-
tional form. The main advantage of this estimation is the ability to economically interpret
the relationships between variables and understand the true weights attributed to each for
the correct pricing of assets.

Therefore, the focus of this dissertation is the generation of these essential data.
We chose to replicate a well-established model in the economic literature, the Lucas tree
model, to validate and corroborate our results. This model serves as an ideal test case for
the developed methodology, providing a solid benchmark for our simulations.

The computational project implemented here is designed to be sufficiently flexible,
allowing the relaxation of various traditional assumptions in macro-finance models, which
often present challenges in their formulation and analytical derivation. For instance, the
implementation of different behavioral strategies and beliefs among agents. The utility
and versatility of this project will become evident throughout the work.

In this initial chapter, we will explore the evolution of asset pricing models, high-
lighting how modern techniques, especially agent-based models, can be applied to achieve
similar objectives. An introduction to agent-based modeling and a brief history of the
technique will establish the context for its application in the field of finance. Finally, we will
describe the specific objectives of this work, framing the results presented as an integral
part of a broader research line.

1.1 A brief historical development of Asset Pricing Models

The evolution of asset pricing techniques mirrors the intellectual progress perme-
ating economic theories over time. Each innovation expanded the understanding of the
dynamics governing capital markets, outlining the fundamental theoretical framework for
asset pricing and exerting a decisive influence on the theoretical structuring of financial
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markets. After decades of study, much of the research today is unified in the language of
the stochastic discount factor, and one of the main tasks is understanding its properties.

In the 1960s, the advent of the Capital Asset Pricing Model (CAPM), proposed
by Sharpe (1964), marked a watershed in how financial assets were evaluated and priced.
By introducing the beta coefficient (a measure of an asset’s reaction to market risk),
the CAPM established a linear correlation between an asset’s expected return and the
market risk premium, quantitatively structuring the concept of systematic risk. Extensive
literature corroborates various flaws in the predictions of the one-factor model (BANZ,
1981; ROSENBERG; LANSTEIN, 1985).

The first general equilibrium models for asset pricing date back to the 1970s,
(STIGLITZ, 1970), (LUCAS, 1978a), and (BREEDEN, 1979), and these continue to be
used as base models in macroeconomics courses to this day. The theoretical development of
these models, simple and elegant, was not corroborated by stylized facts and estimates made
with real data, see Hansen and Singleton (1982), Mehra and Prescott (1985), Kocherlakota
(1996), leading to a vast literature that emerged to explain the discrepancies found.

In the 1990s, the publication of Fama-French’s three-factor model (FAMA; FRENCH,
1993) enriched the CAPM by considering additional variables, such as company size, the
book-to-market ratio, and momentum strategy. By encompassing a variety of factors, these
models elucidated more accurately the variations in returns and improved asset evaluation.

The endeavor of factors continues, and today we have the so-called “Factor Zoo”
(HARVEY; LIU; ZHU, 2016), where a large set of factors individually explains part of the
returns in the cross-section of assets, but together have drastically reduced explanatory
power and are subject to criticism for out-of-sample errors. Even considering the case of
a factor that truly has explanatory power, McLean and Pontiff (2016) argues that the
publication of a study reduces the explanatory power of that factor as agents learn from
the information, rendering the factor no more important than the rest of the previous
factors.

With the popularization of various artificial intelligence techniques (ATHEY, 2018),
research in economics, more specifically in finance, is equipped with a tool that allows
modeling and finding complex patterns in large volumes of data. In the second decade of
this century, machine learning techniques were primarily used from a predictive perspective,
without delving into deeper questions and implications of economic theory, sometimes
doubling the performance of econometric techniques based on regressions (GU; KELLY;
XIU, 2020). These techniques, mostly pruned of economic interpretation, attempt to find
highly non-linear combinations of variables that are capable of minimizing/maximizing
some metric, traditionally in finance, the expected return.

While classical econometric methodologies have been the foundation of financial
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theory and have guided asset pricing practices over the years, the increasing complexity
of financial markets and their interconnectedness have spurred the search for new ap-
proaches. Tools such as artificial intelligence, simulations, and complex network analysis
have been explored to holistically capture market patterns and interactions, aiming to
enhance not only the pricing projections of assets but also the theory itself. In recent
years, machine learning techniques have gained popularity for addressing more theoretical
problems in economics (ATHEY; IMBENS, 2019), particularly those related to causality
(CHERNOZHUKOV et al., 2018; SCHÖLKOPF, 2022; PROSPERI et al., 2020).

Within the context of simulations, Agent-Based Modeling (ABM) stands out as
an alternative to traditional analytical models. Starting from a purely microeconomic
approach, we can simulate the behavior and learning of individual agents, which allows us
to analyze patterns in macroeconomic aggregates and understand how individual decisions
can lead to surprising macroeconomic consequences in highly nonlinear environments, the
so-called emergent effects.

1.2 Agent-Based Modeling (ABM)

The origins of Agent-Based Modeling techniques can be traced back to the pio-
neering work of John von Neumann, one of the fathers of modern computing. Neumann
(1966) introduced the concept of cellular automata, proposing systems where cells on a
grid evolve according to defined rules. This idea laid the groundwork for later models that
would use interactive agents in complex networks.

A significant milestone in the development of ABM came with John Conway and
his famous “Game of Life” in the 1970s (GARDNER, 1970). The “Game of Life” is a
classic example of a cellular automaton, where complex patterns emerge from simple
rules. This game demonstrated how complex and unpredictable behaviors could arise from
local interactions between agents, establishing a fundamental paradigm for agent-based
modeling.

In the field of economics, one of the first and most influential agent-based models
was developed by Schelling (1971). Schelling’s segregation model illustrates how racial
segregation can emerge in a city even when individuals have a moderate preference for
neighbors of their own race. This model was crucial in demonstrating the utility of ABM
in explaining complex social and economic phenomena, highlighting how the interactions
of individual agents can lead to emergent macroscopic patterns.

Since then, agent-based modeling has been applied in a variety of disciplines,
including economics, sociology, political science, biology, and ecology (STEINBACHER et
al., 2021). In economics, in particular, ABM has been used to study markets, simulate
entire economies, and understand the dynamics of financial crises, among other topics
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(DOSI et al., 2020).

This approach has gained momentum with the increase in computational capacity
and the availability of large data sets, enabling the simulation of complex systems with an
ever-increasing number of agents and more detailed interactions. Agent-based modeling
continues to evolve, offering valuable insights in many fields of knowledge and challenging
our understanding of complex systems (MONTI et al., 2023).

An agent-based model is a computational approach to simulating the actions and
interactions of autonomous entities, termed “agents,” in a shared environment. Each agent
is characterized by a set of attributes, behavior rules, and decision-making capabilities.
These characteristics can be fixed, adaptive, or learned over time. The model is defined by
the following components:

• Agents: Individual entities with distinct capacities for perception, cognition, and
action. They can represent individuals, groups, organizations, or any other decision-
making entity. Agents are essentially defined by their behavior rules, or how they
react and make decisions in response to their perceptions and the state of the
environment. These rules can be deterministic or stochastic and can be based on
bounded rationality, heuristics, or any other form of decision-making.

• Environment: The context in which agents operate and interact. This can include
spatial features (like a geographic map or a social network), as well as environmental
factors that influence agent behavior.

• Interactions: Describes how agents communicate, compete, collaborate, or influence
each other. Interactions can be direct or mediated through the environment.

The evolution of the system is generally modeled in discrete steps, but it can also be
continuous. At each step or time interval, agents assess their environment, make decisions,
and act according to their behavior rules.

The emergent dynamics of the model result from the complex interaction between
agents and their environment. Unlike traditional models based on equations of motion,
ABMs allow the observation of emergent phenomena that arise from the interaction of
simple rules at the agent level but can lead to complex behaviors at the system level.

1.3 ABM in Finance

Agent-Based Modeling (ABM) techniques have special advantages in simulating
financial markets, analyzing how the decisions of different types of investors influence the
formation of asset prices. By construction, this type of modeling more easily accommodates
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Figure 1 – General diagram of an Agent-Based Model, illustrating the flow for a single agent.
This diagram depicts the various stages and interactions a single agent undergoes
within the model. It includes the agent’s decision-making process, interaction
with the environment, response to external stimuli, and the subsequent loop of
actions taken.

heterogeneous agents and more complex structures/asymmetries of information, which are
very important, for example, to understand the dynamics of market pricing.

These models have been successful in studying the origins and development of
financial crises (VASELLINI, 2023). By modeling interactions among entities such as banks,
businesses, and consumers, ABM helps to illustrate critical factors, like market panic,
non-dissipative idiosyncratic shocks, and financial interconnections, which contribute to
financial instability and crises.

In this context, the Lucas tree model, traditionally used in finance, serves as an
interesting backdrop for the application of agent-based modeling. The tree model, proposed
by Robert Lucas in 1978, is a general equilibrium model in which agents make decisions
about consumption and investment based on their expectations about the future dividends
of an asset. In its original form, the model assumes homogeneity among agents and rational
expectations. However, by introducing an ABM perspective, it becomes possible to explore
how heterogeneity in agents’ beliefs, strategies, and information limitations can influence
asset pricing, market dynamics, and the formation of bubbles and crashes.

This combined approach not only enriches the understanding of financial market
behavior but also opens doors to investigate how different policies and interventions might
influence market outcomes in a world where agents are not always fully rational and where
their complex interactions can lead to unexpected dynamics.
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1.4 Objectives

Considering the historical and conceptual importance of the Lucas Tree Model,
this study adopts it as the baseline model. The choice of this model is strategic, given its
recognition and familiarity in the field of finantial economics. The intention is to use a
well-established model as a starting point for introducing more advanced techniques, which
are less familiar to economists, thereby creating a didactic bridge between traditional
economic theories and modern methodologies. The objectives of this work are as follows:

• General Objective: To replicate the classic results of the Lucas Tree Model using
an agent-based model and Reinforcement Learning techniques.

The objective aims to demonstrate the effectiveness of contemporary modeling approaches
in the context of established economic theory, paving the way for future work that uses
the model constructed here, diverging and relaxing hypotheses that are traditionally
complicated to resolve analytically.

To achieve this objective, it is necessary to familiarize the reader with techniques
that, although well-known in the field of computer science, have only recently been
incorporated into economic literature. These fundamental aspects guide the specific
objectives of the study:

1. To introduce the concept of Neural Networks as Function Approximators, establishing
their relevance and applicability.

2. To explore the nuances of a Reinforcement Learning technique, connecting it with
the traditional approach adopted in the recursive solution of macroeconomic models.

3. To implement the Lucas Tree Model in an agent-based context, demonstrating the
feasibility and functionality of this approach.

4. To simulate the agent-based Lucas Tree Model, where agents seek to maximize their
returns through Reinforcement Learning techniques, and To compare the equilibrium
results obtained with the predictions of classic models, thus providing a critical
evaluation of the new model solution proposed.
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2 DEVELOPMENT

This chapter is dedicated to presenting essential technical concepts for under-
standing the proposed computational solution. Initially, we revisit the core aspects of the
Lucas Tree Model, elucidating conventional methodologies for determining equilibrium
prices. This review is crucial to establish a contrast between traditional approaches, com-
monly explored in macroeconomics courses, and the machine learning method that will be
discussed.

Moving to a still-evolving sphere of economic modeling, which has been gaining
prominence in recent publications, we outline the Agent-Based Model inspired by the
seminal work of the Lucas Tree. Furthermore, we introduce the application of Q-Learning,
a technique that, while sharing roots with classic dynamic programming tools, represents
a foray into the realm of reinforcement learning.

Concluding, we propose an analogy between neural networks and the familiar
concept of Linear Regression, which eases the transition to comprehending Deep Q-
Networks, a natural evolution of Q-Learning. This dialogue between advanced machine
learning techniques and traditional methods of economic analysis is the guiding thread
that permeates the discussion proposed in this chapter.

2.1 Lucas Tree General Equilibrium Model

Before proceeding to solve the Lucas Tree Model in an agent-based format, it is
essential to revisit the basic structure of the model as proposed in the seminal paper
“Asset Prices in an Exchange Economy” (LUCAS, 1978b).

2.1.1 Brief Description of the Model

Consider a discrete-time endowment economy, denoted by t ∈ 0, 1, 2, . . .. A con-
tinuum of identical agents, uniformly distributed over the interval [0, 1]. Each agent is
endowed, at the initial moment t = 0, with a tree, which is infinitely divisible and can be
traded among agents.

The trees in question represent assets that generate a “fruit” or a dividend yt ∈ R
at the beginning of each period t. This dividend must be entirely consumed within the
period it is produced. The sequence of dividends yt is modeled as a Markov stochastic
process, characterized by the following conditional probability distribution function:

f(yt+1|yt) (2.1)
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2.1.2 Assets in the Economy

In this economic context, two types of assets are identified: a risk-free asset, denoted
as b, and a variable return asset, s, which symbolizes the share in the fruits generated by
specific trees.

• Risk-Free Asset: bt+1

The risk-free asset, represented by bt+1, guarantees a fixed payment of one unit of
consumption in the subsequent period, regardless of the state of the economy. The
symbol bt+1 indicates the amount of risk-free assets acquired at time t and maturing
at time t + 1. The price per unit of this asset at time t is denoted by qt.

• Tree Shares s:

The tree shares, or st, refer to the volume of shares that generate a dividend flow at
the beginning of each period t, equivalent to styt units of consumption, which can
be reinvested. The unit price of tree shares at time t is represented by pt.

Agents in this economy face the decision of trading immediate consumption for
assets that promise a share of future dividends from the trees, implying a potentially
uncertain future consumption flow. Therefore, within their budgetary constraints, agents
must weigh the amount of present consumption against future consumption.

2.1.3 Utility of the Representative Agent

Consider that the representative agent has instant utility equal to u(ct), such that
u′(ct) > 0 ∀ ct, so that the preference of the representative agent U at t = 0 is modeled as
follows:

U = E0

 ∞∑
t=0

βtu(ct)


Where E0 is the expectation considering the set of information available at t = 0,
and β is a discount factor used by the Agent such that 0 < β < 1.

2.1.4 Agent’s Budget Constraint

For an economic agent, it is essential that their consumption and investment choices
align with their financial limitations. In any period t, an agent must obey the following
budget constraint:

ct + pt(st+1 − st) + qtbt+1 ≤ bt + styt (2.2)
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And for this purpose, we can consider the values for the state variables at the
initial time as known.

2.1.5 The Problem of the Representative Agent

Given the description of the model, the optimization problem faced by the repre-
sentative agent can be formulated as follows:

max
ct,st+1,bt+1

E0

 ∞∑
t=0

βtu(ct)


st. ct + pt(st+1 − st) + qtbt+1 ≤ bt + styt

The objective function represents the expected present value of utility from con-
sumption over time, where β is the discount factor, and u(ct) is the utility function of
consumption in period t. The budget constraint, already described earlier, ensures that
the agent does not spend more than their available resources in each period.

To establish the starting point of the agents’ trajectories, the following initial
conditions are assumed for the state variables:

s0 = 1, b0 = 0, y0 = ȳ (2.3)

These conditions establish that each agent starts with one unit of the uncertain
return asset (s0), no risk assets (b0), and a known and constant initial yield for the tree
(y0 = ȳ).

2.1.6 Recursive Formulation of the Representative Agent’s Problem

To recursively formulate the problem of the representative agent, we first observe
that the distribution of dividends yt generated by a Lucas tree follows a Markov process
as defined in equation (2.1). This implies that the current state variable yt is statistically
sufficient to predict yt+1, eliminating the need to consider the history of dividends. Thus,
yt is established as the only state variable necessary for the dividend series.

Furthermore, we enter period t with knowledge of the inherited quantities of tree
shares st and risk-free assets bt, which are also treated as state variables.

At the end of each period, the agent makes decisions, respecting the budget
constraint, on how much to consume ct, and how much to invest in new tree shares st+1 or
safe assets bt+1.

The recursive problem of the representative agent can then be expressed by the
following Bellman equation:
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V (st, bt, yt) = max
ct,st+1,bt+1

u(ct) + βE

V (st+1, bt+1, yt)|yt


st. ct + pt(st+1 − st) + qtbt+1 ≤ bt + styt

(2.4)

In certain solution approaches, it is useful to incorporate the budget constraint
directly into the objective function, resulting in the following alternative form of the
Bellman equation:

V (st, bt, yt) = max
st+1,bt+1

u(bt + styt − pt(st+1 − st)− qtbt+1) + βE
[
V (st+1, bt+1, yt+1)|yt

]
(2.5)

2.2 Traditional Solution of the Model

This section explores the traditional approach to solving the Lucas model, which
will serve as a basis for the method presented in the next section.

2.2.1 Analytical Solution for the Model’s Equilibrium Price

By deriving with respect to the control variables, we obtain the first-order conditions:

u′(ct)p(yt) = βE
[
V1(st+1, bt+1, yt+1)|yt

]
(st+1)

u′(ct)q(yt) = βE
[
V2(st+1, bt+1, yt+1)|yt

]
(bt+1)

Here, Vi(st+1, bt+1, yt+1) represents the partial derivative of the function V with respect to
the i-th argument. Using the envelope theorem, we can calculate the derivatives of the
value function as follows:

V1(st, bt, yt) = u′(ct)(p(yt) + yt)
V2(st, bt, yt) = u′(ct)

Assuming that the good produced by the Lucas tree is non-storable, we have that
in equilibrium ct = yt. Advancing one period and substituting in the first-order conditions,
we obtain:

u′(yt)p(yt) = βE
[
u′(yt+1)(p(yt+1) + yt+1))|yt

]
(2.6)

u′(yt)q(yt) = βE
[
u′(yt+1)|yt

]
(2.7)
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Solving for prices, we define the stochastic discount factor, mt+1, of the Lucas Tree
Model:

mt+1 = u′(yt+1)
u′(yt)

p(yt) = βE
[
mt+1(p(yt+1) + yt+1))|yt

]
q(yt) = βE

[
mt+1|yt

]

The first-order conditions (2.6) reflect the marginal equality of the cost and benefit
of acquiring additional assets, whether in the form of shares (st+1) or risk-free bonds
(bt+1). The marginal utility function u′(ct) is weighed against the prices of assets (p(yt)
and q(yt)), and equals the expected discounted value of tomorrow’s marginal benefit.
This correspondence highlights the intertemporal trade-off faced by economic agents: the
pleasure of present consumption versus the benefit of future consumption provided by
investment.

The derivatives of the value function, obtained through the envelope theorem, show
that the marginal value of acquiring more of the uncertain asset depends not only on the
current price and dividend but also on consumption. That is, there is a direct relationship
between consumption and the valuation of the asset, underscoring the importance of
intertemporal consumption preference.

By establishing that consumption in equilibrium equals the dividends (ct = yt), we
are assuming that all the income generated is consumed, reflecting the hypothesis of the
non-storability of the good. This simplifies the analysis by avoiding the need to consider
optimal storage strategies, which would add another layer of complexity to the problem.

Finally, asset prices are determined by the stochastic discount factor mt+1, which
reflects the intertemporal rate of substitution of consumption. The price of the Lucas asset
(p(yt)) is the expected present value of future dividends plus the appreciation of the price,
adjusted by the stochastic discount. On the other hand, the price of the risk-free asset
(q(yt)) reflects only the future expectations adjusted by the same discount factor.

These equations encapsulate the essence of the Lucas Tree Model, a cornerstone in
modern financial theory. They illustrate how asset prices are influenced by the rational
expectations of investors and intertemporal consumption preferences, providing a clear
mechanism for asset valuation in a dynamic and uncertain environment.



26

2.2.2 Numerical Iterative Solution of the Bellman Equation

The solution presented here is resolved for a grid of values previously chosen by the
economist, usually around the long-term stationary equilibrium. When setting up this grid,
we encounter the first problem of the method: the choice of position, size, and precision
(number of points in the same space). It’s worth noting that the number of points in this
grid includes the problem of the curse of dimensionality for this method.

Our goal now is to determine the functional form of the value function associated
with the Bellman equation of the problem (2.5). Once this functional form is found, we
will be close to completely solving the problem. This requires solving an optimization
problem for the control variables to find:

st+1 = g(st, bt, yt)
bt+1 = h(st, bt, yt)

where yt is realized at the beginning of each period. With the initial values s0, b0,
and y0 given, we can solve the problem recursively, obtaining the optimal control sequences
{si}∞

i=1 and {bi}∞
i=1.

To derive the functional form of the value function, we will use the algorithm
developed by Howard (HOWARD, 1960) in his doctoral thesis. The main points of this
method will be highlighted, emphasizing the aspects relevant to the implementation
proposed in this work. Complete details of the implementation and proof of convergence
of the algorithm to the optimal solution are presented by Ljungqvist and Sargent (2018)
in Appendix A of Recursive Macroeconomics.

To facilitate the fixed-point procedure, we start from ?? and consider the linearity
of the expectation operator:

u′(yt)p(yt) = βE
[
u′(yt+1)(p(yt+1) + yt+1)|yt

]
u′(yt)p(yt) = βE

[
u′(yt+1)p(yt+1)|yt

]
+ βE

[
u′(yt+1)yt+1|yt

]

We define functions f and r as aids for the iterative procedure, so we can later
recover the original functions.

f(yt) = u′(yt)p(yt)

r(yt+1) = βE
[
u′(yt+1)yt+1|yt

]
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By making these substitutions, we have:

f(yt) = r(yt+1) + βE
[
f(yt+1)|yt

]

Note that we define the value r(yt+1) because it remains constant throughout the
iterations of the function f(yt), since yt+1 has a known distribution at time t. Therefore,
we can calculate its expectation and make the iterative calculation more efficient. Let’s
introduce the operator T of the problem, such that:

(Tf)(yt) = r(yt+1) + βE
[
f(yt+1)|yt

]

So that the solution f ∗(yt) is a fixed point of T, meaning Tf ∗(yt) = f ∗(yt). As
previously indicated, in Appendix A of Recursive Macroeconomics, we find the proof for
the following assertions:

• T has only one fixed point.

• For any f0 that respects the constraints of the problem, the sequence T kf0k converges
uniformly to f ∗, the fixed point of the operator T .

• The fixed point of T is the true value function of the problem.

This allows us to finally state the following procedure:

Algorithm 1 Policy/Howard Improvement Algorithm
u0(s0, b0, y0)← Random Feasible Policy
i← 0
N ← n
while i ≤ N do

Vui
(x)← ∑∞

t=0 βtr(x, ui(x))
ui+1 ← maxu r(x, u) + βVui

[g(x, u)]
i← i + 1

end while

With this, given a sufficiently large number of iterations, we ensure that the value
function will converge, within an epsilon > 0, to the real value.

It is worth noting that this solution is only possible when we specify the function
r(x, u) of the problem correctly. Since the model developed earlier is fully defined, we do
not encounter any problems here.
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2.2.3 Benveniste-Scheinkman Theorem

The iterative solution previously discussed requires iterating over a large set of
points using the algorithm provided, a task difficult to perform manually. Therefore, we
have an alternative solution that allows us to solve the problem using derivatives, which
in a way, simplifies the calculations elegantly.

The Benveniste-Scheinkman Theorem establishes conditions under which the value
function of an optimal control problem is differentiable. Furthermore, it specifies how
the derivatives of the value function can be used to characterize the optimal policies of
agents. The details and necessary conditions for applying this theorem can be found in
the reference (BENVENISTE; SCHEINKMAN, 1979).

In the context of the Lucas Tree Model, we apply this theorem to the value function
V (st, bt, yt) defined in the recursive formulation of the representative agent’s problem (2.5).
According to the theorem, if the value function is sufficiently smooth and the envelope
conditions are met, the partial derivatives of the value function with respect to the state
variables reveal the shadow prices of these variables.

This approach, using the Benveniste-Scheinkman Theorem, allows us to follow a
process similar to the one described earlier. However, instead of iterating over a grid of
points, we iterate over functions. This method offers a more efficient and elegant way of
finding solutions for the model, avoiding the computational complexities associated with
iterating over extensive grids and allowing a more direct and analytical analysis of the
optimal policies.

2.2.4 Critiques

The model proposed by Lucas has provided valuable insights into expectation
formation and intertemporal decision-making, yet it has also given rise to various “puzzles”
that have perplexed economists for decades. These puzzles, or observed inconsistencies
between the model’s theoretical predictions and actual empirical data, have spurred a
vast literature that seeks not only to elucidate them but also to propose extensions and
reformulations of the original model.

In particular, a significant point of contention concerns the assumption of rational
expectations, which is central to Lucas’s model. Critics argue that this assumption might be
overly restrictive, overlooking the possibility of behavior constrained by bounded rationality
or influenced by psychological biases (SELTEN, 1990; KAHNEMAN; TVERSKY, 1979).
Additionally, the adequacy of the hypothesis of markets always being in equilibrium
has been questioned, suggesting that out-of-equilibrium market dynamics might provide
additional insights into phenomena such as financial crises and economic fluctuations
(STIGLITZ, 2011).
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Acknowledging these challenges, various research lines have been dedicated to
exploring approaches that relax some of the more stringent constraints of the model
(WEIL, 1989). Here, I highlight the literature on heterogeneous agent models that allow
for variations in the expectations and behaviors of individuals, offering a more nuanced
and potentially more realistic representation of the economy (DAVID, 2008; EBRAHIM;
MATHUR, 2001).

The next section will address one of these methodologies, which relies on the idea
of agent-based modeling. In this approach, we forgo the aggregation of information and
simulate each agent individually. This type of approach facilitates the implementation
of expectations that are not fully rational but are still systematic and predictable. This
approach represents an attempt to reconcile theoretical predictions with empirical obser-
vations while maintaining consistency with fundamental behavioral principles observed in
economic time series data (KAHNEMAN, 2003).

2.3 Agent-Based Lucas Tree Model

As previously discussed, an Agent-Based Model (ABM) revolves around three key
components: Agents, Environment, and Interactions among them. Within the Lucas tree
model framework, agents are conceptualized as economic entities endowed with resources,
engaging in a market to set prices for financial assets. Each agent is characterized by
its initial endowment and a set of potential strategies for decision-making regarding the
buying and selling of assets.

The market, constituting the Environment in our ABM, is the stage where transac-
tions take place. It is here that the ’matching’ between buyers and sellers is facilitated,
following predefined rules that simulate market conditions. The functioning of this en-
vironment is crucial for understanding market dynamics and the fluctuation of asset
prices.

The agent-market interaction is outlined by the set of rules defining how agents
access the market and conduct transactions. These rules form the backbone of the model,
as they determine how information is shared, decisions are made, and prices are adjusted
over time.

Contrasting with the general equilibrium approach of the initial model, the ABM
modeling described here focuses on discrete episodes of interaction between agents and
the market. Each episode can be viewed as a complete microcosm, where agents undergo
multiple iterations, refining their strategies based on transaction history. This process is
analogous to trial-and-error learning, reminiscent of the concept explored in the movie
“Groundhog Day” (1993), where the repetition of events allows individuals to optimize
their decisions based on previous experiences.
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These trajectories of interactions are crucial as they provide agents with the
opportunity to adjust their decision-making policies for control variables, considering the
current state of the market. Thus, the ABM incorporates a learning component, essential
for the evolution of agent strategies and the emergence of complex market patterns.

We begin the formal description of the model parts with Agents and proceed
with the Market. Since agents interact only through the Market entity, describing the
functioning of the market suffices to complete the mechanics of the model.

2.3.1 Agents

Each agent, indexed as k at iteration t, denoted as Ak
t , is fully characterized by

its state variables, control variables, decision policy, utility function, and idiosyncratic
variables.

1. State Variables:

• sk
t - Quantity of risky asset owned by agent k

• bk
t - Quantity of risk-free asset owned by agent k

• yk
t - Income of agent k at iteration t

2. Control Variables:

• pk
t - Price of the risky asset set by agent k

• qk
t - Price of the risk-free asset set by agent k

3. Decision Policy:

• πk : (sk
t , bk

t , yk
t ) 7→ (pk

t , qk
t ) Maps the state variables to the control variables

4. Utility Function:

• uk(c) Instantaneous utility of agent k

• U Overall utility of agent k

Uk = E0

 ∞∑
t=0

βtuk(ck
t )


5. Idiosyncratic Variables:

• xk - A vector of idiosyncratic variables for agent

In this study, we investigate a representative agent model; hence, idiosyncratic
variables do not exist, leading to xk = {}.
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In summary, the agents’ role in the model can be outlined as follows: Based on the
observation of state variables and market dynamics, agents choose the prices of assets and
the amount of consumption that maximize their expected discounted utility.

2.3.2 Market (Environment)

The market, in our Agent-Based Model (ABM) of the Lucas Tree, serves as the
central mechanism for allocating buy and sell intentions among agents, reallocating asset
quantities, calculating utilities, and simulating dividend processes while maintaining the
model’s constraints. For instance, the market can enforce no-Ponzi conditions by penalizing
agents attempting to offer negative quantities in the market, thereby disincentivizing such
choices in future simulation episodes.

The market is fully characterized by the following elements:

1. Xt - Vector representing the environmental state variables.

2. {Ak
t } - The set of N agents participating in the market at time t.

3. Update Rule

• Λ : ({Ak
t }, Xt) 7→ ({Ak

t+1}, Xt+1) - A function mapping the current state of
agents and environment to their next state

Several mechanics can be explored in the allocation of agents’ offers and demands,
which can include factors like bounded rationality, monopoly power, negotiation skills,
etc. For this study, a straightforward mechanism for executing trades is chosen, defined as
follows:

Definition: Possível Comprador

Given any two agents A1 and A2, agent A2 is defined as a potential buyer of A1 at
price p̄ in iteration t if and only if:

• The agents set prices such that p1
t ≥ p̄ ≥ p2

t for the asset s.

• Agent A1 has stock si
t > ∆s

• Agent A2 has funds yi
t > ∆s · p̄

• Neither agent has engaged in a trade during iteration t

Where ∆s represents the quantity of asset s exchanged in the event of a market
match.
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The decision mechanism for the settlement price p̄ between two agents can be
explored in various ways, thus affecting the equilibrium outcomes of the model. One
approach could be to define a bargaining power variable for each agent, influencing the
price setting during matches.

The Market’s responsibilities include:

• Conducting matches between agents who are potential buyers and sellers.

• Determining the settlement price p̄ for each transaction.

• Intermediates the exchange of goods and income between matched agents.

2.3.3 Simulation of an Episode

With the agents and the market (environment) established, we outline the process
of a simulation episode within our model. An episode corresponds to a complete realization
of the proposed model. Given the infinite horizon of interactions (as indicated by the
summation extending to infinity in the expected utility function of the consumer), a
truncation mechanism is implemented to make simulations computationally feasible.

The Figure 2 illustrates the sequence of events for a single agent throughout an
episode. Initially, at iteration t = 0, the agent is characterized by its initial state variables
(s0, b0, y0). Based on this state, the agent employs its policy π to determine the values of
the control variables (pi, qi, ci), which are then transmitted to the environment.

The environment processes the decisions of all agents, executes the "matching"
algorithms for transactions, and distributes the new state variables (si+1, bi+1i, yi+1) back
to the agents, along with the calculation of the instant utility gained by each one.

Interestingly, the calculation of instant utility, or "Reward", is conducted by the
market instead of individually by the agents. This convention, derived from Reinforcement
Learning practices, allows for the application of negative reinforcements to deter undesirable
behaviors without needing to explicitly restrict the actions available to agents. When
an agent performs an improper action, the market imposes a penalty, encouraging the
learning of allowed and productive strategies.

An agent-based model introduces additional dimensions of freedom, allowing for
more complex and individualized interactions compared to aggregated models. However,
this richness in detail comes with the cost of increased computational demand.

A key aspect of the model in question is the decision-making process of the agents,
namely, how they select control variables to maximize their discounted utility over time.
A conventional approach to solve this problem involves constructing a “grid” of possible
actions and states, where agents iteratively refine their estimates until convergence is
achieved.
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However, the solution proposed in this work diverges from this traditional approach.
Instead, agents use the history of previous episodes to update their action policies. This
method has the advantage of not requiring the exhaustive execution of all possible state
combinations to achieve convergence, thereby reducing computational costs and speeding
up the optimization process.

Figure 2 – Representation of an episode from the perspective of a single agent.

In the illustrated approach, each agent undergoes a series of interactions within
the market environment, making strategic decisions based on both the current state and
the accumulated experience from past episodes. This iterative learning and adaptation
process not only enhances the realism of the simulation but also allows for the emergence
of complex market dynamics that can provide deeper insights into economic behaviors
and phenomena.

2.4 Q-Learning

The technique of Q-Learning, a form of Reinforcement Learning, has made signifi-
cant strides in a wide array of complex applications, ranging from video games to advanced
economic models. This technique gained notable prominence following the publication of
the seminal paper “Playing Atari with Deep Reinforcement Learning” (MNIH et al., 2013).
Its relevance and impact were further bolstered in 2023 with the first publication of a
work in a “Top 5” economics journal employing the Q-Learning methodology (JOHNSON;
RHODES; WILDENBEEST, 2023), marking a significant advancement in the adoption of
this approach in rigorous economic studies.

The concept of Q-Learning was introduced by Christopher Watkins in his 1989
doctoral thesis. This approach was groundbreaking for enabling agents to learn to maximize
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future rewards based on iteratively updated estimates, eliminating the need for a model of
the environment. This opened the door to applying reinforcement learning in problems
where the environment model is unknown or too complex to be explicitly modeled.

Q-Learning is an example of Temporal Difference (TD) methods, which learn
directly from raw experience without waiting for a final outcome (SUTTON; BARTO,
2018). This differs from other reinforcement learning techniques that require knowledge of
the state transition model or that learn from the complete trajectory of the state to the
end.

The introduction of Q-Learning marked a significant advance in the field of artificial
intelligence, allowing for a more flexible and robust approach to automated learning. It
was only with the advent of computational advancements and the introduction of Deep
Q-Networks (DQN) that the full potential of Q-Learning was realized. The combination of Q-
Learning with neural networks, known as Deep Q-Network (DQN), was first demonstrated
by DeepMind in 2013, playing Atari games directly from screen pixels. This showed that
the technique could outperform humans in many of these games (HESTER et al., 2018),
dealing with high levels of perception and control, providing a strong argument for using
the same technique to simulate economic agents.

Before introducing the solution presented in the paper “Playing Atari with Deep
Reinforcement Learning” (MNIH et al., 2013), I will present some concepts that will serve
as a basis for the final application, also taking advantage of using the terminology of
Reinforcement Learning.

2.4.1 Quality Function

The Quality Function Q(x, a) plays a crucial role in Reinforcement Learning,
evaluating the expected value of being in a state x (state variables) and taking an action
a (chosen control variables). The Quality Function Q is used to estimate the value of each
action from a specific state, and it will be the function estimated by the agents, with
improved estimates throughout the model’s training. This function is essential for guiding
the agent in their decision-making, aiming to optimize future rewards, and is expressed as
follows:

Q(xt, at) = E
[
r(xt, at) + βV (xt+1)

]
=

∑
xt+1

P (xt+1|xt, at)[r(xt, xt+1, at) + βV (xt+1)]

where r(xt, at) is the reward received for taking action at in state xt, β is the
discount factor that weighs the importance of future rewards, P (xt+1 | xt, at) is the
probability of transitioning to state xt+1 given the current state xt and the action taken
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at, and the term V (xt+1) represents the maximum value of the Quality Function for the
next state, the value function of the problem. This formulation of the Quality Function
Q incorporates both the immediate reward and the optimized value of future actions,
forming the basis of the optimal policy that the agent seeks to find.

π(xt) = argmax
a

Q(xt, a) (2.8)

V (xt) = max
a

Q(x, a) (2.9)

Note that, if we had the true Quality Function, in any possible state we could
choose the optimal trajectory, and for that, it would be enough to solve the maximization
problem (2.9), to be able to choose the best action (control variables).

2.4.2 Q-Learning Algorithm

Equipped with the concept of the Quality Function, we can state the algorithm
responsible for the convergence of a random Quality Function Q0 to its true value:

1. We start the algorithm by setting up a grid that represents the values for the random
Quality Function Q0, varying for each possible state variable and control variable.
Since x0 is known (initial state variables) and we set i = 0.

2. The agent will execute in the Lucas environment a sequence of k iterations, in such
a way as to choose the action ak by solving:

ak = argmax
a

Qi(xk, a)

At the end of this stage, we observe the series:

• {xi}k+1
0 - Sequence of States Observed by the Agent

• {ai}k
0 - Sequence of Actions Taken by the Agent (Chosen Control Variables)

3. Given the sequences of control and state variables, we can calculate the realized
values of Q, and thus update our function Qi+1 in the following way:

Qi+1(xk, ak) = (1− α)Qi(xk, ak) + α
[
rk + βmax

a
Q(xk+1, a)

]
(2.10)

Here, α is the learning rate chosen for the problem, in such a way as to update the
estimate of the Quality Function through a weighted average of the old value Qi

and the value obtained directly from the simulation. The choice of this parameter is
discussed in detail by Even-Dar and Mansour (2004).

4. We take i = i + 1 and return to step 2 until some convergence criterion is satisfied.
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2.4.3 Convergence of Q-Learning

Similar to the convergence proof of the Policy Iteration algorithm, the convergence
proof of Q-Learning follows these steps:

1. Show that the optimal policy is a fixed point of the Operator H

(Hq)(x, a) =
∑
xt+1

P (xt+1|xt)[r(xt, xt+1, at) + βmax
a

q(xt+1, a)]

2. Prove that the operator H is a contraction.

Thus, by the Banach contraction mapping theorem, it is proven that the iterated
computation of the operator H converges uniformly to the unique fixed point, the optimal
policy of the problem in question.

The proof can be found in more detail in Regehr and Ayoub (2021)

2.4.4 Curse of Dimensionality

The solution method presented relies on creating a “grid” that represents the
possible state and control variables, which becomes prohibitive when dealing with a large
number of variables.

The curse of dimensionality, a term coined by Bellman (1953), refers to the phe-
nomenon where the volume of the state space exponentially increases with each added
dimension, making many optimization and reinforcement learning algorithms computa-
tionally unfeasible. This challenge is particularly evident in reinforcement learning, where
the value function V or the quality function Q must be estimated for every possible
combination of state and action.

In reinforcement learning, assembling a “grid” of all possible combinations of state
and control variables can quickly become impractical as the number of variables increases.
The computational complexity and the amount of memory required to store and update
corresponding values scale exponentially, making traditional solution methods, such as
Dynamic Programming, less viable in high-dimensional environments.

Number of points in the grid = Nd

where N is the number of points per dimension and d is the number of dimensions.
Thus, even a modest increase in the number of dimensions (variables) can lead to exponen-
tial growth in the number of required points, resulting in a computationally intractable
problem.



37

To mitigate the curse of dimensionality, techniques such as function approximation,
deep learning, and dimensionality reduction methods are often employed. These approaches
seek to simplify the state space by focusing on representative features and learning more
compact representations that capture the essential information for making informed
decisions.

Considering the complexity of economic and financial models, the curse of dimen-
sionality highlights the need for innovative methods that can efficiently handle large state
and action spaces, enabling the practical application of reinforcement learning in complex
economic environments.

2.4.5 Numerical Example of the Curse of Dimensionality

Consider a numerical example to illustrate the curse of dimensionality: suppose we
are sampling N continuous variables {xi}N

i=1 ∈ [0, 1]N , taking 80% of their lengths as the
sample. Let SV be the sampled hypervolume of the possible N variables (0.8N). We can
then observe the following values for different numbers of variables:

Figure 3 – Graphical representation illustrating the rapid decline in sampled hypervolume
with increasing dimensions.

Notice that even when a significant portion of individual variables is sampled, the
sampled hypervolume becomes negligible already with N = 10. In practical terms, this
means that when sampling 80% of each of 10 variables individually, we have only managed
to sample about 10% of all possible combinations. This example highlights how quickly
the curse of dimensionality can diminish the effectiveness of sampling in high-dimensional
spaces, emphasizing the challenges faced in complex model simulations and analyses.

N 1 2 5 10 20 50
SV 80% 64% 32% 10% 1% 0.001%

2.5 Function Approximators

The innovation presented in the influential paper “Playing Atari with Deep Rein-
forcement Learning” (MNIH et al., 2013) is based on dynamic optimization and employs
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Bellman’s equation, addressed through the method of “Q-Learning” (as discussed in
Section 2.4), to tackle the complexity of approximating the quality function Q using neural
networks. This approach can be seen as a solution to the curse of dimensionality, and
by approximating a large set of function points with a set of base functions, we make it
possible to reduce the amount of information needed to understand a process.

In this section, we aim to provide context for understanding the solution proposed
for the Agent-Based Model (ABM). We will begin with an exploration of function ap-
proximators, progressing to a discussion about neural networks and how they are used to
approximate unknown functions. We will conclude with the formulation of the loss function
that the neural network aims to minimize and an explanation of the “Deep Q-Learning”
algorithm.

2.5.1 History of Function Approximators

The endeavor to mathematically approximate functions began with the work of
Euler (1775), where the renowned mathematician described a projective function for
mapping the Russian Empire, aiming to transform meridians into parallel lines. Euler’s
approach required a series of intervals. Subsequently, Laplace refined this technique,
achieving similar results with a finite set of points, surpassing the number of parameters
in the problem (STEFFENS; ANASTASSIOU, 2006).

In 1820, Fourier introduced a general solution for function approximation, which,
despite fixing a functional form, required fewer points than parameters and minimized the
maximum error among various adjusted functions. Due to its elegance and pedagogical
significance, Fourier’s approach to decomposing functions into series will be the starting
point for understanding the structure of a neural network in this text.

2.5.1.1 Divertissement: Fourier Series

While studying the heat diffusion u(x, t)1 in metal plates, Fourier faced a challenge:
determining the initial heat distribution u(x, 0) = f(x) for a problem yet unresolved
beyond its trivial solution. This issue was modeled by the partial differential equation
known as the heat equation, here expressed for one spatial dimension:

∂u(x, t)
∂t

= K
∂2u(x, t)

∂x2

The trivial solutions to this equation take the form:

u(x, t) = Ae−Kn2π2t sin(nπx), n ∈ N

1 u(x, t) - Function modeling temperature along a spatial dimension x as a function of time t.
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By applying the initial conditions u(x, 0) = f(x), we derive:

f(x) = A sin(nπx), n ∈ N

Given the linearity of the differential operator, we can state, through the principle
of superposition, that a linear combination of the trivial solutions also satisfies the equation.
Therefore, if f(x) can be expressed as a linear combination of sine functions, we have a
solution for the heat equation:

f(x) =
k∑

i=1
Ai sin(niπx), ni ∈ N

Fourier pondered whether it was possible to approximate any periodic and odd
function by an infinite series of sinusoidal terms. The affirmative response led to the
creation of Fourier series, in which a function f(x) can be approximated by a sum of k

sine functions, with the approximation becoming exact as k →∞.

The historical example of Fourier series leads us to two discussions relevant to
this work. First, it illustrates a functional approximation tool, essential to science and a
precursor to the modern concept of neural networks as universal function approximators.

To illustrate this, consider Fourier’s solution within the structure of a neural
network. Numerically, the series is truncated at a finite value k. Figure 4 represents the
summation of sinusoidal terms as a network diagram, which anticipates the formalism
used for neural networks:

Figure 4 – Representation of the Fourier series as a network diagram. This formalism is
useful for transitioning to neural networks.

In diagram 4, the edges represent multiplicative weights, and the nodes represent
functions to be applied—in neural network terminology, edges are weights and nodes are
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activation functions. The parameters to be adjusted, dependent on the chosen function
f(x), correspond to the edge weights Ai and frequencies ni, although in neural networks,
these weights are real numbers rather than natural ones. Adjusting these weights is
analogous to training a neural network.

Fourier analytically determined the coefficients Ai, but in more general applications,
we will use the “Backpropagation” process and gradient descent to adjust the weights by
minimizing a loss function, which will be detailed later in this chapter.

Finally, Fourier’s approach is a classic example of the methodology described by
Polya (1973), where a complex solution is constructed from simpler solutions, in this case
representing an arbitrary periodic function as an infinite series of trigonometric terms.

The previously shown diagram 4, illustrating the solution of the Fourier series,
may initially seem more complex compared to the classical representation in the form of
summations. This is understandable, as methodologies involving neural networks transcend
the idea of mere summations of functions. They are designed to capture a hierarchical
composition of weighted sums and activation functions applied sequentially. This added
complexity is crucial, as it endows neural networks with the capability to model complex
interactions and patterns that go beyond simple linear accumulation of signals.

2.5.2 Neuron

While it is common to explain neural networks through bioinspired analogies, this
approach can sometimes obscure their fundamental principle: the iterated composition of
functions.

Figure 5 – Diagram illustrating the operation of a neuron unit, which consists of a set of
weights wi, a constant b, and an activation function f . Essentially, a neuron is
just another representation of a function, or more precisely, a function from
the domain Rn to the codomain R.



41

As the fundamental unit of a neural network, the neuron can be understood in
detail in Figure 5. Essentially, it represents a function whose partial derivatives can be
efficiently calculated since they depend only on f ′(·), the derivative of the activation
function, which is fixed and chosen precisely for this purpose.

Observing Figure 5, if we adopt an identity activation function, f(x) = x, and
rename the result of the calculation to ŷ, the weights wi to βi, and the bias b to β0, we
obtain the following relationship:

w1x1 + w2x2 + w3x3 + w4x4 + b = β0 + β1x1 + β2x2 + β3x3 + β4x4 = ŷ︸ ︷︷ ︸
Structure analogous to Linear Regression

In practical econometrics, we would start from a set of samples (X i, yi), check the
premises for applying the ordinary least squares method, and seek to minimize the sum of
squared residuals. This traditional approach typically leads to solutions of the type:

β = (X ′X)−1X ′y

While the elementary case reveals an elegant solution, it faces the computational
challenge of inverting the matrix X ′X, a costly procedure of order O(n3) where n is the
number of variables. Alternative methods such as QR decomposition or direct solving
of the linear system X ′Xβ = X ′y are often preferred. Even more efficient is the use of
gradient descent, an iterative process that converges due to the linearity of βi and the
convexity of the objective function. This technique updates βi in each iteration, following
the negative direction of the gradient of the cost function:

β̄i ← βi − α
(

∂

∂β
(
∑

(yi − ŷi)2
)

βi ← β̄i

Gradient descent not only guarantees convergence in the context of ordinary least
squares but is also computationally accessible and extendable to other activation functions
beyond identity. By exploring different activation functions, although we may lose the
guarantee of convexity of the cost function and have to settle for local minimum solutions,
we gain significant flexibility in modeling complex nonlinear relationships.

Consider then a neural network f̂(X; θ), where θ denotes the set of weights to
be optimized (said to be parameterized by θ). The goal is to optimize these weights to
minimize the loss function, defined as:
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L(θ) =
∑

(f̂(Xi; θ)− yi)2

Podemos então definir a atualização dos pesos da rede da seguinte forma:

θ̄ ← θ − α∇L(θ)
θ ← θ̄

Where ∇L(θ) represents the usual gradient operation of the loss function L
evaluated at the point θ.

The optimization strategy using gradient descent was first conceived in 1847 when
Louis Augustin Cauchy used it to calculate the orbit of celestial bodies (LEMARECHAL,
2012). The stochastic variant of gradient descent was first documented in 1951 by Robbins
and Monro (1951) and later applied by Rosenblatt (1958) in their seminal work “The
Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,”
a concept simplified in Figure 5.

It’s important to note that the methods of training neural networks are so extensive
that they justify a dissertation of their own. Among them, the backpropagation algorithm
stands out, essential for the effectiveness of training modern neural networks. However, we
will now focus on the main formulation of this work: the loss function we aim to minimize.

2.6 ABM Solution: The Deep Q-Network

In the quest for an effective approach to train agents in complex environments, the
integration of reinforcement learning techniques with deep neural networks has emerged
as a promising field of research. This method, known as the Deep Q-Network (DQN),
merges the generalization capability of neural networks with the optimization framework
of Q-Learning, a landmark in reinforcement learning. In this section, we explore the
foundation of this approach, focusing on defining a loss function that captures the nuances
of the problem at hand. The formulation of the loss function is crucial, as it guides the
agent’s learning process toward convergence on a policy that maximizes the accumulated
reward over time, thus reflecting the quality of the decisions made by the agent.

The Deep Q-Network approach adapts the principles of Q-Learning for use with
high-dimensional input spaces, where traditional methods face the curse of dimensionality.
By employing neural networks as function approximators, DQNs can efficiently handle large
state and action spaces, which are characteristic of many real-world problems, including
complex economic models.
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2.6.1 Formulation of the Loss Function

In the DQN framework, the agent learns to approximate the optimal action-value
function, commonly known as the Q-function. This function, Q(s, a; θ), estimates the
expected return for taking action a in state s, following policy π. The agent’s objective is
to find the optimal policy that maximizes the expected return from each state. The loss
function, therefore, is designed to measure the difference between the currently estimated
Q-values and the target Q-values, which are updated using the Bellman equation.

Effectively training a neural network necessitates the definition of a loss function
that quantifies the deviation of the network’s predictions from the optimal conditions
of the problem. We start from the classic formulation of the Q-Learning algorithm, as
expressed in Equation (2.11), which is presented as follows:

Qi+1(sk, ak) = (1− α)Qi(sk, ak) + α
[
rk + βmax

a
Q(sk+1, a)

]

Expanding and reorganizing the terms using the distributive of α, we obtain:

Qi+1(sk, ak) = Qi(sk, ak) +−αQi(sk, ak) + α
[
rk + βmax

a
Q(sk+1, a)

]
Qi+1(sk, ak) = Qi(sk, ak) + α

[
rk + βmax

a
Q(sk+1, a)−Qi(sk, ak)︸ ︷︷ ︸
Bellman Error

]

We observe that if the estimated function Qi(sk, ak) exactly corresponds to the
optimal quality function Q∗(sk, ak) , the Bellman error would be zero. This principle
guides the definition of the loss function used by Mnih et al. (2013) in their influential
paper "Playing Atari with Deep Reinforcement Learning", where the network is trained to
minimize the Bellman error, essential for the convergence of the Q-Learning algorithm
when combined with deep neural networks.

Thus, we finally arrive at the loss function L that will be minimized during the
agents’ maximization process:

L(θ) = E
[(

rk + βmax
a

Q(sk+1, a)︸ ︷︷ ︸
Simulated Term

− Qi(sk, ak; θ)︸ ︷︷ ︸
Neural Network

)2
]

(2.11)

Where the "Simulated Term" corresponds to the true value of the quality function
that we aim to achieve with the simulated actions, and the "Neural Network" represents
the current estimate of the Q function parameterized by the weights θ. This formulation
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encapsulates the essence of Deep Q-Learning, enabling the training of neural networks to
approximate the optimal policy in complex decision-making environments.

To carry out the minimization process, it is necessary to simulate a complete
sequence of trajectories in order to calculate the "Simulated Term":

rk + βmax
a

Q(sk+1, a) = rk +
w∑

i=1
βirk+i + βw+1ϵ (2.12)

Here, the ri values will be known through simulation, and the term ϵ will depend
on the mechanics of the model. If we were dealing with a finite-time model, and w were
large enough to reach the end of the summation, we would have ϵ = 0. Since agents in
the Lucas model have infinite lifetimes, some estimation is required, such as using the
function Qi(sk, ak; θ) itself, or we could argue that the value of βw+1 will be small enough
to become an insignificant portion in the summation.

Through the detailed loss function, we can structure a paradigm for agent training
that is both robust and adaptable. This framework not only allows for an accurate
simulation of the environment through the "Simulated Term" but also integrates the
continuous learning of the neural network that approximates the Q function. The ability
to optimize agents in a context of an infinite life horizon, as illustrated by the Lucas model,
highlights the flexibility of the DQN method. While this study presents the fundamental
architecture and training principles, the full potential of DQN is realized when implemented
and tested against the dynamic complexity of real-world environments, paving the way for
future research and practical applications.
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3 RESULTS

This chapter is dedicated to the presentation and analysis of the results achieved
throughout this dissertation. Given the intensity of the computational resources required
by the simulations, the efficient structuring of the computational project assumed a critical
role in the success of this study.

We proceed to describe the architecture of the neural network used to approximate
the agents’ value function Q. This section meticulously details the selection of the archi-
tecture, as well as the choice and impact of hyperparameters in the optimization process.
Transparency in this step is fundamental to understanding how the decisions made in
modeling influence the final results.

Finally, we present the practical results obtained during training episodes. This
includes the evolution of prices determined by the agents over time and a careful analysis
of how they behave and adapt their strategies in response to conditions in the simulated
market. In addition, we provide insight into the challenges and obstacles faced during the
prolonged training process, offering a deeper understanding of the practical and theoretical
aspects involved in applying reinforcement learning to complex economic models.

This chapter not only illustrates the results achieved but also provides insights
into the nuances and challenges of employing advanced machine learning techniques in
economic analysis.

3.1 Computational Simulation Project

The implementation of a computational simulation project for this study presented
unique challenges, especially in terms of flexibility and integration with advanced tech-
nologies. Although there are numerous libraries dedicated to agent-based models, none
completely suited the specificities and needs of this work.

The key requirements for the development of the computational simulation project
included:

• Capability for Parallelization: Essential for ensuring efficient execution on Graph-
ics Processing Units (GPUs), particularly given the large number of simulations
required for agent training.

• Efficient Memory Mechanism: An optimized memory structure was crucial for
storing and prioritizing the most recent trajectories of the agents’ state and control
variables, a fundamental aspect for the learning dynamics of the model, as a history
of trajectories is necessary for the training to occur.
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• Integration with Machine Learning Libraries: The ability to work in conjunc-
tion with machine learning tools was indispensable for the effective minimization
of the loss function through a neural network. Given the complexity of efficient
optimization of neural networks, the use of existing libraries offered a practical and
robust solution.

Given the absence of ready-made frameworks capable of meeting all these demands
— particularly frameworks dedicated to efficient simulations and efficient integration with
machine learning techniques — the decision was made to develop a custom simulation
environment. This tailor-made solution was developed to fully meet the listed requirements,
ensuring that the simulation environment was fully aligned with the objectives and
methodology proposed for this research.

3.1.1 Software Architecture

For a clear understanding of the simulation project’s architecture, Figure 6 presents
a diagram that outlines the key components and their interactions. This diagram is essential
for visualizing how the different parts of the simulation system interact and cooperate to
achieve the results.

The following describes each component of the architecture, with a detailed expla-
nation of their functions and mechanisms. The complete source code is available in the
project repository.

3.1.2 Lucas Environment

The "Lucas Environment" component, thoroughly described in the development
section, is one of the cornerstones of the project in terms of computational cost. This
module manages the dynamics of trading and pricing in the market, performing the "match"
between agents and ensuring compliance with the model’s constraints. Conventional
implementations of this environment would result in a complexity of O(n2), where n is the
number of agents. However, the approach adopted here allows reducing this complexity to
O(n), thanks to the choice of an efficient and simplified market mechanism in conjunction
with the use of GPUs.

The missing parameters to be defined here for the agents follow the description of
the Lucas model and are defined as follows:
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u(ct) = c1−γ
t

1− γ
(3.1)

β = 0.95 (3.2)

Yt ∼
1

100Lognormal(1, 1) (3.3)

(3.4)

Following part of the discussion presented by (MEHRA; PRESCOTT, 1985), we
will use the same instantaneous utility function, and for an initial simulation, we will
make the dividends of the tree follow a Lognormal distribution with a mean of 10−2 and a
standard deviation of 10−4.

The implementation of the environment component follows the interface structure
suggested by Towers et al. (2023), with some adaptations to consider an environment with
multiple agents. Thus, we can proceed with some standard methods of the TF-Agents
library (GUADARRAMA et al., 2018).

3.1.3 The Orchestrator Class

The “Driver” component acts as the core of the simulation, managing the flow of
information emitted by the environment and redirecting it to the storage system (Replay
Buffer). This module also plays a crucial role in determining the appropriate times to
update the agents’ policies. Although the policy update can be interpreted as an update of
the function Q, it is more practical to follow the standard terminology of the TensorFlow
and TF-Agents libraries to maintain consistency and clarity in the implementation. Note
that the agents’ policy is always to choose the action that maximizes the function Q.

3.1.4 Replay Buffer

For efficient storage and selection of trajectories for updating the Q function, the
"Reverb" library (CASSIRER et al., 2021) was adopted. This choice allowed the outsourcing
of the complex task of managing a large volume of data, taking advantage of management
policies already implemented and optimized by the library itself. The use of "Reverb"
allowed us to focus efforts on other parts of the simulation, rather than on the logistics of
storage and data retrieval.

3.1.5 Agent Policy Model

As discussed in the development chapter, the quality function Q : R6 7→ R1 was
parameterized using a neural network with parameters θ, as illustrated in figure 7. The
adopted neural network has a sequential architecture with four internal dense layers, each
containing 50 neurons and using the RELU activation function (AGARAP, 2018). This
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Figure 6 – General diagram of the implemented architecture. Standard terminologies
from the TensorFlow and TF-Agents environments are being used to facilitate
integration and familiarity. It’s important to note that the division between
training and experience collection, illustrated in the diagram, serves primarily
for didactic purposes, highlighting that they are distinct processes. In practice,
both occur simultaneously and are intrinsically interconnected in the simulation
flow.

Figure 7 – Chosen Neural Network Architecture to adapt to the quality function “Q”

architecture choice aims to balance complexity and computational efficiency, providing
the necessary flexibility for modeling the Q function.

Analyzing this image facilitates understanding the parametrization by θ. With
the architecture fixed, the focus lies on defining the weights of the connections (edges),
represented by the vector θ. In a dense layer, all possible combinations of connections are
made, resulting in |θ| = 6 · 50 + 50 · 50 + 50 · 50 + 50 · 50 + 50 · 1 = 7850, i.e., θ ∈ R7850.
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The procedures for finding the parameter vector that minimizes the loss function,
although there is not always a guarantee of convergence to the global minimum, can be
found in more detail in Bishop and Nasrabadi (2006).

The search for the parameter vector θ that minimizes the loss function in a neural
network is a central challenge in the field of machine learning and an area of intense
research. While a global optimal solution is not always guaranteed due to the complex
nature of loss functions in deep neural networks, various methods have been developed
and improved to navigate the solution space efficiently. These methods seek to find a set
of parameters that is good enough for practical needs, even if it is not the absolute global
optimum.

In this work, we adopted the Adam optimization technique (KINGMA; BA, 2014),
with a learning rate parameter of 0.001, a variant of the gradient descent method. The
Adam algorithm is chosen for its efficiency and ability to iteratively adjust the network’s
parameters in response to the gradient of the loss function. This process seeks to minimize
the error between the predictions generated by the neural network and the actual values,
by continuously adjusting the weights and biases in its layers, thus enhancing the network’s
predictive performance.

For those interested in deepening their understanding of the theoretical foundations
and optimization techniques in machine learning, the work of Bishop and Nasrabadi (2006)
is a valuable reference.

3.2 Training Results

This section examines the behavior of agents over multiple training episodes, during
which the loss function was optimized. It’s important to remember, an episode is defined
as a single execution of an economy, starting at time t = 0, with truncation at t = 300.
These agents, equipped with their state variables, choose control variables that have the
highest value for the estimated quality function Q̂ by the neural network.

To better visualize the evolution of the agents’ strategies during training, we
selected a representative sample of 10 agents. Trajectories of some of their key variables
are presented below, allowing a detailed analysis of the optimization process outcomes.

Note that, due to the initial random weights in the neural network, the agents
exhibit initially random behaviors in the first episode. However, as episodes progress and
the neural network undergoes successive updates, there is an emerging trend of agents
moving towards more coherent and effective strategies in maximizing their utilities. This
phenomenon illustrates the learning and adaptation process of agents in a simulated
economic environment, reflecting the neural network’s ability to capture and incorporate
market complexities and nuances.
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Throughout the development and testing of the proposed simulation, I encountered
challenges related to non-convergence due to various factors, primarily linked to limitations
in time and available hardware resources. These constraints necessitated the implementa-
tion of several simplifications in the model. Initially, the model was designed with 5000
agents, each having distinct risk aversion parameters, along with a more complex market
mechanism to calculate aggregate consumption. However, adjustments were necessary, and
the final model was resized to accommodate 1200 agents with homogeneous characteristics.
Furthermore, the aggregate consumption was simplified to be represented by a lognormal
return variable, without autocorrelation, to adapt the model to the operational limitations
faced.
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3.3 Stock Price Evolution Throughout Simulations

In this section, I discuss and analyze the evolution of the price p of the risky asset
s in the Lucas Tree throughout the simulations.

Figure 8 – Evolution of prices pi for the risky asset s of 10 different agents over 19,000
complete simulations. Notice that the equilibrium result for the Lucas model
for the price is 0.845, for the asset simulated with returns following a lognormal
distribution with a mean of 1 and a standard deviation of 1, with a multiplicative
factor of 1/100.
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As illustrated in figure 8, the first episode exhibits a predicted behavior: agents,
without a history of interactions with the environment, act almost randomly. In subsequent
analyses, we will observe the impacts of these pricing decisions on the agents’ portfolios.
Let’s take, for example, agents 8 (with prices higher than average) and agent 2 (with lower
prices). According to the market mechanics, agent 8 is a potential buyer of agent 2, so if a
match occurs between them, a trade of a quantity of asset s at the average price between
the two agents will happen.

After 2,000 episodes, agents adjusted their strategies to a downward price race
pattern, one of the most frequently observed local minima in the simulations. Although
it is premature to draw definitive conclusions at this stage, since the training process is
far from any convergence, a tendency of agents to reduce prices for immediate gains from
asset sales is noticeable.

By episode 4,000, the strategies are still evolving and difficult to interpret. However,
by episode 8,000, a more cohesive approach emerges, with all agents converging to the
same price. This indicates an optimal point in terms of absence of transactions, aligned
with the ideal result of the Lucas model, although the price is still far from the theoretical
optimum. The emerging strategy suggests a preference of agents to buy more of the asset
at low prices, aiming to increase their future stream of discounted utilities.

From episode 10,000 onwards, I continued to monitor the simulation every 1,000
episodes. Only by episode 19,000 did the strategies begin to approach the optimal values
predicted by the model. From an analytical perspective, we could argue that the state
reached by episode 8,000 already represented an optimal point, a discussion that will be
further explored in the following sections.

3.4 Evolution of Traded Stock Quantities Throughout Simulations

To complement the previous analysis focused on price evolution, this section
examines the variation in the quantity of asset s for the same agents discussed earlier (see
figure 8).

Figure 9 presents the evolution of these quantities throughout the simulations. In
the first episode, we observe a direct reflection of what was discussed in the price section.
Without prior experiences, agents like Agent 8, who set higher prices, tend to buy the
asset s from agents with lower prices, exemplified by Agent 2.
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Figure 9 – Evolution of the quantities of risky asset of 10 different agents over 19,000
complete simulations, note that the quantities are normalized to correspond to
the initial percentage of the agent’s asset at the start of each simulation

In episodes 2000 and 4000, there is an improvement in the agents’ control over their
buying and selling positions, indicating a refinement in their strategies. An interesting
point emerges in episode 8000, where agents show a tendency to avoid trading regardless
of the proposed prices. In fact, only one exchange occurs between Agents 4 and 5, followed
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by a period without further transactions. This behavior can be interpreted as optimal from
the perspective of individual utilities, as suggested by the Lucas model, which advocates
maintaining the initial endowment of the asset in an economy of identical agents. However,
the possibility of buying remains attractive due to prices being below the optimum. The
realization of purchases, though, is contingent on the willingness of another agent to sell.

By episode 19000, we reach the outcomes predicted by the Lucas model without
growth. As expected, no trades occur between agents in the optimal state, reflecting the
stabilization of strategies and the effectiveness of the agents’ learning and adaptation
process throughout the simulations.

3.5 Bond Variables Evolution Throughout Simulations

Let’s now examine the evolution of variables associated with the risk-free asset, b.
According to the Lucas Tree model, when assuming constant consumption, the price of
the asset is given by:

qi = E[mt+1] = E[ u′(c̄)
βu′(c̄) ] = E[ 1

β
] = 1

β

In the scenario of the model with a representative agent, agents are not expected to
be willing to trade the risk-free asset. Therefore, in an optimal equilibrium as proposed by
the Lucas model, we should observe a constant price for qi and no asset trading between
agents.
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Figure 10 – Evolution of the price qi for the risk-free asset b for the same 10 agents. In
the optimal equilibrium of the Lucas model, with constant consumption, we
would expect a constant price and no trading between agents.

Analyzing figure 10, we observe a deviation from the expected behavior. Firstly, the
convergence of the agents’ strategies for the risk-free asset occurs more rapidly compared
to the variable return asset. This phenomenon might be attributed to the uncertainty
associated with future returns, potentially increasing the number of training epochs needed
for the model. Interestingly, agents do not drive the price to the theoretical optimum of
the Lucas model but towards a trend of lower prices.

Considering that trades continue to occur, there is no justification for this price
reduction. Once qi ≤ 1/β, agents would have a marginal return higher than the marginal
cost, encouraging the purchase of the asset. However, this logic, while valid in the aggregate
model, does not apply directly in the ABM context. The reason for the absence of trades
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in the simulated market is similar to the equilibrium argument of the traditional model:
for a trade to occur, there needs to be at least one agent willing to buy and another willing
to sell. Since this is not the case, no trades occur, aligning with the predictions of the
traditional model.

Figure 11 – Evolution of the traded volumes qi by the agents for the same 10 agents. In
the optimal equilibrium of this economy, no trading of the asset occurs, as we
are dealing with agents with identical preferences.

Figure 11 clearly shows how the agents converge to the optimal state of the economy.
Notice that the convergence to not buying or selling the risk-free asset occurs between
episodes 4000 and 5000, at least four times faster than the convergence of the price of the
risky asset, which occurred between episodes 18000 and 19000.
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3.6 Complexities of Simulations

In the field of machine learning, a recurring challenge is the fine-tuning of model
hyperparameters to increase the likelihood of finding the global minimum of the loss
function. This work faced such complexity: for the training series discussed, involving more
than 25,000 episodes, there were at least 15 complete runs, each containing at least the
same number of episodes, that did not converge to the theoretical optimum.

During the development of an artificial intelligence project, it is common to select
certain parameters based on promising results reported in the literature. This includes
choices related to the architecture of the neural network, such as the number of layers,
activation functions, and weight initialization methods, as well as adaptations in the
loss function, choice of optimizers, and definition of learning parameters. However, the
formulation presented in this work has no precedent in the literature, representing an
additional challenge. To achieve consistent and viable results, it was necessary to adopt a
simplification: the constancy of the total product in the simulated economy. This decision
was crucial to enable the location of the optimal point, considering the particularities and
novelty of the approach proposed here.
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4 CONCLUSION

4.1 Contributions

This dissertation contributes to the economic literature by transferring the results
of the Lucas Tree model to the context of an agent-based model using reinforcement
learning techniques. This approach allows for the determination of optimal utility flows
without the need for explicitly deriving the model’s optimization conditions, representing
a significant step towards more agile and less restrictive modeling.

One of the major advancements of this study is the efficient simulation of the
problem, highlighting the importance of careful implementation of market mechanisms.
Although the efficiency of the simulation depends on the mechanisms used, this work sheds
light on procedures that can be optimized for a wide range of applications in financial
markets.

Furthermore, I consider the didactic value of the work. By elucidating the technical
aspects of neural networks and reinforcement learning in language accessible to economists,
I hope this study facilitates the dissemination and adoption of these techniques in other
strands of economic research.

The structure of this model constitutes a platform for future research, considering
the relaxation of some hypotheses, such as complete markets and rational expectations
of agents. It serves as a starting point for future investigations that seek to explore
and incorporate emerging variables, constantly evolving market dynamics, and the vast
range of agent behaviors. Agent-based models enable simulations in economics considering
microeconomic foundations without the need for aggregates, thus establishing another
bridge between economic theory and practical applications.

4.2 Limitations and Criticisms

The adoption of reinforcement learning techniques based on "Q-Learning" in this
work was guided by the technical rigor of its mathematical formulations and the familiarity
that the economic community has with the Bellman equation, facilitating the didactic
process of its explanation. However, it is important to note that despite their theoretical
robustness, these techniques do not necessarily reflect the state of the art in terms of
performance or efficiency compared to more recent techniques. In this sense, the scope
of the current study could be expanded and refined for applications that forgo extensive
demonstrations and justifications of convergence, focusing exclusively on optimization and
the minimization of specific metrics.
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Furthermore, when evaluating the effectiveness of algorithms employing Bellman
error, it is necessary to consider that there are significant controversies regarding its
efficiency as proxy variables in the search for the loss function’s minimum (FUJIMOTO et
al., 2022). Given the slow convergence rate of these algorithms, recent research indicates
that Bellman error may not be the best indicator for identifying the optimum of the loss
function.

4.3 Recommendations for Future Research

4.3.1 Study of Hyperparameter Relationships with Convergence Speeds

Future research could delve deeper into the influence of hyperparameters on the
convergence speed of agent-based models, particularly in reinforcement learning contexts.
Identifying an optimal set of hyperparameters is crucial to balance the model’s generaliza-
tion capability and its speed in adapting to new market conditions. Systematic studies
varying these hyperparameters could uncover important insights for constructing more
efficient and accurate models.

4.3.2 Effects of Bargaining Power

The bargaining power of agents, as buyers and sellers in the asset market, can
significantly impact price formation. Subsequent research could explicitly model bargaining
power and study its effects on market dynamics. This might include how changes in market
structures or regulations impact agents’ negotiating power and, in turn, asset prices.

4.3.3 Informational Asymmetry

Informational asymmetries are common in financial markets and can lead to
significant inefficiencies. Future work could incorporate different levels of information
among agents and study how this affects asset pricing and market efficiency. Moreover, it
would be interesting to investigate strategies that agents develop to overcome or exploit
these asymmetries. Note that this approach allows us to study strategies that spontaneously
emerge among agents, a possibility only viable through the chosen modeling strategy.

4.3.4 Agent Heterogeneity

Although this study simulated agents individually, we ended up choosing equal
parameters for all agents to follow the premises of the Lucas model. That said, there is a
wide range of heterogeneity that can be explored. Future research could include a variety
of agents’ preferences, constraints, and expectations, allowing a deeper understanding of
how the diversity of agents affects market dynamics.
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4.3.5 Behavioral Heuristics

The complexity of investor behavior is not fully captured by traditional rational
models. Future studies could delve into the behavioral heuristics that investors use in
decision-making, such as loss aversion, overconfidence, and anchoring. Modeling these
heuristics within the ABM framework could provide a more realistic representation of how
markets operate and evolve under actual conditions.

4.4 Conclusion

This dissertation ventured into the intersection of traditional asset pricing theory
with modern and evolving computational techniques, particularly agent-based modeling
(ABM) applied to the renowned Lucas Tree model featuring autonomous agents optimizing
their own utility.

The results demonstrate that ABM methodologies are capable of achieving outcomes
consistent with the theoretical optima of the traditional model. Beyond these results,
they can provide deeper insights into the workings of financial markets, highlighting the
importance of considering behavioral nuances and the adaptability of agents in a dynamic
environment. The integration of reinforcement learning techniques allowed the simulated
agents to adjust their strategies in response to market changes, a crucial aspect in finance
that static models fail to adequately accommodate. This fact also allows us to abstract
any optimization mechanics of the agent, only controlling the flow of information received
by the agents.

Although the scope of this research was necessarily limited, particularly by the
goal of replicating a classic model for representative agent finance, it is straightforward to
modify the already implemented project to relax hypotheses and conduct other experiments.
However, depending on the relaxed hypothesis, there would no longer be a closed result to
compare to, and we would be in a somewhat unknown field, precisely why this work chose
to replicate a known result.

The methodological and data limitations point to future research opportunities,
suggesting the application of this model to different sets of rules and expansion to include
multiple forms of agent learning. I cite here as a primary opportunity the simulation
of heterogeneous agents and also different market mechanics. Future studies can benefit
from applying this model in realistic market contexts, allowing finance practitioners a
richer understanding of asset price determinants and market behavior, and perhaps the
replication of known and yet unexplained stylized facts.

In conclusion, the financial modeling techniques suggested here (Agent-Based
Modeling with Deep Reinforcement Learning) solve a particular case of one of the main
models of theoretical finance. The transition from a purely analytical to a more empirical
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and behavioral paradigm, while challenging, is a natural evolution in response to the
complexity of financial markets. Through continuous methodological adaptation and
innovation, we can enhance the understanding of asset pricing in real economies.
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