• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.12.2012.tde-03122012-193052
Document
Author
Full name
Claudia Mendes Nogueira
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2012
Supervisor
Committee
Takaoka, Hiroo (President)
Canton, Adolpho Walter Pimazoni
Cozman, Fabio Gagliardi
Fouto, Nuno Manoel Martins Dias
Limeira, Tania Maria Vidigal
Title in Portuguese
Dificuldades orçamentárias básicas das famílias brasileiras: um convite à reflexão a partir de redes bayesianas
Keywords in Portuguese
Classes econômicas
Condições de vida
Consumo
Família - Estrutura
Inteligência artificial
Probabilidade
Redes bayesianas
Rendas
Abstract in Portuguese
Este estudo visa compreender a adequação dos rendimentos às necessidades e condições de vida dos brasileiros. Observando os dados da Pesquisa de Orçamentos Familiares (POF) realizada pelo IBGE (Instituto Brasileiro de Geografia e Estatística) para o período: 2008 e 2009, o estudo identifica um modelo que se concentra na investigação sobre o fato de 75% dos domicílios brasileiros declararem dificuldades orçamentárias. Para desenvolver um modelo, foi utilizada a percepção declarada e subjetiva de adequação da renda, informada pelo chefe de família ou pessoa de referência no domicílio. O referencial teórico baseia-se no comportamento do consumidor e foca nos recursos econômicos. O método quantitativo foi desenvolvido com Inteligência Artificial, mais especificamente Redes Bayesianas. Redes Bayesianas são estruturas em forma de grafos onde as distribuições de probabilidade são representadas por nós ligados por arcos acíclicos, que podem representar ou não relações causais entre as variáveis. No final pretende-se contribuir para o conhecimento e melhoria no desenho de políticas públicas e para as empresas em geral, dando um panorama sobre o que afeta as dificuldades das famílias, proporcionando uma visão que vai além da tradicional divisão de classes econômicas.
Title in English
Basic budgetary difficulties of Brazilian families: an invitation to reasoning from bayesian networks
Keywords in English
Artificial intelligence
Bayesian networks
Consumption
Economic classes
Family structure
Income
Living conditions
Probabilities
Abstract in English
This study aims to understand the adequacy of Brazilians´ income to their needs and living conditions. According to the data from the Household Budget Survey (POF) conducted by IBGE (Brazilian Institute of Geography and Statistics) for the years of 2008 - 2009, the study identifies a model which focuses on the investigations about the fact that 75% of Brazilian households reported budgetary difficulties. To develop a model, was used the perceived adequacy of income declared by the householder or reference person in the household. The theoretical framework was based on consumer behavior and focuses on economic resources. The quantitative method was developed by Artificial Intelligence, specifically Bayesian Networks. Bayesian Networks are structures in the form of graphs for which the probability distributions are represented by nodes connected by acyclic arcs, which may or may not represent causal relationships between variables. At the end we intend to contribute to knowledge and improvement in the design of public policies and business in general, giving a more detailed look at what affects the difficulties of families, providing a vision that goes beyond the traditional division of economic classes.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2012-12-11
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.