• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.12.2008.tde-03112008-181857
Documento
Autor
Nombre completo
Claudinei de Paula Santos
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2008
Director
Tribunal
Siqueira, Jose de Oliveira (Presidente)
Silveira, Alexandre di Miceli da
Takada, Hellinton Hatsuo
Título en portugués
Análise de medidas de desempenho de ativos de risco: um estudo dos índices de potencial de investimento, Sharpe e Sharpe generalizado
Palabras clave en portugués
Bandas do índice de Sharpe
Fator de desconto estocástico
Finanças
Função de utilidade
Índice de Sharpe
Índice de Sharpe generalizado
Índice potencial de investimento
Investimentos
Precificação
Preço do risco
Risco
Teoria da utilidade
Resumen en portugués
A dissertação aborda e compara as características dos índices de Sharpe (SR) e suas variantes, SRc e SRd, Sharpe generalizado (GSR ) e potencial de investimento (IP), sendo os índices GSR e IP associados a alguma função de utilidade. Pelo fato de o GSR e o IP serem idênticos, testes empíricos foram realizados entre SRc e o GSR. Ambos foram avaliados teoricamente sob dois aspectos, o que definimos de análise retrospectiva, i.e., análise de séries de log-retornos mensais observados, e a análise prospectiva, i.e., séries a ocorrer. No âmbito prospectivo, ex ante facto, o SRc (índice de Sharpe com variável de estado normal) e o SRd (índice de Sharpe com variável de estado lognormal), por estarem associados à função de utilidade quadrática, apresentam distorções como o ponto bliss e o agente econômico bomba de dinheiro. O mesmo ocorre no âmbito retrospectivo, ex post facto, com o GSR (potencial de desempenho de ativos de risco para indivíduos com função de utilidade HARA) quando o coeficiente de aversão ao risco é igual a um negativo, gama=-1. No entanto, o GSR pode ser associado a funções de utilidade diferentes da quadrática evitando seus efeitos indesejáveis. Sob a suposição de movimento browniano geométrico (MBG) e da utilidade HARA para o preço mensal ajustado de ações brasileiras e americanas e para pontos mensais de índices brasileiros e americanos, entre janeiro de 2000 e março de 2008, obtivemos os seguintes resultados: (1) o índice GSR para utilidade quadrática apresentou elevada correlação com o SRc; (2) a menor correlação de GSR com SRc ocorreu para utilidade logarítmica; (3) para a utilidade exponencial, o GSR apresenta elevado grau de correlação com o SRc. Os resultados mostraram que o GSR com utilidade exponencial é o índice que menos se aproxima do comportamento do GSR com utilidade quadrática. Sabendo-se das distorções da utilidade quadrática, a adoção do GSR com gama=1 parece mais adequado para a classificação de ativos de risco.
Título en inglés
Risky assets performance measures analysis: a study of potential investment, Sharpe ratio and generalized Sharpe ratio indexes.
Palabras clave en inglés
Finance
Generalized Sharpe ratio
Investment
Investment potential
Market price of risk
Pricing
Risk
Sharpe ratio
Sharpe ratio bounds
Stochastic discount factor
Utility function
Utility theory
Resumen en inglés
This master dissertation studies and compares the characteristics of Sharpe ratio and its variants, SRc and SRd, generalized Sharpe ratio (GSR) and investment potential (IP), both GSR and IP associated to any utility function. By the fact that GSR and IP are identical indexes, empiric tests were conducted between SRc and GSR. The indexes were evaluated theoretically under two different aspects: retrospective analysis, i.e., analyze the observed monthly log-returns, and prospective analysis, i.e., series to occur. Under prospective view, ex ante facto, SRc (Sharpe ratio with normal state variable) and SRd (Sharpe ratio with lognormal state variable), for being associated to the quadratic utility function, show the inherent problems to utility functions such as the bliss point and the pump money economic agent. The same happens in a retrospective view, ex post facto, with the GSR (performance potential with HARA utility function family) when the risk aversion coefficient equals minus one, gama=-1. Therefore, the GSR can be associated to different utility functions avoiding the undesirable effects. Under the GBM (geometric Brownian motion) condition and HARA utility function for the Brazilian and American adjusted monthly stock prices and indexes monthly points during January 2000 and March 2008, we reached the following: (1) results indicate that GSR for quadratic utility has high correlation level with SRc; (2) while the logarithmic utility showed lowest correlation level between GSR and SRc; (3) exponential utilities showed a high level of correlation between GSR and SRc. The results showed that GSR with exponential utility kept the biggest behavior difference for the GSR with quadratic utility. Based on the knowing problems of the quadratic utility, GSR with gama=1 seems to be a better index choice for risk assets classification.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
USP.pdf (754.64 Kbytes)
Fecha de Publicación
2008-11-28
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.