Dissertação

Estudo Comparativo dos Modelos de *Value-at-Risk* para Instrumentos Pré-Fixados

Paulo Kwok Shaw Sain

Orientador: Prof. Dr. José Roberto Securato

Dissertação apresentada ao Departamento de Administração da Faculdade de Economia, Administração e Contabilidade da Universidade de São Paulo como requisito para obtenção do título de Mestre em Administração.

São Paulo

- 2001 -
AGRADECIMENTOS

A conclusão desta dissertação só foi possível graças às valiosas contribuições de diversas pessoas. Sem estas, certamente o caminho trilhado teria sido mais árduo e provavelmente o objetivo final não seria atingido.

Em primeiro lugar, agradeço ao Prof. Dr. Jorge Arnaldo Maluf Filho por ter me incentivado a ingressar no curso de Mestrado e dado a oportunidade de entrar em contato com o tema deste trabalho. Além disso, seus comentários como membro da banca do exame de qualificação enriqueceram sobremaneira o estudo realizado.

Ao meu orientador, o Prof. Dr. José Roberto Securato, dedico agradecimento especial não só pelas sugestões e recomendações, mas também pela sua compreensão e paciência em momentos difíceis.

Meu reconhecimento abrange também meus amigos / colegas de trabalho, Paulo Fraletti, Alexandre Chaia, Fábio da Paz, Daniel Lima e Fernando Issao, pelas inúmeras contribuições dadas.

Por fim, não poderia deixar de agradecer a meus familiares, Bernardo, Teresa, Christiane e Cíntia, pelo suporte emocional e pela compreensão quanto ao sacrifício do convívio familiar para que eu pudesse concretizar este trabalho.
RESUMO

Nos últimos anos, o value-at-risk tem se tornado uma ferramenta amplamente utilizada nas principais instituições financeiras, inclusive no Brasil. Dentre suas vantagens, destaca-se a possibilidade de se resumir em um único número os riscos de mercado incorridos e incorporar neste valor tanto a exposição da instituição quanto a volatilidade do mercado.

O objetivo principal deste estudo é verificar a eficácia dos modelos mais conhecidos de value-at-risk - RiskMetrics™ e Simulação Histórica - na mensuração dos riscos de mercado de carteiras de renda fixa compostas por instrumentos pré-fixados em reais. No âmbito da alocação de capital para atendimento aos órgãos de regulamentação, o estudo estende-se também ao modelo adotado pelo Banco Central do Brasil.

No decorrer do estudo, discute-se ainda as vantagens e desvantagens apresentadas, bem como o impacto que as peculiaridades do mercado brasileiro exercem sobre as hipóteses assumidas em cada um dos modelos.
Value-at-Risk (VaR) has become the primary tool for the systematic measuring and monitoring of market risk in most financial institutions. VaR is a statistical measure that comprises not only the exposure but also the market volatility in a single number.

The main purpose of this work is to evaluate the performance of the well-known value-at-risk models - RiskMetrics™ and Historical Simulation - in the Brazilian fixed-income market. In the scope of capital allocation related to banking regulation, this study also extends briefly to the model adopted by the Brazilian Central Bank.

Additionally, the underlying assumptions of these models are analyzed in the Brazilian financial market context. Also, this study discusses the advantages and disadvantages presented by the RiskMetrics™ and the Historical Simulation models.
ESTUDO COMPARATIVO DOS MODELOS DE VALUE-AT-RISK PARA INSTRUMENTOS PRÉ-FIXADOS

1 PROBLEMA DE PESQUISA

1.1 SITUAÇÃO PROBLEMA

1.2 OBJETIVOS DA PESQUISA

1.3 NATUREZA DA PESQUISA

1.4 DESCRIÇÃO DOS CAPÍTULOS

2 FUNDAMENTAÇÃO TEÓRICA

2.1 O CONCEITO DE RISCO

2.2 O VALOR A MERCADO DE UM TÍTULO DE RENDA FIXA

2.3 ESTRUTURA TEMPORAL DE TAXAS DE JUROS

2.3.1 Formação das taxas de juros

2.3.2 Formas de expressão das taxas de juros

2.3.3 Vértices

2.3.4 Métodos de Interpolação

2.3.5 Métodos de Extrapolação

2.4 O CONCEITO DE RETORNO

2.5 O CONCEITO DE VOLATILIDADE E CORRELAÇÃO

2.5.1 Modelo SMA

2.5.2 Modelo EWMA

2.5.3 Modelo GARCH

2.6 MODELOS DE MENSURAÇÃO DE RISCO DE MERCADO

2.6.1 O Modelo de Maturity

2.6.2 O Modelo de Duration

2.6.3 O Modelo de Value-at-Risk

2.6.3.1 VaR de Carteiras Compostas por um Ativo

2.6.3.2 VaR de Carteiras Compostas por Múltiplos Ativos

2.7 MODELOS DE CÁLCULO DE VAR

2.7.1 Modelos de Matriz de Variância-Covariância

2.7.1.1 Modelo RiskMetrics™

2.7.1.2 Modelo do Banco Central do Brasil

2.7.2 Modelos de Simulação Histórica

2.7.3 Modelos de Simulação de Monte Carlo

2.8 COMPARAÇÃO ENTRE OS MODELOS MAIS UTILIZADOS: RISKMETRICS™ E SIMULAÇÃO HISTÓRICA

2.9 BACK-TESTING

3 TESTE EMPÍRICO

3.1 ELABORAÇÃO DAS ESTRUTURAS TEMPORAIS DE TAXAS DE JUROS

3.1.1 Coleta dos Dados de Mercado

3.1.2 Seleção dos Vértices

3.1.3 Escolha dos Métodos de Interpolação e Extrapolação

3.2 CÁLCULO DE RETORNOS

3.3 MODELO RISKMETRICS™
3.4 MODELO DE SIMULAÇÃO HISTÓRICA

3.5 BACK-TESTING

3.6 APRESENTAÇÃO DO TESTE EMPÍRICO

3.6.1 Grupo 1 - Carteiras com mesma duration e mesmo valor de mercado

1.1.1.1 Carteira 1

1.1.1.2 Carteira 2

1.1.1.3 Comparação dos Resultados das Carteiras 1 e 2

3.6.2 Grupo 2 - Carteiras com valores nominais iguais

1.1.1.4 Carteira 3

1.1.1.5 Carteira 4

1.1.1.6 Carteira 5

3.6.3 Comparação com o Modelo do Banco Central do Brasil - Alocação de Capital

3.6.4 Conclusões do Estudo Empírico

4 CONSIDERAÇÕES FINAIS

5 REFERÊNCIAS BIBLIOGRÁFICAS
1 PROBLEMA DE PESQUISA

1.1 SITUAÇÃO PROBLEMA

A gestão de riscos financeiros tornou-se nos últimos anos foco de numerosos estudos em instituições financeiras, fundos de investimentos e órgãos reguladores, além do próprio meio acadêmico.

Com o processo de desregulamentação do mercado financeiro e a globalização, a procura por meios de proteção contra riscos financeiros aumentou consideravelmente. Isto se acentuou ainda mais com os recentes desastres financeiros ocorridos em diversas partes do mundo, como Dowd (1998: 16-17) listou:
<table>
<thead>
<tr>
<th>CASO</th>
<th>ANO</th>
<th>PREJUÍZO (U$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallgesellschaft</td>
<td>1993</td>
<td>1,3 bilhão</td>
</tr>
<tr>
<td>Orange County</td>
<td>1994</td>
<td>1,7 bilhão</td>
</tr>
<tr>
<td>Barings Bank</td>
<td>1995</td>
<td>1,3 bilhão</td>
</tr>
<tr>
<td>Daiwa Bank</td>
<td>1995</td>
<td>1,1 bilhão</td>
</tr>
<tr>
<td>Sumitomo Corporation</td>
<td>1996</td>
<td>1,8 bilhão</td>
</tr>
</tbody>
</table>

Tais desastres financeiros estão relacionados à falta de monitoramento adequado das operações financeiras, muitas vezes em conjunto com uma falta de compreensão na utilização de instrumentos derivativos. Em 1995, o banco Barings PLC foi à falência devido a uma perda de 1,3 bilhões de dólares decorrente de operações com derivativos realizadas por um único operador. Entretanto, este prejuízo não deve ser atribuído somente à irresponsabilidade deste operador; o principal problema do banco conservador de 233 anos de idade era a surpreendente falta de controles internos. Na prática, o operador era também o próprio fiscal de suas operações.

De um modo semelhante, o banco japonês Daiwa amargou um prejuízo de 1,1 bilhões de dólares em 1995 decorrentes de operações em títulos do tesouro americano realizadas por um único operador de sua subsidiária americana. Novamente, a existência de controles internos inadequados possibilitou ao operador realizar operações de grande risco sem sofrer praticamente nenhuma supervisão.

Para Bessis (1998: 23-30), o objetivo primário da gestão de riscos é mensurar riscos com o intuito de monitorar e controlá-los, o que possibilita:
a) a implementação de estratégias – a gestão de risco promove melhor visão do futuro e habilidade para definir políticas de negócios adequadas;

b) o desenvolvimento de vantagens competitivas – os riscos incorridos nas operações, assim como os custos, são componentes dos preços dos produtos, de maneira que uma avaliação incorreta dos riscos leva a uma precificação errada, afetando a competitividade da instituição;

c) a mensuração da adequação de capital e do nível de solvência – a mensuração de risco possibilita aos gestores uma ferramenta para determinar a quantidade de capital e o nível de solvência adequados para cobrir as possíveis perdas;

d) o auxílio à tomada de decisão – a tomada de decisão deve ser realizada tendo em vista a análise de risco-retorno das operações e também a compatibilidade do risco incorrido com o grau de aversão a risco da instituição;

e) o relatório e a monitoração de risco – tendo os riscos incorridos mostrados de forma clara e transparente, os gestores poderão justificar melhor suas ações e estratégias;

f) a gestão de carteiras – a mensuração dos riscos aliada aos resultados permite aos gestores a escolha do melhor mix de produtos com que a instituição deve trabalhar.

1 O termo precificação está sendo utilizado com o mesmo significado do termo em inglês *pricing*.
Saunders (1996: 159-160) cita alguns motivos para explicar a importância da mensuração do risco de mercado:

a) informação gerencial – provê à Alta Direção informações quanto à exposição a risco incorrido pelos operadores. Esta exposição a risco pode então ser comparada ao capital da instituição;

b) implantação de limites – mede o risco de mercado das carteiras dos operadores, o que permite o estabelecimento de limites de posição por operador em cada área de negócios;

c) alocação de recursos – compara os retornos aos riscos de mercado incorridos nas diferentes áreas de negócios, o que permite a identificação de áreas com maior potencial de retorno por unidade de risco, de modo a melhor direcionar capital e recursos;

d) avaliação de desempenho – calcula o risco-retorno dos operadores, o que permite a implantação de um sistema mais racional de remuneração. Operadores que geraram melhores resultados e incorreram em mais riscos não necessariamente devem ser mais bem recompensados do que aqueles que geraram menor retorno incorrendo em menos riscos.

O motivo do interesse crescente na mensuração e controle do risco de mercado relaciona-se às mudanças significativas ocorridas nos mercados financeiros nos últimos 25 anos envolvendo processos de securitização e uma nova visão na avaliação de desempenho.
Em diversos mercados, títulos negociados substituíram diversos instrumentos de crédito, em geral pouco líquidos, por exemplo, empréstimos e hipotecas têm sido securitizados de forma a permitir desintermediação e negociação. O grande desenvolvimento ocorrido no mercado de títulos e também na tecnologia de processamento de dados levou a uma mudança no paradigma de gestão: a gestão baseada em dados contábeis cedeu lugar à gestão de risco baseada em posições marcadas a mercado. A liquidez crescente e a disponibilidade de cotações de preços no mercado de títulos, associadas a um novo foco em operações de tesouraria contribuíram para que ocorresse uma reavaliação de posições, isto é, levasse ao conceito de marcação a mercado. O novo paradigma revelou aos gestores as freqüentes oscilações a que suas carteiras estavam expostas, algo que não era visível no conceito contábil. Isto fez com que estes passassem a se preocupar mais com a estimativa dos potenciais efeitos decorrentes de oscilações das condições de mercado, ou seja, no valor a mercado de suas carteiras.

No passado, o principal meio de avaliar o desempenho financeiro era o resultado obtido. Este método mostrou-se incompleto uma vez que não avaliava o risco incorrido na obtenção deste resultado. Retornos elevados em geral são obtidos às custas de riscos elevados. Isto fez com que órgãos reguladores e a alta direção das instituições financeiras procurassem meios de mensurar o risco de mercado incorrido em suas operações.

Nos últimos anos, houve um desenvolvimento significativo na conceituação de um sistema comum para mensuração de risco de mercado. Instituições financeiras, acadêmicos e órgãos reguladores desenvolveram novos conceitos quanto à mensuração
de risco de mercado. No início da década de 90, duas abordagens surgiram como forma de mensurar tal risco. A primeira trata-se de uma abordagem estatística que envolve a previsão da distribuição de retornos de uma carteira utilizando modelos probabilísticos e estatísticos. A segunda refere-se à análise de cenários, ou seja, reavalia as carteiras sob diferentes taxas de juros e preços de mercado especificados por algum método de escolha.

Os gestores de risco devem sempre utilizar as duas abordagens, uma vez que são formas complementares de mensuração. No entanto, o presente trabalho tratará apenas da abordagem probabilística-estatística, o *value-at-risk*.

Procurando aperfeiçoar os controles internos, os principais bancos internacionais resolveram adotar o conceito de *value-at-risk* ou *VaR* como instrumento de mensuração de seus riscos de mercado. *Value-at-Risk* é um método baseado em técnicas estatísticas que informa a perda máxima esperada em um certo período de tempo sob condições normais de mercado para um determinado intervalo de confiança. Como exemplo, ao informar que o *VaR* diário de um determinado banco é de dez milhões de reais para um intervalo de confiança de 95%, pode-se entender que este banco está sujeito a sofrer perdas superiores a dez milhões de reais em um único dia com uma probabilidade de cinco em cada cem dias. Em outras palavras, há 95% de chances de que o banco não perca mais do que dez milhões em um único dia.

Em 1988 foi concluído o Acordo da Basileia, do qual tomaram parte os bancos centrais dos países componentes do Grupo dos Dez (G-10). Nele encontrava-se os principais regulamentos para a supervisão dos bancos internacionais no que tange à adequação de capital para os riscos de crédito incorridos.
Nos anos seguintes, o Acordo evoluiu abrangendo inclusive os riscos de mercado e recomendando a adoção de modelos de value-at-risk pelos bancos dos países signatários.

No Brasil, o Banco Central passou a exigir, a partir de 1º de julho de 2000, que os bancos calculassem o VaR de suas carteiras pré-fixadas em reais, utilizando um modelo por ele elaborado. Além disso, os bancos devem alocar capital de acordo com o VaR apurado segundo uma metodologia por ele apresentado. Em um momento futuro, espera-se que o Banco Central passe a aceitar os modelos proprietários, tal como acontece nos principais mercados financeiros mundiais.

A preocupação em relação à mensuração do risco de mercado de instrumentos de renda fixa deve-se não só ao fato destes representarem a maior parcela das carteiras das instituições financeiras como também às peculiaridades que apresentam. Dentre estas peculiaridades pode-se citar a necessidade de se elaborar uma estrutura temporal de taxas de juros, necessária para a precificação destes instrumentos e o comportamento não-linear dos preços destes em relação às taxas de juros.

No mercado financeiro brasileiro, os instrumentos de renda fixa apresentam peculiaridades pouco discutidas nas bibliografias que tratam do assunto. Questões como convenções de taxas de juros e qualidade dos dados disponíveis para elaboração da estrutura temporal de taxas de juros dificultam a simples aplicação dos modelos já utilizados no exterior no mercado local.
1.2 OBJETIVOS DA PESQUISA

O *value-at-risk* tem-se mostrado uma ferramenta bastante útil no âmbito da gestão financeira, permitindo a implantação de controles internos melhor estruturados e possibilitando aos gestores melhor visão dos riscos incorridos pelas suas exposições. Trata-se de uma ferramenta que requer cuidados em sua utilização, tendo em vista que ela apresenta limitações e sua utilização não dispensa outras ferramentas de controle. É importante a qualificação das pessoas envolvidas para que se possa tirar proveito das informações obtidas.

Desta forma, a compreensão das hipóteses assumidas para cada modelo de *value-at-risk* permite melhor entendimento de suas limitações e consequentemente melhor percepção dos riscos incorridos pela instituição.

No caso do mercado de renda fixa, a aplicação dos modelos de value-at-risk não deve ser feita sem antes compreender as peculiaridades do mercado brasileiro e o impacto que isto apresenta na *performance* de cada modelo.

Com isto, o objetivo principal deste estudo é verificar a eficácia dos modelos do tipo *value-at-risk* na mensuração dos riscos de mercado de carteiras de renda fixa compostas por instrumentos pré-fixados em reais. No âmbito do controle interno das instituições financeiras serão estudados os modelos mais utilizados: o *RiskMetricsTM* e o modelo de Simulação Histórica. No âmbito da alocação de capital para atendimento aos órgãos de regulamentação, o estudo será também estendido ao modelo apresentado pelo Banco Central do Brasil.
O objetivo secundário deste trabalho é identificar as vantagens e desvantagens apresentadas pelos mesmos modelos no mercado brasileiro.

A verificação da eficácia dos modelos será realizada tanto de forma qualitativa, através da discussão das hipóteses simplificadoras assumidas para cada modelo, quanto no aspecto quantitativo, através da comparação dos números gerados por cada modelo frente aos resultados ocorridos (back-test).

Conforme dito anteriormente, o presente trabalho tratará apenas de carteiras de renda fixa pré-fixadas. Os instrumentos atrelados a taxas pós-fixadas, como TR (Taxa Referencial), TBF (Taxa Básica Financeira), Taxa Anbid, CDI-over, TJLP (Taxa de Juros de Longo Prazo) e IGP-M (Índice Geral de Preços do Mercado) não serão objeto do estudo.

Quanto aos modelos de mensuração de risco, o trabalho não abordará o de Simulação de Monte Carlo devido às dificuldades que este apresenta para sua implementação e dado à necessidade de melhores recursos tecnológicos. Além do mais, ele é utilizado geralmente para controlar apenas carteiras compostas por opções.

1.3 NATUREZA DA PESQUISA

A pesquisa a ser realizada terá como base a pesquisa bibliográfica, as melhores práticas do mercado financeiro brasileiro e a aplicação prática neste mercado.
A pesquisa bibliográfica será necessária para que se possa constituir um suporte teórico do trabalho. Grande parte da bibliografia é composta de trabalhos estrangeiros que abordam os principais mercados financeiros internacionais. Deste modo, o conhecimento das melhores práticas no mercado financeiro nacional possibilitará uma visão crítica na aplicação dos modelos de mensuração de risco de mercado, além de possibilitar uma abordagem voltada às peculiaridades do mercado brasileiro.

A aplicação prática dos modelos para a realidade brasileira permitirá uma comparação entre estes, de forma a mostrar qual deles é o mais adequado às condições do mercado de renda fixa no Brasil, além de salientar as principais vantagens e desvantagens de cada um.

Assim, este trabalho de pesquisa tem um cunho empirista que, de acordo com Martins (1997), assim são classificados os trabalhos orientados pelo delineamento experimental ou quase-experimental com uso de levantamento de amostras e análise estatística para validação de hipóteses. A pesquisa também pode ser vista como sendo positivista, pois segundo Martins (1997), “as pesquisas consideradas positivistas utilizam fundamentalmente como técnicas de investigação os estudos descritivos, isto é, buscam a descrição das características de determinada população ou fenômeno, bem como o estabelecimento de relações entre variáveis e fatos”.

Mattar (1996: 17-31) classifica os tipos de pesquisas em:

a) Exploratórias - são as que visam fornecer ao pesquisador um maior conhecimento sobre o tema ou problema de pesquisa em perspectiva;
b) Conclusivas Descritivas – são aquelas que possuem objetivos bem definidos, procedimentos formais, são bem estruturadas e dirigidas para a solução de problemas ou avaliação de alternativas de cursos de ação;

c) Conclusivas Causais – são aquelas caracterizadas pela busca de relações de causa e efeito entre as variáveis em curso.

Assim, seguindo a classificação acima, este estudo pode ser visto como uma pesquisa conclusiva descritiva.

1.4 DESCRIÇÃO DOS CAPÍTULOS

Neste primeiro capítulo procurou-se dar uma ideia da situação problema e dos objetivos deste estudo.

No capítulo dois, será apresentada a fundamentação teórica que permitiu um melhor entendimento dos conceitos relevantes ao estudo, discutindo-se risco, retorno, volatilidade, correlação, modelos de mensuração de risco de mercado de taxa de juros, value-at-risk e seus modelos de cálculo, além da técnica de back-test.

No capítulo três, serão discutidos as peculiaridades do mercado brasileiro de renda fixa e o modo como os modelos em estudo foram adaptados a estas peculiaridades. Ao final deste mesmo capítulo, o teste empírico realizado será apresentado e serão discutidas as conclusões do mesmo.
O capítulo quatro, referente às considerações finais, apresentará uma discussão qualitativa quanto ao uso dos modelos no mercado brasileiro e à importância do \textit{VaR} como ferramenta de gestão financeira.
2 FUNDAMENTAÇÃO TEÓRICA

2.1 O CONCEITO DE RISCO

No documento técnico RiskMetrics™, elaborado pelo banco norte-americano J.P. Morgan (1996: 5), risco é definido como o grau de incerteza em relação a retornos líquidos futuros e pode assumir diversas formas baseadas na fonte de incerteza:

a) Risco de crédito - perda potencial devida à inabilidade da contraparte de cumprir suas obrigações;

b) Risco operacional – risco resultante de erros que podem ocorrer na instrução de pagamentos ou liquidação de transações;

c) Risco de liquidez - risco refletido pela inabilidade da firma de financiar os ativos sem liquidez;

d) Risco de mercado – risco que envolve a incerteza quanto aos ganhos futuros resultantes das oscilações nas condições de mercado (isto é, preços de ativos, taxas de juros).

Para Jorion (1997: 3), as corporações estão expostas a três tipos de riscos:

a) Riscos de negócios – aqueles que a corporação assume propositadamente com o intuito de criar uma vantagem competitiva e adicionar valor aos acionistas;
b) Riscos estratégicos – aqueles decorrentes de oscilações fundamentais no ambiente econômico ou político;

c) Riscos financeiros – aqueles relacionados a possíveis perdas nos mercados financeiros.

a) Riscos de mercado – surgem devido a mudanças nos preços de ativos e passivos financeiros e são mensurados através das oscilações no valor das posições em aberto ou dos ganhos;

b) Riscos de crédito – surgem quando as contrapartes das operações estão indispôsas ou incapazes de cumprir com suas obrigações contratuais, sendo seu efeito medido pelo custo de repor os fluxos de caixa não honrados pela contraparte;

c) Riscos de liquidez – podem assumir duas formas. A primeira refere-se às transações que não podem ser conduzidas a um preço de mercado atual devido a pouca atividade do mercado. A segunda refere-se à incapacidade de atender às necessidades de caixa;

d) Riscos operacionais – referem-se às perdas potenciais resultantes de sistemas inadequados, falhas na gestão, falta de controle, fraude ou erro humano.
e) Riscos legais – decorrem da contraparte não possuir autoridade legal ou regulatória para tomar parte em uma transação.

Saunders (1996: 184:189) classifica os riscos de intermediação financeira em nove tipos:

a) Risco de taxa de juros – risco incorrido por um intermediário financeiro quando seus ativos e passivos estão descasados;

b) Risco de mercado – risco incorrido na negociação de ativos e passivos devido às oscilações nas taxas de juros, taxas de câmbio e outros preços de ativos;

c) Risco de crédito – risco dos fluxos de caixa esperados de empréstimos e títulos não serem totalmente pagos;

d) Risco das atividades fora-de-balanso - risco incorrido por um intermediário financeiro devido a atividades relacionadas a ativos e passivos contingenciais;

e) Risco tecnológico e operacional - risco incorrido por intermediários financeiros quando investimentos em tecnologia não produzam a economia de custos esperada e o risco da tecnologia existente ou do suporte de sistemas apresentarem falhas;

f) Risco de câmbio - risco das oscilações nas taxas de câmbio afetarem o valor dos ativos e passivos de um intermediário financeiro localizados no exterior;
g) Risco soberano ou risco país – risco dos pagamentos de devedores estrangeiros serem interrompidos devido à interferência de governos estrangeiros;

h) Risco de liquidez – risco de uma súbita onda de saques deixarem o intermediário financeiro na posição de ter que liquidar seus ativos em um período curto de tempo e a preços baixos;

i) Risco de insolvência – risco de um intermediário financeiro não possuir capital suficiente para contrabalançar um declínio súbito no valor de seus ativos relativamente a seus passivos.

Consultando a bibliografia que aborda o assunto, percebe-se que alguns autores conceituam risco como sendo algo associado à possibilidade ou probabilidade de perda, enquanto outros utilizam o termo para indicar um grau de incerteza tanto em relação a perdas quanto em relação a ganhos. Neste estudo, o termo risco será utilizado em sua forma mais ampla, ou seja, como a oscilação ou a incerteza em torno de um valor esperado.

Quanto ao termo risco de mercado, o conceito utilizado será aquele adotado pelo banco J. P. Morgan (1996) e por Jorion (1997), ou seja, como o risco financeiro decorrente de mudanças nas condições de mercado, como preços de ações, taxas de juros, taxas de câmbio, preços de commodities. Diversos autores classificaram os riscos financeiros das mais variadas formas incluindo categorias como risco de taxas de juros e risco de câmbio. Tais formas serão, no presente trabalho, englobadas pelo termo mais amplo adotado de risco de mercado.
Em uma instituição financeira, a gestão de risco de mercado deve-se iniciar com a identificação de seus fatores de risco. Maluf (1996: 8) utiliza o termo *fator de risco* para se referir a qualquer parâmetro de mercado cuja oscilação possa causar impacto no resultado da instituição por afetar os valores de suas carteiras. Dentre os fatores de risco de uma instituição financeira, pode-se citar:

a) taxas de juros de cada moeda operada pela instituição;

b) taxa de câmbio das moedas presentes nas carteiras da instituição;

c) preços de ações;

d) preços de *commodities*;

e) volatilidades dos ativos-objetos de opções.

No presente estudo, o fator de risco em questão é a taxa de juros em reais, já que a carteira estudada será composta apenas por instrumentos de renda fixa pré-fixados.

2.2 O VALOR A MERCADO DE UM TÍTULO DE RENDA FIXA

Um dos fundamentos básicos da gestão de risco de mercado é a necessidade de se avaliar os instrumentos financeiros pelo seu valor de mercado. Parte destes instrumentos são negociados diariamente tanto em bolsa quanto em balcão, tornando simples a tarefa de valorização de carteiras que os contenham. Entretanto, há instrumentos que não
apresentam mercado secundário, de forma que a valorização destes deve ser feita a partir de modelos de precificação que possibilitem o cálculo do valor de mercado destes.

No caso de instrumentos de renda fixa, o modelo de precificação básico consiste na elaboração de uma estrutura temporal de taxas de juros que reflita as condições de mercado para os instrumentos em questão. O valor a mercado pode ser obtido pelo cálculo do valor presente dos fluxos de caixa trazidos por esta estrutura temporal de taxas de juros.

Para este estudo, onde se considera carteiras que não apresentam risco de crédito, a estrutura temporal de taxas de juros é aquela considerada como sendo livre de risco e ela é geralmente obtida através das taxas de juros implícitas nos títulos públicos negociados no mercado secundário, como é o caso do mercado norte-americano.

No caso do mercado brasileiro, onde os títulos públicos negociados no mercado secundário não apresentam prazos diversificados o suficiente para se elaborar uma estrutura temporal, utiliza-se cotações de instrumentos derivativos. Maiores detalhes serão discutidos no próximo item.

2.3 ESTRUTURA TEMPORAL DE TAXAS DE JUROS

Fabozzi (2000: 96) define estrutura temporal de taxas de juros (ETTJ) ou curva de juros como sendo a representação gráfica do relacionamento entre as taxas de juros de títulos de mesma qualidade de crédito mas diferentes prazos. Ela tem como principal utilidade servir de base para a precificação de instrumentos de renda fixa.
Além de precificação, as curvas de juros fornecem subsídios para apuração do valor de mercado dos fluxos futuros dos instrumentos (valor presente) com objetivo de agregá-los em uma única unidade monetária (conceito de valor temporal do dinheiro).

A estrutura de retornos de qualquer tipo de instrumento de renda fixa é composta basicamente de três fatores de risco financeiros, sendo representados pelo prêmio de crédito, pelo prêmio de liquidez e pela taxa básica de mercado. Nesse estudo serão consideradas apenas variações na estrutura temporal decorrentes de oscilações na taxa de mercado, desconsiderado-se os efeitos causados pelos demais fatores.

A estrutura temporal é usualmente expressa na forma de taxas de juros **a vista** (spot), isto é, para períodos compreendidos entre a data atual e uma determinada data futura. Outro modo de se expressar a curva de juros é na forma de taxas **a termo** (forward), ou seja, para períodos compreendidos entre duas datas futuras.
2.3.1 Formação das taxas de juros

Conforme apresentado por Fabozzi (2000: 111-116), as principais teorias de formação da estrutura temporal de taxas de juros são as teorias de expectativas e a teoria de segmentação de mercado. Quanto às teorias de expectativas, ele destaca a teoria das expectativas puras, a teoria da preferência pela liquidez e a teoria do habitat preferido.

A teoria das expectativas puras afirma que a taxa de retorno esperada sobre um investimento para um intervalo de tempo é a mesma, independentemente de seu prazo de vencimento. Exemplificando, se o horizonte de investimento de um indivíduo é um ano, não há diferença se ele inicialmente investir em qualquer uma das alternativas abaixo:

a) um título de seis meses e no vencimento deste comprar outro título de seis meses;

b) um título de um ano;

c) um título de dois anos e vendê-lo ao final de um ano.

Assim, pela teoria das expectativas puras, o retorno esperado para um determinado período é o mesmo para qualquer uma das alternativas acima. Deste modo, assumindo-se que não há custos de transação e que esta teoria seja válida, títulos com diferentes vencimentos seriam substitutos perfeitos entre si. Possíveis investidores a qualquer momento possuem três opções: investir em títulos de curto prazo, renovando a operação ao longo do horizonte de investimento (rollover); investir em um título com
maturidade exatamente igual ao seu horizonte de investimento; ou investir em um título com prazo de vencimento superior ao horizonte de investimento, vendendo-o ao final deste período.

Esta teoria assume também a presença de participantes no mercado que sejam neutros ao risco e capazes de explorar oportunidades de lucros. Caso as taxas a termo diferenciem-se das taxas futuras esperadas, haveria uma especulação suficiente no mercado para direcionar os dois conjuntos de taxas na mesma direção. Com taxas diferentes, vários participantes de mercado, observando a oportunidade de ganho sem risco, explorariam a oportunidade até que ela fosse eliminada. Deste modo, pode-se interpretar as taxas a termo como estimativas não viesadas das taxas futuras esperadas. Se este ajuste ocorrer rapidamente, eliminando a possibilidade de arbitragem, tem-se um mercado eficiente, onde todas as informações relevantes estão incorporadas nas expectativas sobre o curso futuro das taxas de juros.

A teoria da preferência pela liquidez pode ser vista como um ajuste na teoria das expectativas, acrescentando os prêmios pelo prazo de vencimento dos contratos, ou seja, quanto maior o prazo de vencimento de um título, maior é o risco de flutuação do valor do principal para o investidor. Sem esta hipótese, caso houvesse plena certeza no mercado sobre a formação das taxas futuras, as taxas a termo seriam previsões exatas das futuras taxas a vista e a possibilidade de arbitragem tornaria todas os prazos de vencimento consistentes com as expectativas de tal forma que o investidor receberia o mesmo retorno independentemente do vencimento do título, ou seja, a taxa forward não conteria nenhuma recompensa pelo risco.
Entretanto, devido à existência de risco, os investidores preferem emprestar no curto prazo, enquanto os tomadores de recursos preferem prazos maiores de tal forma a reduzir o risco de não pagamento do principal. Portanto, um prêmio deve ser oferecido para induzir os investidores a comprar títulos de longo prazo.

A presença de prêmios pelos prazos dos títulos implica em um viés de curvas crescentes de taxas de juros. Na realidade, a estrutura a termo poderia decrescer somente quando as futuras taxas spot esperadas fossem menores do que a taxa spot atual em montantes que excedessem seus respectivos prêmios.

A teoria do habitat preferido também adota a visão que a estrutura temporal de taxas de juros reflete a expectativa em relação às taxas futuras assim como o prêmio de risco. Ela supõe que investidores e tomadores podem trocar de mercados mediante alterações nas taxas de juros à medida que as mesmas se tornem mais atrativas em um mercado, em comparação com o segmento atual de atuação (habitat). Assim, esta teoria propõe que o formato da curva de juros é determinado tanto pelas expectativas de taxas de juros futuras quanto pelo prêmio de risco (positivo ou negativo) que induz os participantes do mercado a se deslocarem de seu habitat preferido. Por esta teoria, então, as estruturas temporais podem assumir formas diversas, inclusive com corcovas.

A teoria da segmentação de mercado sugere que o comportamento segmentado de financiadores e tomadores de recursos determine o formato da curva de juros. A idéia básica desta teoria é que, devido a restrições legais e comportamentais, financiadores institucionais preferem os intervalos de prazos nos quais eles operam. Assim, bancos comerciais tipicamente preferem títulos de curto prazo a títulos de médio e longo prazo, devido à natureza do seu passivo e a uma tradicional ênfase em liquidez.
Já companhias de seguro e outros financiadores, com passivos de longo prazo, preferem prazos de vencimento maiores. Por outro lado, os tomadores de recursos procuram ajustar os vencimentos de seus passivos à sua necessidade de fundos. Assim, uma empresa, construindo uma nova planta, preferiria recursos de longo prazo, ao contrário de uma loja de eletrodomésticos, que estaria preocupada em financiar seu capital de giro.

No extremo, a teoria de segmentação de mercado implica que a taxa de juros para um determinado período seja determinada basicamente pelas condições de demanda e de oferta para aquele dado período, sem referência às condições para outros períodos. Em outras palavras, tanto financiadores como tomadores de recursos possuem preferências rígidas de prazo e não desviam de suas preferências, independentemente de quão atraientes sejam as taxas para outros prazos.

2.3.2 Formas de expressão das taxas de juros

Há diversas formas de expressão de taxas de juros, e esta diversificação é, ainda mais, acentuada no caso do mercado brasileiro, com algumas características que fogem aos padrões internacionais.

A primeira diferença ocorre no número de dias considerados para se calcular a taxa de juros para um determinado intervalo de tempo. De acordo com os padrões internacionais, utiliza-se o número de dias corridos, enquanto no Brasil costuma-se utilizar também o número de dias úteis.
Atualmente, a maior parte dos produtos de tesouraria em reais (títulos públicos, derivativos, CDI) tem suas taxas expressas na forma anualizada com base em 252 dias úteis. No caso dos produtos "comerciais" em reais (empréstimos, financiamentos, depósito a prazo), suas taxas costumam ser expressas na convenção anual com base em 360 dias corridos.

Uma segunda diferença refere-se à forma de capitalização dos juros: normalmente as taxas de juros internacionais seguem o padrão linear (juros simples), ao passo que o Brasil utiliza o modelo exponencial (juros compostos) nas operações em moeda doméstica e o modelo linear nas operações em moeda estrangeira.

No gráfico abaixo, a linha contínua representa a estrutura temporal de taxas de juros em reais referente ao dia 01 de dezembro de 2000. Cada ponto desta linha representa a taxa de juros spot (a vista) para um determinado prazo. A linha pontilhada representa as taxas a termo (forward).
A estrutura temporal de taxas de juros pode ser expressa também na forma de fator de conversão (relação data-valor expressa na curva) que tanto pode ser de desconto quanto de capitalização. O fator de desconto representa o valor presente de uma unidade monetária no futuro, e o fator de capitalização representa o valor futuro de uma unidade monetária na data atual.

Para que se possa gerar uma estrutura temporal de taxas de juros é preciso definir os vértices a serem utilizados, o método de interpolação e o método de extrapolação.

2.3.3 Vértices

Neste estudo, o termo vértices será utilizado no sentido de preços de mercado obtidos a partir de instrumentos financeiros de renda fixa com riscos de crédito homogêneos e que reflitam as reais condições de oferta e demanda por um bem em determinado momento. Sendo assim, a seleção de vértices deve atender a requisitos de liquidez, sincronização e transparência.

Enquanto a coleta de dados de mercado é uma atividade que pode ser automatizada, é recomendável que, na seleção dos vértices, o processo passe por alguma análise qualitativa. Em virtude do mercado brasileiro de renda fixa ser mais volátil e ainda estar em evolução (vide o alongamento dos prazos e o surgimento de novos instrumentos financeiros), alguns vértices anteriormente selecionados podem vir a deixar de representar as condições reais de mercado. Este assunto será tratado com maiores detalhes no capítulo três.
2.3.4 Métodos de Interpolação

O objetivo da interpolação é encontrar uma função matemática que interligue um conjunto de vértices de forma a estabelecer corretamente as taxas de juros correspondentes aos prazos entre esses vértices.

Segundo Fraletti (1999: 303), um dos métodos de interpolação mais utilizados é o chamado "polinômios por partes", ou seja, entre dois vértices consecutivos um polinômio é ajustado de modo a passar pelos vértices. A união de todos os polinômios define a ETTJ.

De modo geral deve-se esperar que a ETTJ represente bem o “fenômeno” modelado. O método de interpolação deve aderir ao processo formador das taxas de juros definido pelo mercado para que este seja representativo.

Fraletti (1999: 302-303) enumera alguns métodos de interpolação, sendo que sua aplicação pode ser feita tanto sobre a taxa de juros convencionada com base em um período como sobre os fatores de conversão:

a) **Linear** - Representa o método mais simples de interpolação, consistindo na união de cada par de vértices consecutivos por uma reta. As taxas dos pontos intermediários aos vértices são obtidas segundo a regra abaixo.

\[
\text{Taxa}_t = \text{Taxa}_{\text{vértice}_n} + \left(\frac{\text{Taxa}_{\text{vértice}_n} - \text{Taxa}_{\text{vértice}_{n-1}}}{\text{Prazo}_{\text{vértice}_n} - \text{Prazo}_{\text{vértice}_{n-1}}} \right) \times (\text{Prazo}_{\text{vértice}_n} - \text{Prazo}_t)
\]
b) **Composta** - Representa o método que fornece uma relação de crescimento composto entre as taxas de cada par de vértices. O fator de crescimento é obtido como função das taxas a termo entre os vértices e pode ser demonstrado pela regra abaixo.

\[
\text{Taxa}_t = \text{Taxa}_{\text{vértice}_n} \times \left(\frac{\text{Taxa}_{\text{vértice}_n}}{\text{Prazo}_{\text{vértice}_n} - \text{Prazo}_{\text{vértice}_{n+1}}} \right)^{\frac{\text{Prazo}_{\text{vértice}_n} - \text{Prazo}_0}{\text{Prazo}_{\text{vértice}_{n+1}} - \text{Prazo}_0}}
\]

c) **Log-Linear** - Representa uma forma alternativa de fornecer uma relação entre taxas a termo de cada par de vértices, apresentando o mesmo resultado da interpolação composta. Esse método utiliza a mesma função interpolante do linear, porém ele não aplica a fórmula diretamente nos vértices iniciais, mas sim nos seus logaritmos. A taxa é obtida através da exponencialização do logaritmo encontrado conforme a regra apresentada abaixo.

\[
\text{Taxa}_t = e^{\ln(\text{Taxa}_{\text{vértice}_n}) \times \left(\frac{\ln(\text{Taxa}_{\text{vértice}_n}) - \ln(\text{Taxa}_{\text{vértice}_{n+1}})}{\text{Prazo}_{\text{vértice}_n} - \text{Prazo}_{\text{vértice}_{n+1}}} \right) \times (\text{Prazo}_{\text{vértice}_n} - \text{Prazo}_0)}}
\]

d) **Spline Cúbico** - Mais apropriadamente denominado de “spline cúbico por partes”, este método utiliza um polinômio de terceiro grau para fazer a interpolação entre pares de vértices consecutivos e impõe a condição de derivadas iguais nos vértices, de forma que a função contínua resultante em todos os intervalos seja “suave”.

27
2.3.5 Métodos de Extrapolação

O objetivo dos métodos de extrapolação é encontrar uma função matemática que consiga prolongar a ETTJ além (aquém) do último (primeiro) vértice disponível. Esta metodologia deve ser tal que mantenha estreita relação com o tipo de interpolação aplicado no resto da curva e não gere volatilidade no longo prazo incoerente com as reais condições de mercado. As fórmulas de extrapolação são idênticas às explicitadas nos métodos de interpolação.

O método de extrapolação pode ser aplicado tanto na taxa a vista como na taxa a termo. Se for baseado na taxa a termo é necessário tomar cuidado redobrado com a qualidade do último vértice pois se houver um erro ele se perpetuará por todo o prazo da extrapolação. A extrapolação pela taxa a vista costuma apresentar menor volatilidade pois a taxa é obtida pelas taxas médias diárias acumuladas entre a data atual e o vencimento do último vértice. Apesar de apresentar a vantagem da estabilidade esse método não captura corretamente o processo formador das taxas de juros, desprezando a informação contida na última taxa a termo.

2.4 O CONCEITO DE RETORNO

Para que os modelos de mensuração de risco de mercado possam ser mais bem compreendidos é preciso definir o conceito de retorno. O retorno de um ativo pode ser mensurado através de valores absolutos ou relativos, sendo mais usual o último.
Uma das formas de calcular o retorno relativo é:

\[R_t = \ln \left(\frac{P_t}{P_{t-1}} \right) \]

onde,

- \(R_t \) é o retorno do ativo no dia \(t \);
- \(P_t \) é o preço do ativo no dia \(t \);
- \(P_{t-1} \) é o preço do ativo no dia \(t - 1 \).

Esta última fórmula é a forma mais usual de retorno por apresentar uma série de vantagens no cálculo de volatilidades e correlações entre ativos e também por estender o cálculo para períodos múltiplos. Jorion (1997) discute isto de forma mais detalhada\(^2\). Uma outra referência para este assunto é o RiskMetrics\(^TM\)\(^3\).

2.5 O CONCEITO DE VOLATILIDADE E CORRELAÇÃO

Taleb (1997: 88) define volatilidade como sendo a quantidade de variabilidade nos retornos de determinado ativo.

Segundo Natemberg (1994: 69-79), o conceito de volatilidade pode ser visto sob várias formas:

a) Volatilidade Futura - é aquela que melhor descreve a distribuição futura de preços de um ativo;

b) Volatilidade Histórica - é aquela que reflete a variabilidade dos preços de um ativo no passado;

c) Volatilidade Prevista ou de Julgamento - é aquela estimada por um determinado agente financeiro;

d) Volatilidade Implícita - é aquela determinada a partir do preço de uma opção cujo ativo-objeto é o próprio ativo, dado um modelo de precificação de opções;

e) Volatilidade Sazonal – é aquela decorrente de variações sazonais climáticas e está relacionada geralmente a commodities agrícolas.

No caso dos modelos de VaR, a volatilidade que interessa é a volatilidade futura, que não se encontra disponível. No entanto, ninguém pode afirmar ao certo qual será essa volatilidade, devendo então encontrar formas de se estimá-la. A forma mais usual é obter os retornos passados do ativo e aplicar técnicas estatísticas que variam das mais simples como o desvio-padrão até aquelas que envolvem cálculos mais avançados como o modelo GARCH (General Autoregressive Heteroskedastic)⁴ e suas variações.

Também a volatilidade implícita é utilizada como estimativa da volatilidade futura, no entanto, esta alternativa enfrenta algumas restrições devido à escolha do

⁴ Ver Bollerslev (1986)
modelo de precificação de opções apropriado e, principalmente no caso do mercado brasileiro, a existência de um mercado líquido de opções.

Segundo Taleb (1997: 88), a correlação pode ser entendida como a medida que identifica o grau de certeza com o qual uma pessoa pode prever o movimento de uma variável aleatória como resultado da oscilação de outra variável. Assim, para uma carteira com diversos ativos, as correlações entre estes afetam o valor da carteira.

Deste modo, as volatilidades e correlações podem ser estimadas a partir dos retornos passados dos ativos. A seguir, serão discutidas as principais técnicas utilizadas para estimá-las.

2.5.1 Modelo SMA

O modelo de média móvel simples ou SMA (*simple moving average*) para o cálculo de volatilidade corresponde ao desvio-padrão dos retornos e pode ser gerado pelas seguintes fórmulas:

\[\sigma = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (r_t - \bar{r})^2} \]

\[\bar{r} = \frac{1}{T} \sum_{t=1}^{T} r_t \]

onde,

\(\sigma \) é a volatilidade do ativo ou desvio-padrão dos retornos;
\(T \) é o período de dados em dias;

\(r_t \) é o retorno do ativo no dia \(t \);

\(\overline{r} \) é o retorno médio.

A covariância entre dois fatores de risco pelo modelo SMA pode ser calculada da seguinte forma:

\[
\sigma_{12}^2 = \frac{1}{T} \sum_{t=1}^{T} (r_{1t} - \overline{r}_1) \times (r_{2t} - \overline{r}_2)
\]

A correlação entre dois fatores de risco é oberta pela relação entre a covariância e as volatilidades:

\[
\rho_{12} = \frac{\sigma_{12}^2}{\sigma_1 \times \sigma_2}
\]

Como se pode observar os cálculos de volatilidade e correlação não apresentam maiores dificuldades. O desafio, na realidade, é determinar o período de observação (janela) a ser adotado. A janela utilizada deve, ao mesmo tempo, apresentar significância estatística e representar as condições econômicas vigentes. Um exemplo disso é o câmbio de reais contra dólares. A série histórica anterior à desvalorização cambial ocorrida em 1999 não reflete o mercado cambial atual.

Para exemplificar a questão da janela a ser adotada, calculou-se a volatilidade do índice Bovespa utilizando-se diversas janelas pelo método SMA. Pode-se observar que os valores calculados são bastante diversos.
A escolha da janela apropriada também é uma questão relevante no cálculo da correlação. No gráfico abaixo, calculou-se a correlação entre as ações da Vale PN e Petrobrás PN pelo modelo SMA. O número de dados utilizados influencia sobremaneira no valor da correlação.
2.5.2 Modelo EWMA

O modelo EWMA\(^5\) (*exponential weighted moving average*) pode ser visto como um aperfeiçoamento do modelo de média móvel simples. O que diferencia os dois modelos é o fato do SMA adotar pesos iguais aos retornos, enquanto o EWMA adota pesos maiores para os retornos mais recentes. Assim, o modelo EWMA apresenta como principal vantagem uma reação mais rápida para os choques ocorridos no mercado. Isto pode ser visto na próxima figura. O modelo EWMA responde rapidamente às grandes oscilações dos retornos, enquanto o modelo SMA apresenta uma resposta mais lenta. Pode-se observar também que quando o mercado volta a uma situação mais tranquila o modelo EWMA retorna rapidamente a um patamar mais baixo enquanto o modelo SMA tende a retornar de forma mais lenta.

Dado um período \(T\) (ou “janela”) de retornos a volatilidade pode ser estimada pelas seguintes fórmulas:

\[
\sigma_{\text{EWMA}} = \sqrt{\sum_{t=1}^{T} \omega_t \times \left(r_t - \bar{r}_{\text{EWMA}} \right)^2}
\]

\[
\bar{r}_{\text{EWMA}} = \sum_{t=1}^{T} \omega_t \times r_t
\]

\[
\omega_t = \frac{\lambda^{t-1}}{\sum_{j=1}^{T} \lambda^{j-1}}
\]

onde,
σ_{EWMA} é a volatilidade calculada pelo modelo EWMA;

T é o período de dados em dias;

r_t é o retorno do ativo no dia t;

\overline{r}_{EWMA} é o retorno médio calculado pelo modelo EWMA;

λ é o fator de decaimento (lambda);

ω_t é o peso dado a cada retorno.

Aplicando-se o EWMA com um fator de decaimento de 0,94 (utilizado pelo modelo RiskMetrics™) para o cálculo de volatilidade, pode-se observar que o modelo

reage rapidamente aos acontecimentos enquanto o SMA com janela de 74 dias úteis reage de forma mais lenta.

O fato de o EWMA reagir mais rápido às mudanças de regime o torna uma ferramenta útil no cálculo de volatilidade, o que explica sua ampla utilização na mensuração de risco.

Uma característica interessante do EWMA é que ele pode ser calculado de forma recursiva, ou seja, a partir das volatilidades passadas. Para obter a fórmula recursiva, assume-se que uma quantidade infinita de dados esteja disponível.

Para T tendendo a infinito,

$$
\sum_{i=1}^{T} \lambda^{i-1} = \frac{1}{1-\lambda}; \text{ para } 0 < \lambda < 1
$$

$$
\omega_t = (1-\lambda) \times \lambda^{t-1}
$$
\[\sigma^2_t = (1 - \lambda) \times \sum_{j=1}^{T} \lambda^{j-1} \times (r_j - \bar{r})^2 \]

\[\sigma^2_t = \lambda \times \sigma^2_{t-1} + (1 - \lambda) \times r_i^2 \]

Assim como a volatilidade, também a covariância e a correlação podem ser calculadas pelo modelo EWMA:

\[\sigma^2_{12} = \sum_{i=1}^{T} \omega_i \times (r_{1i} - \bar{r}_1) \times (r_{2i} - \bar{r}_2) \]

\[\rho_{12} = \frac{\sigma^2_{12}}{\sigma_1 \times \sigma_2} \]

Observa-se que para \(\lambda = 1 \) o modelo EWMA apresenta o mesmo resultado do SMA, dado um mesmo número de amostras.

Uma questão bastante relevante no modelo EWMA é a definição do \textit{lambda} (\(\lambda \)) ótimo a ser utilizado. Ele pode ser determinado através da maximização da função de verossimilhança. No \textit{RiskMetrics} \(^{TM} \) isto foi feito para 480 séries temporais, obtendo-se uma média ponderada dos fatores de decaimento ótimos obtidos. Os resultados obtidos foram: 0,94 para volatilidades e correlações diárias e 0,97 para volatilidades e correlações mensais. O problema é que os fatores de decaimento ótimos não são constantes ao longo do tempo e seria preciso reavaliá-los periodicamente. Além disso, cada instituição, a rigor, deveria calcular seu fator de decaimento ótimo, uma vez que suas carteiras diferem daquelas avaliadas no estudo do \textit{RiskMetrics} \(^{TM} \).

Assim como no modelo SMA, onde a definição da janela de dados a ser utilizada é uma questão crucial, no modelo EWMA a definição do fator de decaimento também apresenta suas dificuldades. Para ilustrar a questão da escolha do lambda ótimo,
calculou-se a volatilidade do Índice Bovespa utilizando fatores de decaimento de 0,85 e 0,94\(^6\). A comparação entre os dois pode ser vista no gráfico seguinte.

Pode-se observar que as volatilidades calculadas podem diferir bastante em determinados períodos e que, quanto menores os fatores de decaimento, maiores serão as oscilações na volatilidade.

Para ilustrar o impacto da escolha do fator de decaimento no cálculo da correlação, tomou-se uma série de cotações de fechamento de Vale PN e Petrobrás PN. A comparação entre as correlações calculadas com fatores de decaimento de 0,85 e 0,94 pode ser vista no gráfico seguinte.

\(^6\) Estes são os fatores de decaimento adotados pelo Banco Central do Brasil para o cálculo de volatilidade de taxas de juros em seu modelo de VaR.
Observa-se que em determinados dias, a correlação calculada por um ou outro fator de decaimento pode apresentar diferenças significativas. Além disso, pode-se observar que a correlação apresenta variações significativas, independentemente do fator de decaimento utilizado.

2.5.3 Modelo GARCH

Sendo σ_t^2 a variância condicional, utilizando informação até o tempo $t-1$ e sendo r_{t-1} o retorno do dia anterior, tem-se o processo GARCH (1,1):
\[\sigma_i^2 = \alpha_0 + \alpha_i \times r_{i-1}^2 + \beta \times \sigma_{i-1}^2 \]

O cálculo de volatilidades e correlações por este modelo não apresenta maiores dificuldades, desde que os parâmetros deste estejam definidos. Estes parâmetros devem ser estimados pela função de máxima verossimilhança, o que envolve uma otimização numérica.

2.6 MODELOS DE MENSURAÇÃO DE RISCO DE MERCADO

2.6.1 O Modelo de *Maturity*

O termo *maturity* pode ser entendido como o prazo relativo ao último pagamento de um instrumento de renda fixa. Uma das formas mais simples de gestão de risco de mercado de instrumentos de pré-fixados é a observação das *maturities* destes. Títulos que possuem características de pagamento e preços iguais mas com *maturities* diferentes, apresentam riscos de mercado diferentes. Quanto maior a *maturity* do título, maior será seu risco de mercado.

Para exemplificar, comparou-se dois títulos pré-fixados *zero-coupon* com preço inicial de R$ 1 mil. Para simplificar, considerou-se que a estrutura de taxa de juros fosse sempre *flat* e no momento inicial a taxa é igual a 15% ao ano. O título 1 tem prazo (ou *maturity*) de um ano e o título 2 tem prazo de dois anos.
O gráfico abaixo ilustra o preço que cada um dos títulos teria, caso, no momento seguinte às aquisições destes, a taxa de juros variasse. Pode-se observar que o título de maior prazo apresenta maior oscilação em seu preço para uma mesma variação na taxa de juros.
Conforme Saunders (1996: 91), o conceito de *maturity* pode ser aplicado também para uma carteira de ativos e passivos. Definindo M_A como sendo a *maturity* ponderada dos ativos e M_P a *maturity* ponderada dos passivos, estas podem ser calculadas do seguinte modo:

$$M_i = w_{i1}M_{i1} + w_{i2}M_{i2} + \ldots + w_{in}M_{in}$$

onde,

- M_i é a *maturity* ponderada dos ativos ($i = A$) ou dos passivos ($i = P$);
- w_i é o peso de cada ativo (passivo) na carteira de ativos (passivos) medido através do valor de mercado deste em relação ao valor de mercado da carteira;
- M_{ij} é a *maturity* do j-ésimo ativo (passivo)

As instituições financeiras, em geral, apresentam descasamentos entre seus ativos e passivos. Em geral, elas possuem passivos de curto prazo (como os certificados de depósito bancário – CDB) e ativos de longo prazo (como crédito direto ao consumidor – CDC). O exemplo anterior pode ser aprimorado para o caso em que o balanço de um banco seja composto por um passivo pré-fixado de um ano com valor presente de R$ 900 e um ativo também pré-fixado de dois anos com valor presente de R$ 1.000. Para simplificar o exemplo, considerar-se-á que tanto a captação quanto a aplicação foram realizadas a uma taxa de 10% ao ano.
O valor econômico (E) deste banco, ou seja, a diferença entre seus ativos e passivos em valor de mercado é de R$ 100. O maturity gap, isto é, a diferença entre as maturities dos ativos e passivos é de um ano \((M_A - M_L = 1)\).

Uma eventual alta na taxa de juros de 10% para 12% implica uma perda no valor econômico da instituição por apresentar maturity gap positivo.

\[
E = A - P = \frac{1210}{(1+12\%)^2} - \frac{990}{(1+12\%)^3} = 964,60 - 883,93 = 80,67
\]

Caso o maturity gap da instituição fosse de dois anos, ou seja, o ativo tivesse prazo de três anos, a alta na taxa de juros de 10% para 12% implicaria maiores perdas no valor econômico da instituição:

\[
E = A - P = \frac{1331}{(1+12\%)^3} - \frac{990}{(1+12\%)^3} = 947,38 - 883,93 = 63,45
\]

Assim, uma das formas mais simples de se gerir risco de mercado de instrumentos pré-fixados é a análise do maturity gap. Antes do surgimento de modelos mais elaborados, as instituições financeiras procuravam casar as maturities de seus
ativos e passivos, de modo a incorrer em menores riscos. Entretanto, pode-se ver adiante que um *maturity gap* igual a zero não garante proteção frente às oscilações da taxa de juros.

No exemplo seguinte, tanto o ativo quanto o passivo possuem prazo de dois anos. Na captação, o banco paga 10% ao ano de juros sobre o principal de R$ 900 em dois anos e, na captação o banco recebe dois pagamentos iguais de R$ 576,19 em um e dois anos sobre um principal de R$ 1.000 (taxa de 10% ao ano).

O *maturity gap* entre ativos e passivos é igual a zero, uma vez que possuem mesmo prazo de vencimento. Caso a taxa de juros mantenha-se em 10% ao ano, ao final de dois anos, o banco obterá resultado nulo, já que ao reinvestir a primeira parcela da aplicação por uma taxa de 10%, o resultado final do ativo será igual ao do passivo (R$ 210). Entretanto, se a taxa de juros cair para 8% ao ano, a parcela reinvestida renderá apenas R$ 622,29, o que gera um resultado negativo igual a R$ 11,52:

\[
\text{Resultado} = 576,19 \times 1,08 + 576,19 - 1210 = -11,52
\]
Desta forma, apesar das *maturities* serem as mesmas, o banco continua apresentando risco de mercado, pois os fluxos de caixa ativos e passivos não estão perfeitamente casados.

2.6.2 O Modelo de *Duration*

Saunders (1996: 101) comenta que a *duration* é uma medida mais completa da sensibilidade de um ativo ou passivo à taxa de juros do que a medida de *maturity*, por considerar tanto os valores presentes quanto os prazos dos fluxos de caixa. Ela pode ser calculada através da seguinte fórmula:

\[
D = \frac{\sum_{i=1}^{n} VP_i \times t_i}{\sum_{i=1}^{n} VP_i}
\]

onde,

- \(D\) é a duration mensurada na mesma unidade que \(t_i\);
- \(VP_i\) é o valor presente do i-ésimo fluxo de caixa;
- \(t_i\) é o prazo a decorrer do i-ésimo fluxo de caixa

A medida de *duration* apresenta-se como uma melhor alternativa de gestão de risco de mercado do que seu antecessor, o modelo de *maturity*. A medida de descasamento entre ativos e passivos por *duration* mostra de forma mais eficaz, os riscos incorridos pelas oscilações na taxa de juros. No último exemplo apresentado para
o modelo de *maturity*, caso fosse avaliado pela medida de *duration*, poder-se-ia observar que ainda havia risco de mercado naquela carteira.

Enquanto o passivo apresenta *duration* de dois anos, o ativo apresenta *duration* de:

\[
D_A = \frac{576.19 \times 1}{(1 + 10\%)^1} + \frac{576.19 \times 2}{(1 + 10\%)^2} = 1.476 \text{ anos}
\]

Assim, para o banco imunizar melhor sua carteira, é preciso diminuir o *gap* de *duration* entre seus ativos e passivos, ou seja, igualar suas *durations*.

Saunders (1996: 107) interpreta a *duration* também como sendo uma indicadora da sensibilidade ou elasticidade à taxa de juros do valor de um ativo ou passivo, ou seja, quanto maior a *duration* de um ativo ou passivo, maior será sua sensibilidade às oscilações de taxa de juros. Ela pode ser calculada a partir da derivada primeira da função preço em relação à taxa de juros.

O valor de uma carteira de ativos (passivos) pré-fixados pode ser expresso pela seguinte fórmula:

\[
P = \frac{FC_1}{(1 + y)^1} + \frac{FC_2}{(1 + y)^2} + \ldots + \frac{FC_n}{(1 + y)^n}
\]

onde,

- *P* é o valor presente da carteira de ativos (passivos) pré-fixados;

- *FC_i* é o i-ésimo fluxo de caixa da carteira;
y é a taxa de juros;

t$_i$ é o prazo de cada fluxo de caixa.

Derivando o preço (P) pela taxa de juros (y), tem-se:

$$
\frac{dP}{dy} = -\frac{t_1 \times FC_1}{(1 + y)^{i+1}} + \frac{t_2 \times FC_2}{(1 + y)^{i+2}} + \cdots + \frac{t_n \times FC_n}{(1 + y)^{i+n}}
$$

Rearranjando a equação acima:

$$
\frac{dP}{dy} = -\frac{1}{(1 + y)} \left[\frac{t_1 \times FC_1}{(1 + y)^{i+1}} + \frac{t_2 \times FC_2}{(1 + y)^{i+2}} + \cdots + \frac{t_n \times FC_n}{(1 + y)^{i+n}} \right]
$$

Lembrando que a *duration* de uma carteira é dada por:

$$
D = \frac{\sum_{i=1}^{n} VP_i \times t_i \times FC_i}{\sum_{i=1}^{n} VP_i} = \frac{t_1 \times FC_1 + t_2 \times FC_2 + \cdots + t_n \times FC_n}{P}
$$

Então:

$$
\frac{dP}{dy} = -\frac{1}{(1 + y)} \times [P \times D] \Rightarrow
$$

$$
D = -\frac{dP}{P \frac{dy}{dy}} \quad \text{ou} \quad \frac{dP}{P} = -D \times \frac{dy}{(1 + y)}
$$

A interpretação econômica da fórmula acima é que a *duration* (D) é a sensibilidade do preço da carteira frente a pequenas oscilações na taxa de juros. Assim,
sabendo-se o valor da *duration* de uma carteira, pode-se estimar a variação de seu valor frente a uma determinada oscilação na taxa de juros. Entretanto, isto é válido para duas hipóteses assumidas: a estrutura temporal de taxas de juros é *flat* e as oscilações nesta estrutura ocorrem de forma paralela.

Como pode ser visto no gráfico a seguir, a *duration* equivale ao coeficiente linear de uma equação que permite avaliar o preço de uma carteira de ativos (passivos) pré-fixados. A equação descrita anteriormente tangencia a função preço no ponto em que é calculada a *duration*.

A linha vermelha do gráfico acima mostra o preço de um título pré-fixado (*zero coupon*) de cinco anos que paga R$ 201.135,72 no vencimento. A uma taxa de juros atual de 15% ao ano, o valor presente deste título é de R$ 100 mil. Pode-se notar que à
medida que as variações na taxa de juros aumentam, o erro no cálculo do preço do título pela função que utiliza *duration* aumenta. Isto era esperado, uma vez que esta função é uma aproximação linear da função-preço.

Uma forma de aperfeiçoar a utilização do conceito de *duration* é utilizar os dois primeiros termos da série de Taylor para se obter uma melhor aproximação da função-preço:

\[
dP = \frac{dP}{dy} dy + \frac{1}{2} \frac{d^2 P}{dy^2} (dy)^2 + \cdots \quad \text{ou} \quad dP = \frac{dP}{dy} dy + \frac{1}{2} \frac{d^2 P}{dy^2} (dy)^2
\]

A segunda derivada da função-preço em relação à taxa de juros é dada por:

\[
C = \frac{d^2 P}{dy^2} = \frac{t_1 \times (t_1 + 1) \times FC_1}{(1 + y)^{t_1 + 2}} + \frac{t_2 \times (t_2 + 1) \times FC_2}{(1 + y)^{t_2 + 2}} + \cdots + \frac{t_n \times (t_n + 1) \times FC_n}{(1 + y)^{t_n + 2}}
\]

Assim, a variação no preço pode ser mais bem estimada pela seguinte função:

\[
\frac{dP}{P} = - \frac{D}{(1 + y)} dy + \frac{1}{2} C dy^2
\]
No gráfico seguinte, pode-se observar, para o mesmo título utilizado no gráfico anterior, como a utilização da convexidade pode melhorar a estimativa do preço.

Na prática, mesmo utilizando o conceito de convexidade, o modelo de *duration* apresenta-se bastante ineficaz, principalmente para carteiras com muitos fluxos de caixa e de *duration* elevada. Como exemplo, calculou-se o preço de uma carteira formada por 12 fluxos de caixa pré-fixados ativos de igual valor (R$ 18.448,08) com prazos de um a doze anos para diversos níveis de taxas de juros. Calculou-se também os preços através das aproximações por *duration* e por convexidade, a partir de uma taxa de juros inicial de 15% ao ano e valor presente de R$ 100 mil. Os resultados encontram-se no gráfico a seguir.
Pode-se observar que para grandes oscilações na taxa de juros, o modelo de convexidade também passa a apresentar erro bastante significativo.

Uma forma bastante simples de entender como pode ser feito um hedge por duration é através da função-preço por duration. O conceito de hedge pode ser entendido como a busca por uma carteira que ofereça resultado exatamente oposto ao que a carteira original terá, ou seja, \(\Delta P_{\text{Carteira}} = -\Delta P_{\text{Hedge}} \), para uma mesma oscilação na taxa de juros.

\[
\frac{\Delta P_{\text{Carteira}}}{\Delta y} = -\frac{\Delta P_{\text{Hedge}}}{\Delta y} \Rightarrow -\frac{1}{(1 + y)} \times [P_{\text{Carteira}} \times D_{\text{Carteira}}] = \frac{1}{(1 + y)} \times [P_{\text{Hedge}} \times D_{\text{Hedge}}]
\]

\[P_{\text{Carteira}} \times D_{\text{Carteira}} = -P_{\text{Hedge}} \times D_{\text{Hedge}}\]
Como exemplo de *hedge* por *duration*, será utilizada uma carteira ativa formada por doze fluxos de caixa pré-fixados de mesmo valor (R$ 17.666,93), cujo valor presente é de R$ 100 mil a uma taxa de juros de 14% ao ano (estrutura temporal de taxa de juros *flat*).

A duration desta carteira é igual a:

\[
D = \frac{1 \times \frac{17.666,93}{(1+14\%)^1} + 2 \times \frac{17.666,93}{(1+14\%)^2} + \cdots + 12 \times \frac{17.666,93}{(1+14\%)^{12}}}{100.000} = 5 \text{ anos}
\]

Desta forma, o *hedge* desta carteira pode ser feito por um passivo que tenha a mesma relação *duration* x preço, por exemplo, um fluxo de caixa com prazo de cinco anos e valor presente de R$ 100 mil (valor no vencimento de R$ 192.541,46).

Entretanto, este *hedge* não funciona de forma perfeita, pois enquanto o passivo possui *duration* de cinco anos para qualquer nível de taxa de juros, o ativo terá uma *duration* que se altera conforme o nível de taxa de juros. O gráfico seguinte mostra o valor econômico desta carteira de ativos e passivos frente a diferentes taxas de juros.
Pode-se observar que para taxas de juros próximas a 14%, o valor econômico da carteira encontra-se em torno de zero. Isto decorre do fato que as convexidades do ativo e do passivo são bastante diferentes:

\[
\begin{align*}
C_{\text{Ativo}} &= \frac{1 \times 2 \times 17.666.93}{(1 + 14\%)^{1+2}} + \frac{2 \times 3 \times 17.666.93}{(1 + 14\%)^{2+2}} + \cdots + \frac{12 \times 13 \times 17.666.93}{(1 + 14\%)^{12+2}} = 31,21 \\
C_{\text{Passivo}} &= \frac{5 \times 6 \times 192.541,46}{(1 + 14\%)^{5+2}} = 23,08
\end{align*}
\]

Para que o hedge fosse perfeito, seria necessário que os preços do ativo e do passivo tivessem o mesmo comportamento, ou seja, os fluxos de caixa do passivo teriam que ser iguais aos do ativo. No entanto, para uma instituição financeira, isto seria
impossível, pois para cada fluxo de caixa ativo que ela tivesse, ela teria que buscar um fluxo de caixa passivo de mesmo valor.

Como pode ser observado anteriormente, o modelo de *duration* assume a utilização de uma estrutura temporal de taxa de juros *flat*. Entretanto, vale a pena ressaltar que no mundo real isto raramente ocorre. Assim, para se calcular a *duration* de uma carteira de instrumentos pré-fixados, utiliza-se a taxa de juros associada a cada fluxo de caixa.

2.6.3 O Modelo de Value-at-Risk

Neste estudo, o termo *Value-at-Risk* será definido, conforme os autores acima, como sendo a perda máxima esperada devida aos riscos de mercado incorridos em uma carteira de instrumentos financeiros dados um horizonte de tempo e um intervalo de confiança.
Na figura acima, dada uma distribuição de resultados projetados de uma determinada carteira para um certo horizonte de tempo, o value-at-risk corresponderá ao valor que não seja inferior a apenas 5% dos resultados ou, vendo de outra forma, que não seja superior a 95% dos resultados.

Perdas ocorrem devido à combinação de dois fatores: a volatilidade de um fator de risco e a exposição a este fator. Se uma instituição não está exposta a um fator de risco não há possibilidade de resultados negativos relacionados à volatilidade deste fator. Se não há volatilidade no fator de risco, a instituição não terá perdas pela sua exposição a este fator. A grande vantagem do modelo de value-at-risk em relação aos anteriores é o fato deste capturar o efeito combinado da volatilidade e da exposição aos fatores de risco. Tanto os modelos de maturity como o de duration apenas mostram a exposição à taxa de juros incorrida pela instituição. Caso as taxas de juros fossem sempre constantes, isto é, não apresentassem volatilidade, mesmo estando exposta a elas, a instituição não apresentaria perdas inesperadas.
2.6.3.1 VaR de Carteiras Compostas por um Ativo

De uma forma bastante simplificada, o documento técnico do RiskMetrics™ (1996: 6) mostra que o VaR de uma carteira contendo um único ativo pode ser calculado utilizando-se a seguinte fórmula:

\[\text{VaR} = MTM \times \alpha \times \sigma \]

onde,

\(MTM \) representa o valor de mercado da carteira;

\(\alpha \) é o número de desvios-padrão de uma distribuição normal padronizada que representa o grau de confiança desejado;

\(\sigma \) representa a volatilidade do ativo.

Como exemplo, o VaR de um dia com 95% de grau de confiança de uma carteira composta por um único ativo pode ser calculada bastando saber o valor de mercado da carteira e a volatilidade do ativo. Supondo que o valor de mercado da carteira seja de R$ 10 milhões e que a volatilidade diária do ativo seja de 2%, o VaR\(^{95\%}\) desta carteira será de:

\[\text{VaR} = R$10.000.000 \times 1,65 \times 0,02 = R$330.000 \]

O valor acima significa que existe probabilidade de 95% de que a carteira não apresente perdas superiores a R$ 330.000 no intervalo de um dia.
2.6.3.2 **VaR de Carteiras Compostas por Múltiplos Ativos**

Antes de abordar o conceito de VaR para carteiras compostas por múltiplos ativos, deve-se compreender primeiro a teoria de *portfolio* e o conceito de diversificação.

A teoria de *portfolio* parte da premissa que os investidores escolhem suas carteiras com base no retorno esperado e no desvio padrão de seus retornos, o qual pode ser entendido como uma medida de risco da carteira. Mantendo outras variáveis constantes, um investidor desejará uma carteira que maximize seu retorno esperado dado um nível de risco ou minimize o risco dado um retorno esperado. Considera-se como sendo eficiente a carteira que atenda a estas condições, sendo que o investidor racional irá sempre optar por uma carteira eficiente, de acordo com sua aversão a risco.

Segundo Dowd (1998: 12), uma das principais contribuições da teoria de *portfolio* é que o risco de um ativo em uma carteira não corresponde à volatilidade de seus retornos, mas sim ao quanto este ativo contribui ao risco total da carteira. Um ativo pode apresentar uma volatilidade bastante elevada, mas que associado aos demais ativos da carteira, não representa um risco adicional significativo, ou seja, possui uma correlação baixa em relação a outros ativos.

Com isto, o cálculo do VaR de carteiras com mais de um ativo deve considerar, além das volatilidades dos ativos, a correlação entre os mesmos. No caso de uma carteira com dois ativos, o VaR será dado por:

\[
VaR = \sqrt{VaR_1^2 + VaR_2^2 + 2 \times \rho_{1,2} \times VaR_1 \times VaR_2}
\]
Supondo que a exposição ao ativo 1 seja de R$ 10 milhões e ao ativo 2 de R$ 5 milhões, sendo a volatilidade diária do primeiro igual a 2,0% e a do segundo 3,0% e sabendo-se que a correlação entre os ativos é de 0,65, tem-se o VaR de um dia da carteira com intervalo de confiança de 95%:

\[VaR_1 = R$10.000.000 \times 1,65 \times 0,02 = R$330.000 \]

\[VaR_2 = R$5.000.000 \times 1,65 \times 0,03 = R$247.500 \]

\[VaR_{carteira} = \sqrt{R$330.000^2 + R$247.500^2 + 2 \times 0,65 \times R$330.000 \times R$247.500} = R$525.675 \]

Devido à correlação ser diferente de um, o VaR da carteira não é simplesmente a soma dos VaRs individuais dos ativos. A questão da correlação no cômputo do VaR será tratado de forma mais detalhada adiante.

2.7 MODELOS DE CÁLCULO DE VAR

Dowd (1998) classifica os modelos de VaR em quatro tipos: Variância-Covariância, Simulação Histórica, Simulação de Monte Carlo e os Testes de Stress. Já Jorion (1997) classifica em dois grupos básicos: o delta-normal que equivale ao de Variância-Covariância e o de full-valuation\(^8\) que incorpora o de Simulação Histórica,

\(^7\) A teoria de portfolio foi abordada inicialmente por Markowitz (1952). Ver também Markowitz (1959).

\(^8\) O termo full-valuation pode ser entendido como uma reavaliação completa, ou seja, as carteiras são reavaliadas de acordo com cada cenário elaborado.
Monte Carlo e Stress. Já o documento RiskMetrics™ classifica os modelos em dois tipos básicos: os analíticos e os de simulação.

Neste estudo, os principais modelos de VaR foram classificados em três grupos: os que utilizam matrizes de variância-covariância, aí inclusos os modelos RiskMetrics™ e o do Banco Central do Brasil; os de Simulação Histórica e os de Simulação de Monte Carlo. O Stress-Test não corresponde exatamente a um modelo de VaR por não envolver probabilidade de ocorrência e é utilizado geralmente como uma ferramenta complementar ao VaR. Deve-se ter sempre em mente que os modelos de VaR não foram feitos para estimar perdas em condições extremas de mercado e, por isso, o Stress-Test tem um papel importante no dia-a-dia de uma instituição financeira, já que fornece ao gestor uma informação que os modelos de VaR não o fazem.

2.7.1 Modelos de Matriz de Variância-Covariância

Os modelos de value-at-risk baseados em matriz de variância-covariância podem ser considerados como derivados da teoria de portfolio.

O VaR de uma ativo que apresenta um único fator de risco pode ser apresentado como uma função linear de sua volatilidade:

\[VaR = MTM \times \sigma \times \alpha \]

onde,

- \(MTM \) é o valor de mercado do ativo;
σ é a volatilidade do fator de risco;

α é o número de desvios-padrão associado ao intervalo de confiança sob a hipótese de distribuição normal dos retornos (para um intervalo de confiança de 95%, α é igual a 1,65).

No caso de uma carteira com dois fatores de risco diferentes, o VaR da carteira pode ser dado por:

\[VaR_{carteira} = \sqrt{VaR_1^2 + VaR_2^2 + 2 \times \rho_{1,2} \times VaR_1 \times VaR_2} \]

onde,

ρ₁,₂ é a correlação entre os dois fatores de risco.

Para uma carteira com diversos fatores de risco, o VaR da carteira passa então a ser dado por:

\[VaR_{carteira} = \sqrt{\overline{VaR} \times R \times \overline{VaR}^T} \]

onde,

\[\overline{VaR} = [VaR_1, VaR_2, VaR_3, \ldots, VaR_n] \]

\[
R = \begin{bmatrix}
1 & \rho_{2,1} & \rho_{3,1} & \cdots & \rho_{n,1} \\
\rho_{1,2} & 1 & \rho_{3,2} & \cdots & \rho_{n,2} \\
\rho_{1,3} & \rho_{2,3} & 1 & \cdots & \rho_{n,3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho_{1,n} & \rho_{2,n} & \rho_{3,n} & \cdots & 1
\end{bmatrix}
\]
À primeira vista o cálculo de VaR utilizando matrizes de variância-covariância parece ser simples. No entanto, para carteiras de instrumentos pré-fixados, seria preciso calcular volatilidades e correlações de cada taxa de juros. Assim, para uma carteira contendo fluxos de caixa com vencimentos para os próximos 500 dias úteis, seria preciso calcular uma matriz de correlações de tamanho 500 por 500, o que acaba dificultando o cálculo.

A solução comumente adotada é o que se denota usualmente por "mapeamento dos fluxos de caixa" \(^9\), que consiste no agrupamento dos fluxos de caixa em vértices básicos. Deste modo, um fluxo de caixa de 16 dias úteis pode ser distribuído nos vértices de um e vinte e um dias úteis \(^10\), por exemplo.

Realizando o mapeamento de todos os 500 fluxos de caixa do exemplo acima, pode-se chegar a um número reduzido de vértices, o que facilita a obtenção da matriz de correlações.

Um dos pontos que diferenciam um modelo de outro é o modo como este mapeamento é realizado. Outro ponto refere-se às técnicas estatísticas utilizadas para calcular as volatilidades e correlações. Estas diferenças serão discutidas na apresentação de cada modelo.

2.7.1.1 **Modelo RiskMetrics\(^{TM}\)**

\(^9\) O termo original é *cash-flow mapping*.

\(^10\) Costuma-se adotar um vértice de 21 dias úteis pois tal número corresponde a uma média de dias úteis encontrados em um mês.
No RiskmetricsTM, o mapeamento dos fluxos de caixa é realizado de modo que três condições básicas sejam respeitadas:\(^{11}\):

a) Preservação do valor de mercado - o valor de mercado dos fluxos de caixa resultantes do mapeamento deve ser igual ao valor de mercado do fluxo original;

b) Preservação do risco de mercado - o risco de mercado da carteira formada pelos fluxos de caixa obtidos deve ser igual ao risco de mercado apresentado pelo fluxo de caixa original;

c) Manutenção do sinal do fluxo de caixa - os fluxos de caixa resultantes devem ter sinais iguais ao do fluxo original.

Para que estas condições sejam atendidas, a solução da equação seguinte fornece o percentual do valor de mercado que deve ser alocado a cada vértice. O primeiro vértice equivale a \(\alpha\) vezes o valor de mercado do fluxo e o segundo vértice equivale a \(1-\alpha\) vezes. O valor de \(\alpha\) deve ser tal que \(0 \leq \alpha \leq 1\).

\[
a \alpha^2 + b \alpha + c = 0
\]

sendo,

\[
a = \sigma_1^2 + \sigma_2^2 - 2 \rho_{1,2} \sigma_1 \sigma_2
\]

\[
b = 2 \rho_{1,2} \sigma_2 \sigma_2 - 2 \sigma_2^2
\]

\(^{11}\) Um aprofundamento deste tema pode ser obtido no próprio documento técnico do RiskMetricsTM pp. 117-121.
\[c = \sigma_2^2 - \sigma^2 \]

onde,

\(\sigma_1 \) é a volatilidade da taxa de prazo igual ao do vértice imediatamente anterior;

\(\sigma_2 \) é a volatilidade da taxa de prazo igual ao do vértice imediatamente posterior;

\(\sigma \) é a volatilidade da taxa de prazo igual ao do fluxo;

\(\rho_{1,2} \) é a correlação entre as taxas de prazos iguais aos dos vértices imediatamente anterior e imediatamente posterior.

E a solução de \(\alpha \) é dada por:

\[\alpha = \frac{-b \pm \sqrt{b^2 - 4 \times a \times c}}{2 \times a} \]

Esta forma de mapeamento de fluxo de caixa pode apresentar resultados espúrios quando a correlação entre os vértices adjacentes é muito baixa. Como este evento raramente ocorre, o mapeamento descrito acima funciona bem na maioria das circunstâncias\(^{12}\).

Quanto ao cálculo das volatilidades e das correlações, o RiskMetrics\(^{TM}\) utiliza o modelo EWMA com fator de decaimento de 0,94 para retornos diários e 0,97 para retornos mensais. Tais fatores de decaimento são adotados para todos os ativos e foram

\(^{12}\) Ver Mina & Xiao (2001: 43).
obtidos através de estudos feitos em 480 séries temporais de diferentes ativos em diversos países13.

\textit{2.7.1.2 Modelo do Banco Central do Brasil}

O modelo apresentado pelo Banco Central do Brasil nada mais é do que uma simplificação do modelo anterior. O mapeamento dos fluxos de caixa é feito de modo muito mais simples do que o do Risk\textit{Metrics}TM. A alocação dos fluxos nos vértices obedece a uma relação linear entre os prazos dos vértices e dos fluxos de caixa.

Os vértices adotados pelo Banco Central são os de 21, 42, 63, 126, 252, 504 e 756 dias úteis. Os fluxos de caixa com prazos coincidentes aos vértices devem ter seus valores de mercado alocados aos vértices correspondentes. Já os fluxos de caixa com prazo inferior a 21 dias úteis devem ter a fração $T/21$ de seu valor de mercado alocado no vértice de 21 dias úteis, onde T corresponde ao prazo. Os fluxos de caixa com prazo superior a 756 dias úteis devem ter a fração $T/756$ de seu valor de mercado alocado no vértice de 756 dias úteis. Os demais fluxos de caixa devem ter seus valores de mercado alocados de acordo com os seguintes critérios:

\begin{align*}
\text{Valor alocado no vértice anterior:} & \quad \frac{P_j - T}{P_j - P_{j-1}} \times VM \\
\text{Valor alocado no vértice posterior:} & \quad \frac{T - P_{j-1}}{P_j - P_{j-1}} \times VM
\end{align*}

13 Maiores detalhes no próprio documento Risk\textit{Metrics}TM pp.97-101.
onde,

\[T \] é o prazo do fluxo de caixa;

\[P_j \] é o prazo do vértice imediatamente posterior;

\[P_{j-1} \] é o prazo do vértice imediatamente anterior;

\[VM \] é o valor de mercado do fluxo de caixa.

Quanto às volatilidades e correlações, as instituições financeiras não precisam se preocupar com o cálculo, já que elas são calculadas e divulgadas diariamente pelo Banco Central. A volatilidade divulgada deve ser utilizada para todos os vértices ponderando-se pelo prazo.

Esta volatilidade ou volatilidade padrão \((\sigma)\), como é denominada pelo Banco Central é o máximo das volatilidades das taxas anualizadas associadas a cada vértice. Através das séries de retornos diários destas taxas, calcula-se a volatilidade diária pelo modelo EWMA utilizando-se os fatores de decaimento de 0,85 e 0,94. O máximo das volatilidades diárias corresponde à volatilidade padrão divulgada.

O VaR de cada vértice \(i\) é dado por:

\[
VaR_i = 2,33 \times \frac{P_i}{252} \times \sigma \times VM \times \sqrt{10}
\]

onde,

\[P_i \] é o prazo em dias úteis do vértice;

\[\sigma \] é a volatilidade padrão;
VM_i é a soma algébrica das parcelas dos valores de mercado alocados ao vértice i;

O valor de 2,33 representa o número de desvios padrões associados ao intervalo de confiança de 99%. Já o valor de 10 representa o holding period. Assim, o VaR do Banco Central possui um intervalo confiança de 99% e holding period de 10 dias.

Quanto às correlações entre cada vértice i e j para o cálculo do VaR padrão, elas podem ser extraídas a partir da seguinte fórmula:

\[\rho_{i,j} = \rho + (1 - \rho) \left(\frac{\min(P_i, P_j)}{\max(P_i, P_j)} \right) \]

onde,

- \(P_i \), \(P_j \) correspondem aos prazos dos vértices;

- \(\rho \) é o parâmetro-base para o cálculo das correlações, divulgado pelo Banco Central no último dia útil de cada mês ou a qualquer momento, a seu critério;

- \(k \) é o fator de decaimento da correlação, divulgado pelo Banco Central no último dia útil de cada mês ou a qualquer momento, a seu critério.

O VaR padrão do Banco Central do Brasil é calculado a partir da fórmula abaixo:

\[\text{VaR}_{\text{padrão}} = \sqrt{\text{VaR} \times R \times \text{VaR}^T} \]

onde,

\[\text{VaR} = [\text{VaR}_1, \text{VaR}_2, \text{VaR}_3, \ldots, \text{VaR}_7] \]
Um outro aspecto abordado pela circular 2.972 é o que se refere à alocação de capital. Enquanto a Basiléia exige que as instituições financeiras aloquem o equivalente ao valor máximo entre o VaR atual14 e a média dos VaRs dos últimos 60 dias úteis multiplicada por um fator de no mínimo três15, o Banco Central adotou um fator multiplicador (M_t), determinado como função decrescente da volatilidade, variável entre um e três:

\[
M_t = \begin{cases}
 M & \text{se } \sigma_t \leq \sigma_p \\
 \frac{C_1}{\sigma_t} + C_2 & \text{se } \sigma_t \geq \sigma_p
\end{cases}
\]

onde,

\[
C_1 = \frac{M - m}{1 - \frac{1}{\sigma_p}} - \frac{1}{\sigma_{Pico}}
\]

\[
C_2 = M - \frac{C_1}{\sigma_p}
\]

\[
M = 3;
\]

\[
m = 1;
\]

14 Para um intervalo de confiança de 99\% e holding period de 10 dias.15 Este fator irá depender dos resultados do back-testing.
\(\sigma_{Pico} \) é a maior volatilidade observada entre 15/07/1994 e a data de cálculo;

\(\sigma_P \) é a maior volatilidade dos últimos 252 dias úteis.

No gráfico seguinte pode-se observar que o multiplicador \(M_t \) atinge seu valor máximo (três) nos momentos em que a volatilidade padrão é mais baixa e vice-versa. Os dados referem-se ao período de 03/04/2000 a 16/03/2001.

![Gráfico mostrando volatilidade e multiplicador]

Fonte: Banco Central do Brasil

Para entender melhor a adoção do multiplicador, tome-se uma carteira pré-fixada composta por um único fluxo de 252 dias úteis, cujo valor de mercado mantenha-se constante em R$ 1 milhão. O gráfico seguinte mostra o VaR que esta carteira teria pelo modelo do Banco Central, o capital exigido pelo mesmo para cobrir este VaR e o capital exigido caso o multiplicador fosse constante e igual a três, conforme estabelecido pelo BIS.
Comparando-se as duas formas de alocação de capital, pode-se observar que nos momentos em que o VaR torna-se mais elevado (maior volatilidade), a diferença entre estes aumenta pelo efeito da diminuição do valor do multiplicador. Nos momentos em que a volatilidade aumenta subitamente, o multiplicador impede que as instituições tenham que alocar muito capital ou tenham que se desfazer de boa parte de suas posições em um espaço de tempo curto. Em contrapartida, nos momentos em que a volatilidade é baixa, o multiplicador impede que as instituições assumam exposições elevadas em demasia.

2.7.2 Modelos de Simulação Histórica

Dowd (1998: 99) comenta que a ideia por trás do modelo de Simulação Histórica é a de utilizar a distribuição histórica de retornos dos ativos de uma carteira para calcular o value-at-risk desta, assumindo a hipótese de que esta carteira tenha sido a
mesma no passado. Com isto, uma das diferenças deste modelo em relação aos modelos analíticos é o fato de não necessitar de cálculos de volatilidades e correlações, já que tais valores estão implícitos nos cenários utilizados. Para carteiras de renda fixa, os cenários são obtidos a partir dos retornos passados aplicados à estrutura temporal de taxa de juros do dia. Este cálculo pode ser representado pela fórmula a seguir:

\[fd_{j,t} = fd_j \times \exp(r_{j,t}) \]

onde,

\(fd_{j,t} \) é o fator de desconto de prazo \(j \) e cenário \(t \);

\(fd_j \) é o fator de desconto real (atual) de prazo \(j \);

\(r_{j,t} \) é o retorno para o prazo \(j \) e cenário \(t \).

Os resultados decorrentes dos cenários das carteiras são obtidos por:

\[\text{Resultado}_t = \sum_{j=1}^{J} (fd_{j,t} \times FC_j - MTM_{\text{carteira}}) \]

onde,

\(\text{Resultado}_t \) é o resultado caso ocorra o cenário \(t \);

\(FC_j \) é o fluxo de caixa de prazo \(j \);

\(MTM_{\text{carteira}} \) é o valor de mercado da carteira obtido pela estrutura temporal do dia.

Para um total de 100 cenários (janela) e um intervalo de confiança (IC) de 95%, o VaR será obtido a partir do sexto pior resultado, ou pela fórmula seguinte:
\[
\text{Posição} = (1 - IC) \times \text{janela} + 1
\]

Uma das vantagens deste modelo em relação aos de matriz de variância-covariância é que ele não pressupõe um formato de distribuição dos retornos. No entanto, ele parte do pressuposto que os cenários passados são os melhores estimadores dos resultados futuros e, além disso, os cenários apresentam descontinuidade. Um outro problema é a dificuldade em se estimar a janela histórica que melhor represente os prováveis cenários futuros. Janelas muito longas podem levar à inclusão de cenários pouco representativos do futuro próximo, enquanto que janelas muito curtas podem não apresentar significância estatística no cálculo do value-at-risk. O problema piora na agregação dos diversos instrumentos que compõem a carteira da instituição financeira, pois para que a correlação implícita seja considerada, deve-se adotar uma única janela para todos os fatores de risco.

2.7.3 Modelos de Simulação de Monte Carlo

Conforme Jorion (1997) este tipo de modelo envolve um alto custo de investimento quanto ao desenvolvimento de sistemas. O nome Monte Carlo veio do cassino estabelecido em 1862 em Mônaco e foi utilizado primeiramente para resolver problemas não-solucionáveis por métodos convencionais por cientistas que pesquisavam a bomba atômica em Los Alamos (EUA) em 1942. No mundo financeiro o método foi usado inicialmente para precificar derivativos complexos.

Os modelos utilizados na mensuração de risco de mercado baseiam-se na geração de números aleatórios seguindo uma distribuição pré-determinada possibilitando a
geração dos cenários. A partir destes cenários, calcula-se os resultados que permitem o cálculo do VaR. O grande diferencial deste modelo é que, a partir de números aleatórios, é possível gerar milhares de cenários segundo uma distribuição definida pelo usuário. O grande problema é definir a distribuição a ser adotada e os parâmetros desta distribuição.

Atualmente, pode-se adquirir softwares com interface em Excel™ que permitem o cálculo de VaR por Monte Carlo16, o que simplifica sobremaneira o trabalho dos gestores de risco. A utilização deste modelo acaba sendo restrita uma vez que não apresenta uma relação custo-benefício viável, principalmente para instituições financeiras de pequeno porte.

2.8 COMPARAÇÃO ENTRE OS MODELOS MAIS UTILIZADOS: RISKMETRICS™ E SIMULAÇÃO HISTÓRICA

O modelo RiskMetrics™ é bastante aceito por fornecer aos seus usuários uma série de facilidades, a despeito de alguns pressupostos assumidos. As instituições financeiras que não desenvolveram modelos-proprietários de VaR podem calcular o risco de mercado de suas exposições utilizando uma simples planilha Excel™, uma vez que os dados de volatilidades e correlações dos principais mercados financeiros do mundo podem ser obtidos através dos feeders; basta apenas obter os fluxos de caixa de suas posições. Com a disponibilização do modelo ao público pelo J. P. Morgan em 1994, e a divulgação dos dados de volatilidades e correlações de diversos fatores de

16 Um software bastante utilizado no mercado financeiro é o Crystal Ball desenvolvido pela empresa Decisioneering. Maiores informações podem ser obtidas acessando o site www.decisioneering.com
risco dos mais variados mercados financeiros, o value-at-risk paramétrico foi adotado por diversas instituições financeiras que não dispunham de recursos humanos e/ou tecnológicos para implementar seus próprios modelos.

Entretanto, o modelo vem sendo questionado no que tange a alguns de seus pressupostos, em especial, a distribuição normal dos retornos. Há uma quantidade razoável de evidências que mostram a não-normalidade dos retornos de diversos ativos17. Em mercados emergentes, por serem geralmente bastante regulamentados, estas evidências são ainda maiores. No caso do mercado brasileiro de renda fixa, verifica-se também uma assimetria significativa na distribuição de retornos. Isto ocorre devido às súbitas altas nas taxas de juros determinadas pelo Banco Central e pelas situações adversas de mercado, seguidas de graduais baixas nas taxas de juros à medida que as condições econômicas melhoram.

Por outro lado, o modelo de Simulação Histórica não pressupõe distribuição de retornos alguma, o que permite que este modelo acomode os problemas de assimetria e fat-tails. Os problemas que este tipo de modelo apresenta estão ligados principalmente à obtenção de dados. Muitas vezes, não é possível obter uma série histórica de retornos

17 Ver Hendricks (1996) e Zangari (1995: 47).
representativa, seja por mudança de regime ou por absoluta inexistência de dados confiáveis. Um outro problema é o que se refere ao fato das distribuições de resultados serem discretas. E, no caso de intervalos de confiança elevados, o VaR calculado pode não ser confiável devido à pouca significância estatística nos extremos da distribuição.

Todos os problemas relatados acima podem ser contornados, construindo-se uma série de retornos a partir de números aleatórios gerados assumindo-se alguma forma de distribuição.

2.9 BACK-TESTING

Ao processo de verificação dos modelos de *value-at-risk* dá-se o nome de *back-testing*. A forma mais simples e óbvia de verificar a confiabilidade de um modelo de VaR é contar as ocorrências negativas que superaram o VaR em determinado período e comparar com o intervalo de confiança assumido. Assim, para um VaR de 95%, espera-se perdas superiores ao VaR em torno de cinco vezes a cada cem dias úteis. *O Bank for International Settlements (BIS)* adotou esta forma simples de *back-testing* para avaliar os modelos-proprietários dos bancos. Entretanto para fins de controles internos, cada instituição tem procurado desenvolver não só seus modelos de *value-at-risk*, mas também seus modelos de *back-testing*.

O Acordo da Basileia de 1996 prevê que os back-tests devem ser consistentes com um intervalo de confiança de 99%\(^\text{18}\). Mesmo admitindo que há argumentos quanto à

\(^{18}\) Ver *Basle Committee on Banking Supervision (1996a: 2)*
dificuldade de se estimar de forma confiável tais valores, quando comparados a intervalos de confiança menores, o Comitê da Basileia concluiu que era importante o *back-test* estar alinhado com o intervalo de confiança especificado no Acordo.

Outra questão relevante é o que deve ser considerado como resultado no *back-test*. O Comitê optou por considerar somente os resultados referentes à carteira estática utilizada para realizar o cálculo do *VaR*. Como o *back-test* tem por objetivo avaliar a *performance* do modelo de *value-at-risk*, e este, por sua vez, é geralmente utilizado para mensurar o risco *overnight* da carteira, não faz sentido incluir os resultados decorrentes de operações *intra-day*. Assim, o resultado a ser utilizado no *back-test* é aquele decorrente apenas da carteira utilizada no cálculo do *VaR*.

Com o intuito de obter uma margem de segurança quanto à alocação de capital e coibir a adoção de modelos que subavaliem o risco de mercado incorrido, o Comitê adotou três categorias quanto à *performance* destes. O capital alocado é maior ou menor de acordo com a categoria em que o modelo esteja, sendo a classificação decorrente do número de exceções observadas em um período de doze meses de *back-test* (ou cerca de 250 dias úteis):

a) Zona Verde – corresponde às instituições que apresentam até quatro exceções em seu *back-test*, sendo o fator multiplicativo a ser utilizado para a alocação de capital igual a três;

b) Zona Amarela - corresponde às instituições que apresentam de cinco a nove exceções em seu *back-test*, sendo o fator multiplicativo a ser utilizado para a
alocação de capital correspondente ao número de exceções ocorridas\(^\text{19}\). O Comitê considera que os modelos encontrados nesta categoria podem ser melhorados e para que não incorra no erro de descartar um modelo bom, ele admite a utilização deste desde que aloque mais capital do que aqueles que se encontram na zona verde;

c) Zona Vermelha - corresponde às instituições que apresentam mais de nove exceções em seu \emph{back-test}, sendo o fator multiplicativo a ser utilizado para a alocação de capital igual a quatro. As instituições cujos modelos encontram-se nesta condição devem imediatamente trabalhar no aperfeiçoamento destes.

O Comitê resolveu não adotar uma linha de corte ao nível de duas ou três exceções em uma amostra de 250 observações independentes devido à possibilidade de ocorrer um número de exceções superior ao esperado em virtude de outros fatores além dos problemas de modelagem. Estes fatores podem advir de oscilações inesperadas do mercado como uma alta na volatilidade ou uma mudança brusca nas correlações. Pode ocorrer também de o modelo não apresentar desempenho adequado em determinado período apenas.

A tabela a seguir ilustra o que foi comentado anteriormente. A coluna denominada “Exato” mostra a probabilidade de se obter certo número exato de exceções. Assim, a probabilidade de se obter exatamente quatro exceções em uma amostra de 250 observações independentes é de 13,41\%. A coluna “Erro Tipo 1” mostra a probabilidade de se rejeitar um modelo acurado ao se adotar certo número de exceções como linha de corte para a rejeição do modelo. Como exemplo, adotando-se a linha de corte de cinco

\[^{19}\text{Ver Basle Committee on Banking Supervision (1996a: Table 2)}\]
exceções, há a probabilidade de 10,78% de se rejeitar um modelo bom. A última coluna (“Probabilidade Acumulada”) ilustra a probabilidade de se obter até um certo número de exceções em uma amostra de 250 observações independentes ao grau de confiança de 99%. O número de exceções em cada zona para o intervalo de confiança de 99% foi definido a partir dos dados desta última coluna. A zona amarela inicia a partir de uma probabilidade acumulada de 95% e a zona vermelha, de uma probabilidade acumulada de 99,99%.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Número de Exceções</th>
<th>Intervalo de Confiança = 99%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amostra = 250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exato</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8,11%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>20,47%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>25,74%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21,49%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>13,41%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6,66%</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2,75%</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,97%</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0,30%</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0,08%</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,02%</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,00%</td>
</tr>
</tbody>
</table>

Fonte: Basle Committee on Banking Supervision

Utilizando os mesmos critérios adotados pelo Comitê da Basiléia para definir as linhas de corte para o intervalo de confiança de 99%, pode-se montar uma tabela semelhante à divulgada pelo Comitê para o intervalo de confiança de 95% e amostra de
250 observações independentes. A tabela seguinte mostra que, para este intervalo de confiança, a zona verde compreenderia até 17 exceções, a zona amarela se estenderia de 18 a 26 exceções e a zona vermelha iniciaria a partir de 27 exceções.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Número de Excepções</th>
<th>Intervalo de Confiança = 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amostra = 250</td>
<td>Exato</td>
</tr>
<tr>
<td>Verde</td>
<td></td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,02%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,10%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,33%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,85%</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1,83%</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3,36%</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5,37%</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7,60%</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9,63%</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11,06%</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11,60%</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>11,17%</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9,96%</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8,24%</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6,37%</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4,62%</td>
</tr>
<tr>
<td>Amarela</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2,02%</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1,23%</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>0,71%</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>0,39%</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>0,20%</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0,10%</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0,05%</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>0,02%</td>
</tr>
<tr>
<td>Vermelha</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,00%</td>
</tr>
</tbody>
</table>
3 TESTE EMPÍRICO

O teste empírico envolveu uma série de atividades que incluiu a obtenção de dados de mercado, a elaboração de um banco de dados em Access™ para armazená-los e a elaboração de diversas planilhas em Excel™ com programação em VBA para a elaboração e validação das estruturas temporais de taxas de juros e também para os cálculos de value-at-risk e resultado (para back-test).

O processo de trabalho pode ser visualizado de forma sintética no quadro a seguir.
3.1 ELABORAÇÃO DAS ESTRUTURAS TEMPORAIS DE TAXAS DE JUROS

3.1.1 Coleta dos Dados de Mercado

Como já dito anteriormente, o estudo está focado na questão do risco de mercado, considerando-se somente fluxos de caixa que não apresentem risco de crédito. Na ausência de um mercado secundário de títulos públicos que atenda aos requisitos de liquidez, sincronização e transparência (citados no item 3.2), o mercado brasileiro passou a utilizar como vértices, os instrumentos que apresentassem o menor risco de crédito possível, ou seja, aqueles obtidos a partir do mercado interbancário e do mercado de futuros.

Desta maneira, os instrumentos geralmente utilizados na construção da estrutura temporal de taxas de juros são o CDI-over, os contratos futuros de DI de um dia, os contratos de DI a termo e os contratos de swap CDI x pré. Como o cálculo de value-at-risk para este estudo não está centrado nas operações intra-day e sim nas posições que as instituições financeiras carregam de um dia para outro, os dados de mercado (vértices) devem procurar refletir as condições do mercado em seu fechamento.

Com isto, no caso dos contratos futuros e contratos a termo de DI, utilizou-se os preços de ajuste na construção da ETTJ. Os preços de ajuste são aqueles utilizados como base para a liquidação dos ajustes diários.

No caso do CDI-over, o estudo utilizou a taxa média do CDI-over divulgado pela Cetip, por ser esta amplamente veiculada e estar disponível em diversos bancos de
dados de mercado. No caso do swap DI x pré, utilizou-se os dados coletados e divulgados pela BM&F.

Os dados de mercado (dados secundários) coletados referem-se ao período compreendido entre 1995 e o início de 2001. A pesquisa não abrange o período anterior a 1995 devido ao fato da baixa disponibilidade de dados de boa qualidade. Isto decorre dos elevados índices de inflação anterior ao Plano Real e do fato de não haver mercado de renda fixa de longo prazo àquela época.

3.1.2 Seleção dos Vértices

Com os dados de mercado já coletados, selecionou-se apenas aqueles que refletissem as condições de mercado vigentes, de modo a evitar a introdução de imprecisões na série histórica coletada. Esta seleção foi feita baseando-se principalmente na liquidez dos contratos, na sincronização dos dados e na avaliação da estrutura temporal a termo resultante.

Na tabela abaixo estão listados os contratos futuros de DI 1 dia referentes a 01 de dezembro de 2000. Na construção da estrutura temporal de taxas de juros deste dia utilizou-se, em um primeiro momento, somente os cinco primeiros contratos, uma vez que são estes os que tiveram um volume razoável de negócios.
No caso dos contratos a termo de DI, por ser um instrumento relativamente novo no mercado e também pelas suas características, os negócios restringem-se a poucos vencimentos, concentrando-se principalmente nos contratos com lançamento mais recente e prazo de cerca de um ano. No dia 01 de dezembro de 2000, a BMF registrou negócios com este instrumento apenas para os contratos de 255 saques.

Quanto aos contratos de swap DI x Pré, as taxas coletadas e divulgadas pela BMF são aquelas coletadas por ela mesma junto a diversas instituições financeiras. Na escassez de instrumentos com prazos superiores a um ano, a prática comum do mercado é utilizar estas taxas como referências de taxas de juros para prazos mais longos. A BMF disponibiliza diariamente as taxas de swap coletadas para prazos que variam de

20 Os contratos a termo de DI começaram a ser negociados no início do ano 2000.
um mês a cinco anos. Na tabela seguinte estão ilustradas apenas as taxas de 2, 3, 4 e 5 anos.

<table>
<thead>
<tr>
<th>TAXA (a.a.)</th>
<th>SAQUES</th>
<th>DIAS CORRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,67%</td>
<td>505</td>
<td>734</td>
</tr>
<tr>
<td>19,09%</td>
<td>754</td>
<td>1095</td>
</tr>
<tr>
<td>19,53%</td>
<td>991</td>
<td>1440</td>
</tr>
<tr>
<td>19,99%</td>
<td>1240</td>
<td>1802</td>
</tr>
</tbody>
</table>

Por último, a taxa média do Certificado de Depósito Interbancário de um Dia, o CDI-over, é calculada e divulgada pela CETIP21 diariamente, sendo utilizada como taxa de referência para as operações de um dia realizadas no mercado interbancário.

Realizada esta pré-seleção de vértices, utilizou-se o critério de análise das taxas a termo entre os vértices para procurar inconsistências econômicas. Este é um processo necessário para se evitar a escolha de vértices inconsistentes, isto é, vértices cujas cotações não reflitam as condições de mercado. Este problema pode ser observado no exemplo abaixo do mercado futuro de taxa de juros em reais (DI Futuro) onde o dado relativo ao 3º vértice não está sincronizado com os demais.

21 Central de Custódia e Liquidação de Títulos
Como se pode observar, a taxa a termo do terceiro vértice está muito abaixo da de seus vizinhos, evidenciando um problema de sincronização de dados. Na falta de outra opção, é preferível que não se selecione este vértice na construção da estrutura temporal.

A seleção dos melhores vértices para cada um dos fatores de risco oscila no tempo em função das condições vigentes no mercado. Este fenômeno fica mais evidente nos mercados emergentes em decorrência do amadurecimento que estes têm apresentado nos últimos anos.

É preferível a adoção de poucos e bons vértices do que muitos e pouco representativos. A utilização de todos os preços oficiais não resulta necessariamente na melhoria da análise, pois pode abranger valores que não atendam aos critérios de validação econômica.
3.1.3 Escolha dos Métodos de Interpolação e Extrapolação

Com os vértices já selecionados, o passo seguinte é a escolha do método de interpolação. Optou-se pela utilização do método log-linear aplicado aos fatores de desconto, por ser este de fácil implementação e ser utilizado por diversas instituições financeiras no mercado brasileiro. Outro método bastante utilizado é o spline cúbico, mas por demandar maiores recursos computacionais, é mais indicado para a precificação de ativos de renda fixa.

Quanto ao método de extrapolação, optou-se pela extensão da última taxa a termo disponível em detrimento da taxa a vista, devido ao fato do primeiro capturar melhor o processo formador das taxas de juros.

3.2 CÁLCULO DE RETORNOS

Como descrito anteriormente, a informação básica no cálculo de volatilidades e correlações é o retorno do fator de risco, o qual pode ser fornecido pela fórmula:

\[R_t = \ln \left(\frac{P_t}{P_{t-1}} \right) \]

onde,

- \(R_t \) é o retorno do fator de risco no dia \(t \);
- \(P_t \) é o preço do fator de risco no dia \(t \);
P_{t-1} é o preço do fator de risco no dia $t-1$.

Para Jorion (1997: 63), a teoria de finanças define risco como sendo a dispersão de **resultados inesperados** devido a movimentos nas variáveis financeiras. Assim, o cálculo de retorno pela relação entre preço anterior e preço realizado não é necessariamente condizente com a definição de risco acima. Um **resultado inesperado (ou choque)** pode ser interpretado como sendo a relação entre o preço esperado e o preço realizado, ou seja:

\[
c_t = \ln \left(\frac{P_t}{E[P_t]} \right)
\]

onde,

c_t é o choque (retorno inesperado) no dia t;

P_t é o preço realizado no dia t;

$E[P_t]$ é o preço esperado para o dia t.

Usualmente, para instrumentos de renda variável, assume-se que a melhor expectativa de preço é o último preço disponível, o que torna o cálculo de choque equivalente ao cálculo de retorno. No entanto, para instrumentos de renda fixa, cujos preços, mantida a estrutura temporal de taxas de juros constante, se elevam à medida que se aproximam de seu vencimento (no caso de instrumentos **zero-coupon**), o preço esperado não é necessariamente igual ao preço anterior.
Pela teoria das expectativas, a taxa a vista esperada para uma determinada data futura é a taxa a termo para o mesmo período. Assim, para uma unidade monetária no futuro:

$$c_t = \ln \left(\frac{P_t}{E[P_t]} \right) = \ln \left(\frac{1}{(1+i_t)^n} \right) = \ln \left(\frac{1}{\left(1 + E[i_t]\right)^n} \right) = n \times \ln \left(\frac{1 + E[i_t]}{(1+i_t)} \right)$$

Para simplificar, P_t pode ser interpretado como sendo o fator de desconto da taxa de n dias no dia t.

Com isto, tanto para o cálculo de volatilidades e correlações (modelo RiskMetrics	extsuperscript{TM}) quanto para a geração de cenários (modelo de Simulação Histórica)

22, será utilizado o conceito de choque. O exemplo seguinte ilustra a diferença na utilização de um ou outro conceito.

Tendo-se um título de prazo total de T saques, dos quais já decorreram t saques e que pagará ao seu detentor FC reais no vencimento e supondo-se que a estrutura temporal de taxa de juros seja flat e a taxa de juros de mercado seja igual a i a.a. (expressa na convenção de 252 dias úteis do Banco Central), o seu preço hoje será igual a:

$$P_t = \frac{FC}{(1+i)^{T-t/252}}$$

Assumindo-se também que a estrutura temporal de taxa de juros tenha se mantido imutável nos últimos t dias conforme a expectativa do mercado e que tal
expectativa se mantém, intuitivamente pode-se concluir que a volatilidade de taxa de juros seja nula, já que não houve qualquer alteração nas condições de mercado. Entretanto, ao calcular o retorno e a volatilidade tem-se que:

\[
r_t = \ln \left(\frac{P_t}{P_{t-1}} \right) = \ln \left(\frac{FC}{\frac{(T-t)}{252}} \right) = \ln \left(\frac{FC}{\frac{(T-t+1)}{252}} \right) = \frac{1}{252} \times \ln(1+i)
\]

Como os últimos \(t \) retornos são todos iguais, a volatilidade (calculada pelo modelo EWMA) será de:

\[
\sigma_t = \sqrt{\sum_{t=1}^{T} \omega_t \times r_t^2} = \sqrt{\sum_{t=1}^{T} \omega_t \times \left(\frac{1}{252} \times \ln(1+i) \right)^2} = \frac{1}{252} \times \ln(1+i)
\]

Assim, observa-se que o conceito de retorno diário é inapropriado para a mensuração de risco de ativos de renda fixa pré-fixados. Esta forma de cálculo faz com que se compare ativos “diferentes”, uma vez que o ativo de renda fixa pré-fixado possui uma variável temporal no cálculo de seu preço.

Ao se utilizar o conceito de choque no cálculo da volatilidade tem-se, para este exemplo, um valor nulo, conforme esperado.

\[
c_t = \ln \left(\frac{P_t}{E[P_t]} \right) = \ln \left(\frac{FC}{\frac{(T-t)}{252}} \times \frac{FC}{\frac{(T-t+1)}{252}} \right) = \ln 1 = 0
\]

\[22\] A ser discutido adiante.
3.3 MODELO *RISKMETRICS*™

O modelo *RiskMetrics*™ assume que o valor médio dos retornos diários seja igual a zero. Assim, no cálculo das volatilidades e covariâncias utilizou-se um retorno médio igual a zero. Desta forma, as fórmulas utilizadas no modelo EWMA do *RiskMetrics*™ passam a ser as seguintes:

\[
\sigma = \sqrt{\sum_{t=1}^{T} \omega_t \times r_t^2}
\]

\[
\sigma_{12}^2 = \sum_{t=1}^{T} \omega_t \times r_{1t} \times r_{2t}
\]

Os pesos dos retornos são calculados para \(T \) tendendo a infinito, pois isto permite a utilização da fórmula recursiva.

Em relação ao mapeamento dos fluxos de caixa, escolheu-se os vértices de 21, 42, 63, 126, 252, 504, 756 e 1.008 dias úteis, que correspondem respectivamente a 1, 2, 3 e 6 meses e 1, 2, 3 e 4 anos.

3.4 MODELO DE SIMULAÇÃO HISTÓRICA

A geração de cenários compõe parte do processo de cálculo do *value-at-risk* por Simulação Histórica. Conforme explicação anterior, os cenários de fatores de desconto são dados por:
\[fd_{j,t} = fd_j \times \exp(r_{j,t}) \]

onde,

- \(fd_{j,t} \) é o fator de desconto de prazo \(j \) e cenário \(t \);

- \(fd_j \) é o fator de desconto real (atual) de prazo \(j \);

- \(r_{j,t} \) é o retorno para o prazo \(j \) e cenário \(t \).

Utilizando o conceito de choque ao invés de retorno e com o intuito de se calcular o value-at-risk de um dia, o cenário de fator de desconto será dado por:

\[fd_{j,t} = fd_j \times \exp(c_{j,t}) \]

A fórmula acima pode ser combinada com a de choque discutida no item anterior, lembrando que \(P_t \) pode ser substituído por \(fd_j \):

\[fd_{j,s} = \frac{fdc_{j,s}}{E[fdc_{j,s}]} \]

\[fd_{j,s} = fd_j \times \frac{fdc_{j,s}}{fdc_{j+1,s-1}} \]

onde,

- \(fd_{j,s} \) é o fator de desconto de prazo \(j \) no dia \(s \);

- \(fd_{j+1,s-1} \) é o fator de desconto de prazo \(j+1 \) no dia \(s-1 \);

- \(fdc_{1,s-1} \) é o fator de desconto de prazo \(1 \) no dia \(s-1 \), ou seja, o CDI do dia \(s-1 \);
\[
\frac{\text{fd}_{c,s+1,r-1}}{\text{fd}_{c,s-1}}
\]
é a taxa a termo de prazo \(j \) projetada para o dia \(s \).

Os resultados decorrentes dos cenários das carteiras são então obtidos por:

\[
\text{Resultado}_i = \sum_{j=1}^{j} \left(\text{fd}_{j,t} \times FC_j \right) - \text{MTM}_{\text{carteira}}
\]

onde,

\(\text{Resultado}_i \) é o resultado caso ocorra o cenário \(t \);

\(FC_j \) é o fluxo de caixa de prazo \(j \);

\(\text{MTM}_{\text{carteira}} \) é o valor de mercado da carteira obtido pela estrutura temporal do dia.

Para exemplificar o modelo de Simulação Histórica, tomou-se uma carteira de instrumentos pré-fixados com os seguintes fluxos de caixa:

<table>
<thead>
<tr>
<th>Saques</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600.000.000</td>
</tr>
<tr>
<td>2</td>
<td>500.000.000</td>
</tr>
<tr>
<td>3</td>
<td>400.000.000</td>
</tr>
<tr>
<td>4</td>
<td>300.000.000</td>
</tr>
<tr>
<td>5</td>
<td>200.000.000</td>
</tr>
<tr>
<td>6</td>
<td>100.000.000</td>
</tr>
</tbody>
</table>

Para que o exemplo não fique demasiado extenso, o cálculo do value-at-risk desta carteira será feito para uma janela histórica de apenas 20 dias úteis e intervalo de confiança de 95%. As estruturas temporais de taxas de juros utilizadas encontram-se no quadro abaixo.
O valor inicial da carteira esperado para a abertura do dia 23/02/2001 pode ser calculado a partir da ETTJ de fechamento do dia 22/02/2001. Para tanto, basta corrigir os fatores de desconto pela taxa de um dia (CDI).

Por exemplo, o fator de desconto de cinco dias esperado para o dia 23/02 é dado por:
Assim, o MTM da carteira esperado para o dia 23/02/2001 é dado por:

\[E[M_{MTM}^{23/02}] = \sum_{i=1}^{6} E[fd_{i,23/02}] \times FC_i = 0,999439 \times 600.000.000 + ... + 0,996618 \times 100.000.000 \]

\[E[M_{MTM}^{23/02}] = 2.096.851.125,33 \]

A partir das estruturas temporais de taxas de juros obtém-se os choques e depois os cenários para o dia 23/02.

<table>
<thead>
<tr>
<th>CENÁRIOS DE ETTJ - FATOR DE DESCONTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. do Cenário</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>
Como exemplo, o cenário de fator de desconto de seis dias obtido a partir do choque relativo aos dias 9 e 12/02 (cenário 9) é dado por:

\[
fd_{6,9} = E[fd_{6,23/02}] \times \frac{fd_{6,12/02}}{fd_{7,09/02}} = 0.996618 \times \frac{0.996652}{0.996109} = 0.996605
\]

Obtidos os cenários de estruturas temporais de taxas de juros pode-se, então, calcular os cenários de preços (MTM) da carteira. Os cenários de resultados (\(\Delta\) MTM) são obtidos a partir da comparação destes como o preço inicial esperado.

CENÁRIOS - SIMULAÇÃO HISTÓRICA

<table>
<thead>
<tr>
<th>No. do Cenário</th>
<th>Datas</th>
<th>MTM</th>
<th>Resultados</th>
<th>Resultados Ajustados</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22/02/01</td>
<td>2.096.878.667,77</td>
<td>27.542,45</td>
<td>25.545,71</td>
</tr>
<tr>
<td>2</td>
<td>21/02/01</td>
<td>2.096.857.487,95</td>
<td>6.362,63</td>
<td>4.365,89</td>
</tr>
<tr>
<td>3</td>
<td>20/02/01</td>
<td>2.096.864.056,03</td>
<td>12.930,71</td>
<td>10.933,97</td>
</tr>
<tr>
<td>4</td>
<td>19/02/01</td>
<td>2.096.850.030,02</td>
<td>(1.095,31)</td>
<td>(3.092,05)</td>
</tr>
<tr>
<td>5</td>
<td>16/02/01</td>
<td>2.096.831.701,61</td>
<td>(19.423,71)</td>
<td>(21.420,45)</td>
</tr>
<tr>
<td>6</td>
<td>15/02/01</td>
<td>2.096.826.151,85</td>
<td>(24.973,48)</td>
<td>(26.970,21)</td>
</tr>
<tr>
<td>7</td>
<td>14/02/01</td>
<td>2.096.874.078,31</td>
<td>22.952,98</td>
<td>20.956,25</td>
</tr>
<tr>
<td>8</td>
<td>13/02/01</td>
<td>2.096.856.078,98</td>
<td>4.953,65</td>
<td>2.956,91</td>
</tr>
<tr>
<td>9</td>
<td>12/02/01</td>
<td>2.096.839.872,62</td>
<td>(11.252,70)</td>
<td>(13.249,44)</td>
</tr>
<tr>
<td>10</td>
<td>09/02/01</td>
<td>2.096.850.483,02</td>
<td>(642,31)</td>
<td>(2.639,05)</td>
</tr>
<tr>
<td>11</td>
<td>08/02/01</td>
<td>2.096.861.577,49</td>
<td>10.452,16</td>
<td>8.455,42</td>
</tr>
<tr>
<td>12</td>
<td>07/02/01</td>
<td>2.096.846.035,30</td>
<td>(5.090,03)</td>
<td>(7.086,76)</td>
</tr>
<tr>
<td>13</td>
<td>06/02/01</td>
<td>2.096.845.598,06</td>
<td>(5.527,27)</td>
<td>(7.524,01)</td>
</tr>
<tr>
<td>14</td>
<td>05/02/01</td>
<td>2.096.844.415,12</td>
<td>(6.710,21)</td>
<td>(8.706,94)</td>
</tr>
<tr>
<td>15</td>
<td>02/02/01</td>
<td>2.096.857.039,53</td>
<td>5.914,20</td>
<td>3.917,47</td>
</tr>
<tr>
<td>16</td>
<td>01/02/01</td>
<td>2.096.855.041,85</td>
<td>3.916,52</td>
<td>1.919,78</td>
</tr>
<tr>
<td>17</td>
<td>31/01/01</td>
<td>2.096.839.751,61</td>
<td>(11.373,71)</td>
<td>(13.370,45)</td>
</tr>
<tr>
<td>18</td>
<td>30/01/01</td>
<td>2.096.858.262,08</td>
<td>7.136,75</td>
<td>5.140,01</td>
</tr>
<tr>
<td>19</td>
<td>29/01/01</td>
<td>2.096.869.316,72</td>
<td>18.191,40</td>
<td>16.194,66</td>
</tr>
<tr>
<td>20</td>
<td>26/01/01</td>
<td>2.096.856.795,35</td>
<td>5.670,02</td>
<td>3.673,29</td>
</tr>
</tbody>
</table>

Média

| | 1.996,74 | 0,00 |

O cenário 10 de MTM e o seu respectivo resultado são dados por:
\[MTM_{10} = \sum_{i=1}^{6} f_{d_{i,10}} \times FC_{i} = 0.999438 \times 600.000.000 + \ldots + 0.996620 \times 100.000.000 \]

\[MTM_{10} = 2.096.850.483,02 \]

\[\text{Resultado}_{10} = MTM_{10} - E[MTM_{23/02}] = 2.096.850.483,02 - 2.096.851.125,33 \]

\[\text{Resultado}_{10} = -642,31 \]

Para eliminar a tendência existente nesta amostra, realizou-se uma correção nos resultados, isto é, ajustou-se cada um dos resultados pela média da amostra, de modo que a tendência dos cenários ajustados fosse nula:

\[\text{Resultado}_j = \frac{\sum_{j=1}^{T} \text{Resultado}_j}{T} \]

Após ordenar os resultados ajustados, tem-se que o value-at-risk desta carteira com intervalo de confiança de 95% e holding period de um dia corresponde ao terceiro pior cenário obtido:

\[\text{Posição} = (1 - IC) \times \text{janela} + 1 = (1 - 95\%) \times 20 + 1 = 3 \]
<table>
<thead>
<tr>
<th>Posição</th>
<th>Resultados Ajustados</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(26.970,21)</td>
</tr>
<tr>
<td>2</td>
<td>(21.420,45)</td>
</tr>
<tr>
<td>3</td>
<td>(13.370,45)</td>
</tr>
<tr>
<td>4</td>
<td>(13.249,44)</td>
</tr>
<tr>
<td>5</td>
<td>(8.706,94)</td>
</tr>
<tr>
<td>6</td>
<td>(7.524,01)</td>
</tr>
<tr>
<td>7</td>
<td>(7.086,76)</td>
</tr>
<tr>
<td>8</td>
<td>(3.092,05)</td>
</tr>
<tr>
<td>9</td>
<td>(2.639,05)</td>
</tr>
<tr>
<td>10</td>
<td>1.919,78</td>
</tr>
<tr>
<td>11</td>
<td>2.956,91</td>
</tr>
<tr>
<td>12</td>
<td>3.673,29</td>
</tr>
<tr>
<td>13</td>
<td>3.917,47</td>
</tr>
<tr>
<td>14</td>
<td>4.365,89</td>
</tr>
<tr>
<td>15</td>
<td>5.140,01</td>
</tr>
<tr>
<td>16</td>
<td>8.455,42</td>
</tr>
<tr>
<td>17</td>
<td>10.933,97</td>
</tr>
<tr>
<td>18</td>
<td>16.194,66</td>
</tr>
<tr>
<td>19</td>
<td>20.956,25</td>
</tr>
<tr>
<td>20</td>
<td>25.545,71</td>
</tr>
</tbody>
</table>

Assim, o value-at-risk desta carteira para um intervalo de confiança de 95% e holding period de um dia é de R$ 13.370,45.

3.5 BACK-TESTING

O processo de back-testing envolve apenas duas informações: o value-at-risk e o resultado. Entende-se por resultado como sendo a diferença entre o valor de mercado da carteira no fechamento do dia e o valor na abertura do dia. No caso deste estudo, o valor de abertura corresponde ao valor de mercado do dia anterior corrigido pela taxa de juros de um dia.
A opção de se utilizar, neste trabalho, o modelo de Back-Testing adotado pelo Comitê da Basiléia dá-se, não só pela sua facilidade de implementação e simplicidade, mas também pelo fato do estudo em questão ser de cunho comparativo.

3.6 APRESENTAÇÃO DO TESTE EMPÍRICO

O teste empírico pode ser separado em duas partes. Na primeira, avaliou-se os modelos de Simulação Histórica e RiskMetricsTM frente a diferentes carteiras compostas por fluxos de caixa ativos pré-fixados. Na segunda, incluiu-se também o modelo do Banco Central do Brasil para comparação quanto ao aspecto da exigência de alocação de capital.

As carteiras utilizadas podem ser separadas em dois grupos. No primeiro grupo, que inclui as carteiras 1 e 2, elas possuem mesma *duration* (180 dias úteis) e mesmo valor de mercado em relação ao dia 16/03/2001 (último dia do teste), mas possuem perfis distintos e, como poderá ser visto adiante, diferentes *values-at-risk*. No segundo, com fluxos de caixa mais longos (1.000 dias úteis), elas possuem apenas valores nominais iguais, ou seja, apresentam a mesma soma dos fluxos de caixa nominais (R$ 1 bilhão).

A partir das carteiras acima se calculou o VaR por Simulação Histórica e pelo RiskMetricsTM utilizando-se intervalos de confiança de 95% e 99%, janelas históricas de 100, 200 e 300 dias úteis (para Simulação Histórica) e fatores de decaimento de 0,85,
0,94 e 0,97 (para o RiskMetricsTM). O período calculado se estende de 05/06/1996 a 16/03/2001 perfazendo um total de 1.200 dias úteis.

Os perfis dos fluxos de caixa das carteiras são apresentados de forma gráfica a seguir.
3.6.1 Grupo 1 - Carteiras com mesma duration e mesmo valor de mercado

1.1.1.1 Carteira 1

O gráfico abaixo ilustra os valores de VaR obtidos para esta carteira utilizando o modelo de Simulação Histórica com intervalo de confiança de 95% e holding period de 1 dia. As janelas históricas utilizadas foram de 100, 200 e 300 dias úteis. Pode-se observar que há momentos em que os valores calculados apresentam diferenças bastante significativas.
Observa-se que a utilização de janelas extensas faz com que a série de VaR seja mais estável, respondendo mais lentamente às oscilações de mercado. No caso de mercados onde o comportamento dos retornos é homocedástico, ou seja, sem mudanças de regimes, a utilização de janelas mais extensas é recomendável por oferecer uma amostra maior, oferecendo maior confiança à informação.

Entretanto, quando a série de retornos apresenta heterocedasticidade, ou seja, mudanças de regimes, janelas extensas impedem que o modelo capture estas mudanças de forma rápida. No caso do mercado brasileiro, a escolha de uma janela histórica de dados adequada é crucial para a performance do modelo. Entende-se por janela adequada, aquela que possui um número de cenários suficientes que reflitam as condições de mercado vigentes.
Quanto ao modelo do RiskMetrics™ a escolha do fator de decaimento no cálculo de volatilidade é que afeta os valores calculados. Observa-se no gráfico abaixo que a utilização de fatores de decaimento mais baixos faz com que o modelo reja de forma mais rápida às oscilações de mercado.

A principal vantagem do modelo RiskMetrics™ é a rapidez com que captura as mudanças de regime. No entanto, quando ocorre um retorno elevado, positivo ou negativo, sem que ocorra uma mudança de regime, o modelo gera um VaR bastante elevado. Isto gera um problema nos controles internos das instituições que utilizam o modelo, uma vez que pode fazer com que os gestores sejam obrigados a diminuir suas exposições repentinamente e depois observar no dia seguinte que a posição anterior estaria novamente enquadrada.
Do mesmo modo que a janela histórica adotada é um ponto crucial no modelo de Simulação Histórica, no RiskMetrics™ a escolha do fator de decaimento pode influenciar bastante o desempenho do modelo. Fatores de decaimento altos (próximos de um) tornam a série de values-at-risk menos volátil, ou seja, os valores apurados apresentam menores oscilações.

A tabela seguinte mostra o número de exceções ocorridas em cada modelo. A coluna “BT –” mostra o número de exceções em relação ao VaR calculado para a carteira 1. A coluna “BT +” mostra o número de exceções caso a carteira tivesse os seus fluxos invertidos (fluxos de caixa passivos).

<table>
<thead>
<tr>
<th>Janela / λ</th>
<th>BT -</th>
<th>BT +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulação Histórica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>72</td>
</tr>
<tr>
<td>200</td>
<td>52</td>
<td>60</td>
</tr>
<tr>
<td>300</td>
<td>52</td>
<td>61</td>
</tr>
<tr>
<td>RiskMetrics™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,85</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>0,94</td>
<td>52</td>
<td>35</td>
</tr>
<tr>
<td>0,97</td>
<td>44</td>
<td>29</td>
</tr>
</tbody>
</table>

De modo geral, observa-se que, para esta carteira, o RiskMetrics™ apresentou uma performance melhor no total de 1.200 amostras. No entanto, as exceções geradas pelo modelo de Simulação Histórica encontram-se mais próximas do total esperado para a amostra.

Caso fosse feito o back-test com a janela determinada pelo Comitê da Basiléia, ou seja, com janelas de 250 dias úteis, observa-se nos gráficos seguintes que cada
modelo apresentou comportamento diferente – quanto ao *back-test* – ao longo do tempo. Nos momentos de crise, nenhum dos modelos poderia ser considerado eficaz.

Cada um dos gráficos a seguir mostra a evolução do número de exceções ocorridas em cada modelo para um *back-test* com janela de 250 dias úteis.
Para uma amostra de 250 dias e intervalo de confiança de 95%, esperava-se que ocorresse em torno de treze exceções. No entanto, observa-se que nenhum dos modelos apresenta desempenho satisfatório nos períodos que compreendem as crises da Ásia (1997) e do Brasil (1999). Uma explicação para isto é que os modelos de value-at-risk não foram desenvolvidos para mensurar risco em momentos de crise. A ferramenta de stress-test deve ser utilizada nestes casos, deixando o VaR para ser usado em momentos de rotina.

Tomando-se os critérios do Comitê da Basiléia (classificação em zonas)\(^2\), é possível observar que o RiskMetrics\(^TM\) não chegou a atingir a zona amarela (de 18 a 26 exceções) em nenhum momento, independentemente do fator de decaimento utilizado. Já o modelo de Simulação Histórica apresentou pior desempenho no período de 1997 a 1999, sendo que para a janela de 300 dias chegou a atingir a zona vermelha no período referente à crise da Rússia (1998). Nos períodos recentes, principalmente a partir do ano de 2000, ambos os modelos apresentaram bom desempenho, estando sempre dentro da zona verde (até 17 exceções).

Os gráficos seguintes ilustram os mesmos cálculos realizados, porém utilizando-se o intervalo de confiança de 99%. Observando-se estes gráficos e a tabela com os dados consolidados, verifica-se que o modelo de Simulação Histórica para janelas de 200 e 300 dias apresenta bom desempenho, enquanto que o mesmo modelo com janela de 100 dias já não apresenta um desempenho tão bom. No caso do RiskMetrics\(^TM\), a utilização dos fatores de decaimento de 0,94 e 0,97 não apresenta bons resultados para o caso da carteira ativa. Isto, em parte, pode ser explicado pelo problema de assimetria na distribuição de retornos.
CARTEIRA 1 – VAR SIMULAÇÃO HISTÓRICA 99% 1 DIA – COMPARAÇÃO ENTRE JANELAS

CARTEIRA 1 – VAR RISKMETRICSTM 99% 1 DIA – COMPARAÇÃO ENTRE FATORES DE DECAIMENTO

23 Conforme descrito no item 2.9 deste estudo.
Os gráficos seguintes ilustram o número de exceções observadas em janelas móveis de 250 observações.
Enquanto, para intervalos de confiança de 95%, o $RiskMetrics^{TM}$ apresenta melhor desempenho, no caso de intervalos de confiança de 99%, o modelo de Simulação Histórica apresenta melhores resultados. Para as três janelas utilizadas, este último não chega a ser enquadrado na zona vermelha (10 exceções) e, no período mais recente, encontra-se enquadrado na zona verde (até quatro exceções). Entretanto, é possível observar que o advento da crise da Argentina (março de 2001) faz com que o número de exceções aumente.

1.1.1.2 Carteira 2

Os mesmos testes realizados para a carteira 1 foram aplicados à carteira 2. Os gráficos seguintes apresentam os resultados obtidos.
CARTEIRA 2 – VAR SIMULAÇÃO HISTÓRICA 95% 1 DIA – COMPARAÇÃO ENTRE JANELAS

A tabela seguinte mostra o número de exceções ocorridas na amostra de 1.200 dias úteis.
Como se vê, os números obtidos não diferem muito daqueles obtidos com a carteira 1, apesar dos perfis diferentes. O modelo de Simulação Histórica apresenta bom desempenho gerando um número de exceções bastante próximo do esperado. Apenas a utilização da janela mais curta de 100 dias para os fluxos passivos (BT+) gera um número de exceções pouco acima do esperado. No caso do Riskmetrics™, o número de exceções gerado encontra-se significativamente abaixo do esperado, principalmente os valores referentes à posição passiva (BT+).

Uma análise por amostras de 250 dias úteis (amostra adotada pelo Comitê da Basiléia para a realização do back-test) pode revelar com maiores detalhes o desempenho dos modelos ao longo deste período. Os gráficos a seguir ilustram os valores obtidos.
Pode-se observar acima que o modelo RiskMetrics™, para os fatores de decaimento utilizados, praticamente não chega a atingir a zona amarela (18 a 26 exceções) e em nenhum momento chega a ter mais de 26 exceções (zona vermelha). Já o modelo de Simulação Histórica, como já ocorreu na carteira 1, apresenta pior
desempenho, atingindo, nos momentos de crise, a zona vermelha. Após a crise do Real (1999), ou seja, em momento de calmaria no mercado, o modelo tem um bom desempenho para as três janelas utilizadas.

Os gráficos seguintes ilustram os valores obtidos para a mesma carteira, porém com a adoção do intervalo de confiança de 99%.

CARTEIRA 2 – VAR SIMULAÇÃO HISTÓRICA 99% 1 DIA – COMPARAÇÃO ENTRE JANELAS
Observando a tabela abaixo, verifica-se que, novamente para o intervalo de confiança de 99%, a performance do RiskMetrics™ em relação aos fatores de decaimento de 0,94 e 0,97 deixa a desejar, enquanto o modelo de Simulação Histórica apresenta um número de exceções não muito distante do esperado para amostras de 1.200 elementos.

<table>
<thead>
<tr>
<th>Carteira 2 - INTERVALO DE CONFIANÇA 99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janela / λ</td>
</tr>
<tr>
<td>Simulação Histórica</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RiskMetrics™</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Exceções esperadas</td>
</tr>
</tbody>
</table>
Observando-se a amostra total por seções de 250 dias, mesmo em momentos de crise, o modelo de Simulação Histórica não chega a atingir dez exceções (zona vermelha). Já o RiskMetrics™, para os fatores de decaimento de 0,94 e 0,97, chega a onze exceções no período da crise da Ásia (1997). É curioso notar que isto ocorre somente para o caso em que a posição assumida é ativa. A explicação para isso é a assimetria dos retornos de taxa de juros. Em momentos de crise, a taxa de juros eleva-se rapidamente para um patamar bastante elevado. As quedas na taxa de juros, por sua vez, costumam ocorrer de forma lenta e gradual. Foi este fenômeno que acabou refletindo nas carteiras que possuíam posições ativas pré-fixadas.
1.1.1.3 Comparação dos Resultados das Carteiras 1 e 2

As carteiras 1 e 2, como descrito anteriormente, possuem duration e MTM iguais. Entretanto, tendo em vista que os perfis de fluxos de caixa são bastante diferentes, é esperado que as carteiras não apresentem o mesmo risco de mercado. Enquanto a medida de duration não demonstra isto, a medida de value-at-risk pode mostrar a diferença de risco existente. Os gráficos seguintes ilustram os valores obtidos para os dois modelos em estudo, utilizando intervalos de confiança de 95 e 99%. Para o modelo de Simulação Histórica utilizou-se janela de 200 dias e para o RiskMetrics™, fator de decaimento de 0,94.
VAR SIMULAÇÃO HISTÓRICA - COMPARAÇÃO ENTRE CARTEIRAS 1 E 2
Intervalo de Confiabilidade 95% - Holding Period 1 dia - Janela 200 dias

05/06/96 05/08/96 05/10/96 05/12/96 05/02/97 05/04/97 05/06/97 05/08/97 05/10/97 05/12/97 05/02/98 05/04/98 05/06/98 05/08/98 05/10/98 05/12/98 05/02/99 05/04/99 05/06/99 05/08/99 05/10/99 05/12/99 05/02/00 05/04/00 05/06/00 05/08/00 05/10/00 05/12/00 05/02/01

- VaR (-) 95% Carteira 1
- VaR (+) 95% Carteira 1
- VaR (-) 95% Carteira 2
- VaR (+) 95% Carteira 2

VAR SIMULAÇÃO HISTÓRICA - COMPARAÇÃO ENTRE CARTEIRAS 1 E 2
Intervalo de Confiabilidade 99% - Holding Period 1 dia - Janela 200 dias

05/06/96 05/08/96 05/10/96 05/12/96 05/02/97 05/04/97 05/06/97 05/08/97 05/10/97 05/12/97 05/02/98 05/04/98 05/06/98 05/08/98 05/10/98 05/12/98 05/02/99 05/04/99 05/06/99 05/08/99 05/10/99 05/12/99 05/02/00 05/04/00 05/06/00 05/08/00 05/10/00 05/12/00 05/02/01

- VaR (-) 99% Carteira 1
- VaR (+) 99% Carteira 1
- VaR (-) 99% Carteira 2
- VaR (+) 99% Carteira 2
Pelos gráficos acima, é possível observar que os values-at-risk calculados para as duas carteiras não são exatamente iguais. Neste exemplo, bastaria olhar para os perfis dos fluxos de caixa para saber que os riscos de mercado não seriam os mesmos. Entretanto, a simples observação dos gráficos de fluxos de caixa nem sempre evidencia
facilmente as diferenças de riscos. Tampouco a medida de *duration* seria útil nestes casos. Já a medida de *value-at-risk*, ao considerar os riscos de mercado associados em cada prazo, evidencia quaisquer diferenças nos riscos de mercado incorridos pelas carteiras.

3.6.2 Grupo 2 - Carteiras com valores nominais iguais

A intenção de comparar os cálculos de VaR para as carteiras deste grupo é observar a performance dos modelos para carteiras com perfis bastante diversos e com prazos mais extensos do que aqueles do primeiro grupo. Os gráficos e tabelas apresentados a seguir são similares aos discutidos anteriormente no item 3.6.1.

1.1.1.4 Carteira 3

A carteira 3 apresenta fluxos de caixa com valores nominais iguais que se estendem de 1 a 1.000 dias úteis. Os gráficos seguintes ilustram os *values-at-risk* e resultados de *back-test* calculados para o período de 1.200 dias úteis anteriores a 16/03/2001.
Os *back-tests* acima são apresentados de forma resumida nas tabelas a seguir:
As tabelas acima evidenciam que o modelo paramétrico (*RiskMetrics™*) não apresenta bom desempenho, principalmente quando o intervalo de confiança utilizado é o de 99%. Isto pode ser explicado pela quantidade de crises e conseqüentes elevações nas taxas de juros pré-fixadas vivenciadas no País nos últimos anos. Deste modo, ocorre o "fenômeno" de *fat-tails* na distribuição de retornos, ou seja, os eventos extremos acabam ocorrendo com maior frequência do que o previsto pela distribuição normal. No caso de posições ativas, o *fat-tail* na cauda esquerda da distribuição de retornos é ainda maior, já que as elevações nas taxas de juros são muito mais elevadas e súbitas do que as quedas. Dowd (1998: 87-88) discute resumidamente esta questão.
O modelo de Simulação Histórica por não assumir formas de distribuição de retornos, praticamente não apresenta este problema. O número de exceções observadas é próximo ao esperado. Analisando os dados pelo critério do Comitê da Basiléia, ou seja, por amostras de 250 dias, pode-se observar, pelos gráficos abaixo, que o modelo não-paramétrico em questão (Simulação Histórica) encontra-se continuamente na zona amarela apenas nos períodos de crise (Ásia-1997, Rússia-1998 e Brasil-1999) independentemente do intervalo de confiança utilizado. O modelo paramétrico, por sua vez, para o intervalo de confiança de 95% praticamente não atinge a zona vermelha (acima de 26 exceções em 250). No entanto, quando o intervalo de confiança passa a ser de 99%, em diversas oportunidades o modelo ingressa na zona vermelha (acima de 9 exceções).
NÚMERO DE EXCEÇÕES PARA UMA JANELA DE BACK-TEST DE 250 DIAS

VaR RiskMetrics® - 95% - 1 dia - Carteira 3

05/06/97 05/08/97 05/10/97 05/12/97 05/02/98 05/04/98 05/06/98 05/08/98 05/10/98 05/12/98 05/02/99 05/04/99 05/06/99 05/08/99 05/10/99 05/02/00 05/04/00 05/06/00 05/08/00 05/10/00

VaR (-) 0,85 VaR (+) 0,85

VaR (-) 0,94 VaR (+) 0,94

VaR (-) 0,97 VaR (+) 0,97

NÚMERO DE EXCEÇÕES PARA UMA JANELA DE BACK-TEST DE 250 DIAS

VaR Simulação Histórica - 99% - 1 dia - Carteira 3

05/06/97 05/08/97 05/10/97 05/12/97 05/02/98 05/04/98 05/06/98 05/08/98 05/10/98 05/12/98 05/02/99 05/04/99 05/06/99 05/08/99 05/10/99 05/02/00 05/04/00 05/06/00 05/08/00 05/10/00

VaR (-) 100 VaR (+) 100

VaR (-) 200 VaR (+) 200

VaR (-) 300 VaR (+) 300
1.1.1.5 Carteira 4

A carteira 4 apresenta perfil de fluxos de caixa similar ao fornecido por uma carteira típica de ativos pré-fixados de uma instituição financeira brasileira. Os gráficos seguintes ilustram os values-at-risk e resultados de back-test calculados para o período de 1.200 dias úteis anteriores a 16/03/2001. As tabelas resumem o resultado dos back-tests realizados.
VAR SIMULAÇÃO HISTÓRICA - 95% - 1 dia - Carteira 4

05/06/96 05/08/96 05/10/96 05/12/96 05/02/97 05/04/97 05/06/97 05/08/97 05/10/97 05/12/97 05/02/98 05/04/98 05/06/98 05/08/98 05/10/98 05/12/98 05/02/99 05/04/99 05/06/99 05/08/99 05/10/99 05/12/99 05/02/00 05/04/00 05/06/00 05/08/00 05/10/00 05/12/00 05/02/01

- 10.000.000 20.000.000 30.000.000

VAR RISKMETRICS™ - 95% - 1 dia - Carteira 4

05/06/96 05/08/96 05/10/96 05/12/96 05/02/97 05/04/97 05/06/97 05/08/97 05/10/97 05/12/97 05/02/98 05/04/98 05/06/98 05/08/98 05/10/98 05/12/98 05/02/99 05/04/99 05/06/99 05/08/99 05/10/99 05/12/99 05/02/00 05/04/00 05/06/00 05/08/00 05/10/00 05/12/00 05/02/01

VAR (-) 0,85 VAR (+) 0,85
VAR (-) 0,94 VAR (+) 0,94
VAR (-) 0,97 VAR (+) 0,97
Resultado
Os valores mostrados nas tabelas acima são semelhantes àqueles obtidos pela carteira 1. O fato do perfil destas carteiras ser similar, apesar da carteira 4 ser mais longa, contribui para que tal semelhança ocorra. Para esta carteira, o modelo paramétrico apresenta bom desempenho quando calculado com intervalo de confiança de 95%. Quando é utilizado o intervalo de confiança de 99%, o cálculo com fatores de decaimento de 0,94 e 0,97 deixa a desejar, principalmente no caso de posições ativas. Isto é ressaltado nos gráficos seguintes.
NÚMERO DE EXCEÇÕES PARA UMA JANELA DE BACK-TEST DE 250 DIAS

VaR Simulação Histórica - 95% - 1 dia - Carteira 4

- 05/06/97
- 05/08/97
- 05/10/97
- 05/12/97
- 05/02/98
- 05/04/98
- 05/06/98
- 05/08/98
- 05/10/98
- 05/12/98
- 05/02/99
- 05/04/99
- 05/06/99
- 05/08/99
- 05/10/99
- 05/12/99
- 05/02/00
- 05/04/00
- 05/06/00
- 05/08/00
- 05/10/00

VaR (-) 0,85
VaR (+) 0,85
VaR (-) 0,94
VaR (+) 0,94
VaR (-) 0,97
VaR (+) 0,97
NÚMERO DE EXCEÇÕES PARA UMA JANELA DE BACK-TEST DE 250 DIAS
VaR Simulação Histórica - 99% - 1 dia - Carteira 4

05/06/97 05/08/97 05/10/97 05/12/97 05/02/98 05/04/98 05/06/98 05/08/98 05/10/98 05/12/98 05/02/99 05/04/99 05/06/99 05/08/99 05/10/99 05/12/99 05/02/00 05/04/00 05/06/00 05/08/00 05/10/00

VaR (-) 0,85 VaR (+) 0,85
VaR (-) 0,94 VaR (+) 0,94
VaR (-) 0,97 VaR (+) 0,97

NÚMERO DE EXCEÇÕES PARA UMA JANELA DE BACK-TEST DE 250 DIAS
VaR RiskMetrics™ - 99% - 1 dia - Carteira 4
1.1.1.6 Carteira 5

Carteiras com fluxos crescentes são menos prováveis no mercado financeiro brasileiro, em parte devido à inexistência de operações de longo prazo. Enquanto no mercado norte-americano são negociados títulos do tesouro americano com *maturity* de 30 anos, no Brasil, raramente o Banco Central consegue colocar no mercado títulos em reais com prazos superiores a dois anos. No entanto, é interessante observar como os modelos se comportam para carteiras com este perfil de fluxos de caixa. Os *back-tests* realizados para esta carteira são apresentados nos gráficos e tabelas a seguir.
VAR RISKMETRICSTM - 99% - 1 dia - Carteira 5

<table>
<thead>
<tr>
<th>Janela / λ</th>
<th>BT -</th>
<th>BT +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulação Histórica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>68</td>
<td>66</td>
</tr>
<tr>
<td>200</td>
<td>52</td>
<td>59</td>
</tr>
<tr>
<td>300</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>RiskMetricsTM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,85</td>
<td>131</td>
<td>130</td>
</tr>
<tr>
<td>0,94</td>
<td>112</td>
<td>106</td>
</tr>
<tr>
<td>0,97</td>
<td>98</td>
<td>91</td>
</tr>
<tr>
<td>Exceções esperadas</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Janela / λ</th>
<th>BT -</th>
<th>BT +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulação Histórica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>200</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>300</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>RiskMetricsTM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,85</td>
<td>66</td>
<td>53</td>
</tr>
<tr>
<td>0,94</td>
<td>67</td>
<td>45</td>
</tr>
<tr>
<td>0,97</td>
<td>63</td>
<td>47</td>
</tr>
<tr>
<td>Exceções esperadas</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Para esta carteira, enquanto o modelo de Simulação Histórica continua mostrando-se adequado para as janelas utilizadas, independentemente do intervalo de confiança adotado, o modelo paramétrico mostra-se bastante inadequado para os três fatores de decaimento utilizados, tanto para o intervalo de confiança de 95% quanto 99%.

Observando-se os gráficos abaixo e comparando-os com os das carteiras anteriores, pode-se notar que o desempenho do modelo paramétrico tende a piorar quando aplicado a carteiras com este perfil no mercado brasileiro. Já o modelo de Simulação Histórica não apresenta diferenças significativas de desempenho quando aplicado a diversos perfis de fluxos de caixa.
NÚMERO DE EXCEÇÕES PARA UMA JANELA DE BACK-TEST DE 250 DIAS
VaR RiskMetrics™ - 95% - 1 dia - Carteira 5

- 05/06/97 - 05/08/97 - 05/10/97 - 05/12/97
- 05/02/98 - 05/04/98 - 05/06/98 - 05/08/98
- 05/10/98 - 05/12/98 - 05/02/99 - 05/04/99
- 05/06/99 - 05/08/99 - 05/10/99 - 05/12/99
- 05/02/00 - 05/04/00 - 05/06/00 - 05/08/00
- 05/10/00

VaR (-) 0,85 VaR (+) 0,85
VaR (-) 0,94 VaR (+) 0,94
VaR (-) 0,97 VaR (+) 0,97

NÚMERO DE EXCEÇÕES PARA UMA JANELA DE BACK-TEST DE 250 DIAS
VaR Simulação Histórica - 99% - 1 dia - Carteira 5

- 05/06/97 - 05/08/97 - 05/10/97 - 05/12/97
- 05/02/98 - 05/04/98 - 05/06/98 - 05/08/98
- 05/10/98 - 05/12/98 - 05/02/99 - 05/04/99
- 05/06/99 - 05/08/99 - 05/10/99 - 05/12/99
- 05/02/00 - 05/04/00 - 05/06/00 - 05/08/00
- 05/10/00

VaR (-) 100 VaR (+) 100
VaR (-) 200 VaR (+) 200
VaR (-) 300 VaR (+) 300
3.6.3 Comparação com o Modelo do Banco Central do Brasil - Alocação de Capital

Devido ao fato do modelo do Banco Central do Brasil (Bacen) estar mais voltado à questão de alocação de capital para fins de regulamentação do que à questão de implementação de controles internos de risco de mercado, a comparação com o modelo instituído pelo Bacen será realizada em relação à alocação de capital regida pelo Comitê da Basiléia.

Pelo acordo de 1996, o capital para cobrir os riscos de mercado que os bancos dos países signatários devem alocar é o máximo entre o VaR do dia, calculado para o intervalo de confiança de 99% e holding period de 10 dias, e a média dos values-at-risk dos últimos 60 dias, calculados da mesma forma, multiplicada por um fator que varia entre 3 e 4. Este fator multiplicativo é determinado pelo back-test do modelo...
proprietário. No caso dos modelos que se encontrem na zona verde, este fator multiplicativo é o mínimo, ou seja, três.

As tabelas abaixo mostram de forma resumida os valores obtidos. Para obter-se o value-at-risk para holding period de 10 dias exigido pelos órgãos regulamentadores, multiplicou-se o VaR de um dia pela raiz quadrada de dez conforme especificado tanto pelo Banco Central do Brasil quanto pelo Comitê da Basiléia.

<table>
<thead>
<tr>
<th>Janela / λ</th>
<th>BT -</th>
<th>BT +</th>
<th>BT -</th>
<th>BT +</th>
<th>BT -</th>
<th>BT +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulação Histórica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>(1.157.478)</td>
<td>1.186.451</td>
<td>(1.422.259)</td>
<td>1.686.452</td>
<td>(847.714)</td>
<td>818.996</td>
</tr>
<tr>
<td>200</td>
<td>(1.249.964)</td>
<td>1.284.527</td>
<td>(1.533.173)</td>
<td>1.570.995</td>
<td>(1.061.830)</td>
<td>961.815</td>
</tr>
<tr>
<td>300</td>
<td>(1.628.499)</td>
<td>1.698.306</td>
<td>(2.674.040)</td>
<td>3.336.903</td>
<td>(1.154.465)</td>
<td>1.221.004</td>
</tr>
<tr>
<td>RiskMetrics™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,85</td>
<td>(891.101)</td>
<td>891.101</td>
<td>(1.447.787)</td>
<td>1.447.787</td>
<td>(572.880)</td>
<td>572.880</td>
</tr>
<tr>
<td>0,94</td>
<td>(959.132)</td>
<td>959.132</td>
<td>(1.425.901)</td>
<td>1.425.901</td>
<td>(675.273)</td>
<td>675.273</td>
</tr>
<tr>
<td>0,97</td>
<td>(1.027.732)</td>
<td>1.027.732</td>
<td>(1.390.429)</td>
<td>1.390.429</td>
<td>(801.617)</td>
<td>801.617</td>
</tr>
<tr>
<td>Banco Central</td>
<td>(853.195)</td>
<td>853.195</td>
<td>(1.314.268)</td>
<td>1.314.268</td>
<td>(437.599)</td>
<td>437.599</td>
</tr>
</tbody>
</table>
Carteira 2 - INTERVALO DE CONFIANÇA 99% - PERÍODO: 28/06/2000 a 16/03/2001

<table>
<thead>
<tr>
<th>Janela / (\lambda)</th>
<th>BT -</th>
<th>BT +</th>
<th>BT -</th>
<th>BT +</th>
<th>BT -</th>
<th>BT +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulação Histórica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>(1.282.813)</td>
<td>1.222.261</td>
<td>(1.636.885)</td>
<td>1.592.601</td>
<td>(882.438)</td>
<td>816.894</td>
</tr>
<tr>
<td>200</td>
<td>(1.573.132)</td>
<td>1.576.480</td>
<td>(1.806.868)</td>
<td>1.775.431</td>
<td>(1.224.843)</td>
<td>1.078.323</td>
</tr>
<tr>
<td>300</td>
<td>(1.861.446)</td>
<td>1.926.739</td>
<td>(2.669.874)</td>
<td>3.432.892</td>
<td>(1.509.940)</td>
<td>1.637.548</td>
</tr>
<tr>
<td>RiskMetrics™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,85</td>
<td>(931.383)</td>
<td>931.383</td>
<td>(1.581.555)</td>
<td>1.581.555</td>
<td>(609.736)</td>
<td>609.736</td>
</tr>
<tr>
<td>0,94</td>
<td>(1.009.108)</td>
<td>1.009.108</td>
<td>(1.565.455)</td>
<td>1.565.455</td>
<td>(713.224)</td>
<td>713.224</td>
</tr>
<tr>
<td>0,97</td>
<td>(1.100.221)</td>
<td>1.100.221</td>
<td>(1.536.548)</td>
<td>1.536.548</td>
<td>(833.840)</td>
<td>833.840</td>
</tr>
<tr>
<td>Banco Central</td>
<td>(868.143)</td>
<td>868.143</td>
<td>(1.316.890)</td>
<td>1.316.890</td>
<td>(448.096)</td>
<td>448.096</td>
</tr>
</tbody>
</table>

Carteira 3 - INTERVALO DE CONFIANÇA 99% - PERÍODO: 28/06/2000 a 16/03/2001

<table>
<thead>
<tr>
<th>Janela / (\lambda)</th>
<th>BT -</th>
<th>BT +</th>
<th>BT -</th>
<th>BT +</th>
<th>BT -</th>
<th>BT +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulação Histórica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>(72.842.851)</td>
<td>75.617.635</td>
<td>(91.882.611)</td>
<td>111.012.061</td>
<td>(53.955.758)</td>
<td>42.054.916</td>
</tr>
<tr>
<td>200</td>
<td>(87.766.757)</td>
<td>94.292.204</td>
<td>(100.406.355)</td>
<td>107.747.169</td>
<td>(71.581.738)</td>
<td>60.616.650</td>
</tr>
<tr>
<td>300</td>
<td>(103.528.079)</td>
<td>114.545.091</td>
<td>(147.407.494)</td>
<td>184.405.773</td>
<td>(85.536.128)</td>
<td>103.568.987</td>
</tr>
<tr>
<td>RiskMetrics™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,85</td>
<td>(40.963.548)</td>
<td>40.963.548</td>
<td>(69.810.822)</td>
<td>69.810.822</td>
<td>(25.828.111)</td>
<td>25.828.111</td>
</tr>
<tr>
<td>0,94</td>
<td>(44.460.213)</td>
<td>44.460.213</td>
<td>(68.925.382)</td>
<td>68.925.382</td>
<td>(30.906.310)</td>
<td>30.906.310</td>
</tr>
<tr>
<td>Banco Central</td>
<td>(45.229.784)</td>
<td>45.229.784</td>
<td>(68.208.997)</td>
<td>68.208.997</td>
<td>(23.325.982)</td>
<td>23.325.982</td>
</tr>
</tbody>
</table>

Carteira 4 - INTERVALO DE CONFIANÇA 99% - PERÍODO: 28/06/2000 a 16/03/2001

<table>
<thead>
<tr>
<th>Janela / (\lambda)</th>
<th>BT -</th>
<th>BT +</th>
<th>BT -</th>
<th>BT +</th>
<th>BT -</th>
<th>BT +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulação Histórica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>(27.398.345)</td>
<td>29.268.735</td>
<td>(33.309.645)</td>
<td>42.984.220</td>
<td>(21.138.299)</td>
<td>19.002.660</td>
</tr>
<tr>
<td>300</td>
<td>(38.883.013)</td>
<td>39.909.368</td>
<td>(61.198.028)</td>
<td>77.810.822</td>
<td>(25.828.111)</td>
<td>25.828.111</td>
</tr>
<tr>
<td>RiskMetrics™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,85</td>
<td>(20.129.112)</td>
<td>20.129.112</td>
<td>(32.783.278)</td>
<td>32.783.278</td>
<td>(12.667.185)</td>
<td>12.667.185</td>
</tr>
<tr>
<td>0,94</td>
<td>(21.695.832)</td>
<td>21.695.832</td>
<td>(32.286.346)</td>
<td>32.286.346</td>
<td>(15.100.229)</td>
<td>15.100.229</td>
</tr>
<tr>
<td>0,97</td>
<td>(23.305.906)</td>
<td>23.305.906</td>
<td>(31.510.801)</td>
<td>31.510.801</td>
<td>(18.176.780)</td>
<td>18.176.780</td>
</tr>
</tbody>
</table>

Carteira 5 - INTERVALO DE CONFIANÇA 99% - PERÍODO: 28/06/2000 a 16/03/2001

<table>
<thead>
<tr>
<th>Janela / (\lambda)</th>
<th>BT -</th>
<th>BT +</th>
<th>BT -</th>
<th>BT +</th>
<th>BT -</th>
<th>BT +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulação Histórica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>(99.215.719)</td>
<td>101.141.997</td>
<td>(126.096.698)</td>
<td>147.922.491</td>
<td>(66.521.614)</td>
<td>53.431.681</td>
</tr>
<tr>
<td>200</td>
<td>(123.706.279)</td>
<td>130.953.085</td>
<td>(135.940.295)</td>
<td>147.479.678</td>
<td>(104.970.672)</td>
<td>85.319.022</td>
</tr>
<tr>
<td>300</td>
<td>(142.695.706)</td>
<td>158.671.643</td>
<td>(200.531.839)</td>
<td>246.457.654</td>
<td>(126.017.517)</td>
<td>146.253.569</td>
</tr>
<tr>
<td>RiskMetrics™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,85</td>
<td>(44.736.801)</td>
<td>44.736.801</td>
<td>(77.110.959)</td>
<td>77.110.959</td>
<td>(29.572.072)</td>
<td>30.448.003</td>
</tr>
<tr>
<td>0,94</td>
<td>(48.763.871)</td>
<td>48.763.871</td>
<td>(76.276.725)</td>
<td>76.276.725</td>
<td>(33.990.823)</td>
<td>33.990.823</td>
</tr>
<tr>
<td>0,97</td>
<td>(53.615.423)</td>
<td>53.615.423</td>
<td>(75.160.265)</td>
<td>75.160.265</td>
<td>(39.880.101)</td>
<td>39.880.101</td>
</tr>
<tr>
<td>Banco Central</td>
<td>(60.102.103)</td>
<td>60.102.103</td>
<td>(69.740.481)</td>
<td>89.740.481</td>
<td>(31.137.376)</td>
<td>31.137.376</td>
</tr>
</tbody>
</table>
Apesar da crença existente de que o modelo do Banco Central é bastante conservador em relação aos modelos proprietários24, observa-se que isto não procede para todas as carteiras e modelos estudados. O modelo do Bacen só é maior, em média, para algumas carteiras e quando comparado ao modelo \textit{RiskMetrics}TM. Isto pode ser explicado, em parte, pelo efeito de compensação ou amortização do fator multiplicativo adotado pelo Banco Central (entre um e três)25. Quanto ao modelo de Simulação Histórica, verifica-se que o capital médio alocado é consistentemente superior ao dos outros modelos. Entretanto, esta análise merece aprofundamentos posteriores, pois a forma usual de se calcular o VaR de 10 dias neste modelo é através do cálculo de choques entre estruturas temporais de taxas de juros que distam dez dias um do outro.

\textbf{3.6.4 Conclusões do Estudo Empírico}

Utilizando as carteiras acima, foi possível observar que, para o mercado brasileiro de renda fixa pré-fixada, o modelo \textit{RiskMetrics}TM mostra desempenho bastante inadequado quando aplicado para o intervalo de confiança de 99%. Isto pode ser explicado pelo fato do modelo assumir a hipótese de distribuição normal de retornos em contraposição aos problemas de assimetria e de fat-tail existentes neste mercado. A utilização deste modelo para intervalos de confiança menores, como o de 95%, apresentou um desempenho aceitável para a maior parte das carteiras testadas.

24 A crença se deve ao fato do Banco Central utilizar a volatilidade máxima encontrada entre os vértices adotados e entre os fatores de decaimento de 0,94 e 0,85. Ver Nota Técnica sobre a Circular 2972 divulgada pelo próprio Banco Central.

25 Isto é discutido no item 2.7.1.2
A quarta edição do documento técnico do RiskMetricsTM apresenta nos apêndices (1996: 235-242) uma forma de aperfeiçoar o modelo contornando o problema de fat-tail. Entretanto, a questão de assimetria da distribuição de retornos não é solucionada. Além disso, este aperfeiçoamento implica em maior utilização de recursos computacionais, dificultando sua implementação e entendimento.

O modelo de Simulação Histórica, apesar de apresentar uma "reação" mais lenta às oscilações de mercado, mostra desempenho aceitável tanto para intervalos de confiança de 95% quanto 99%. Apesar de exigir mais recursos computacionais, a simplicidade na aplicação e a facilidade de entendimento apresentam-se como trunfos do modelo. O principal diferencial deste em relação ao modelo paramétrico é o fato de não assumir um formato de distribuição.
4 CONSIDERAÇÕES FINAIS

A mensuração dos riscos de mercado ganhou destaque na gestão das instituições financeiras na última década por possibilitar uma série de vantagens competitivas. Dentre estas, pode-se citar uma melhor precificação dos instrumentos financeiros, auxílio à tomada de decisão e avaliação de desempenho pela visão integrada de risco e retorno, melhor alocação de recursos, além do aprimoramento dos controles internos, entre outras.

Dentre as metodologias de mensuração de risco de mercado, destaca-se o value-at-risk. A principal vantagem que esta metodologia possui é a possibilidade de se apresentar os riscos de mercado de uma instituição, unidade de negócio ou carteira em um único número expresso em unidades monetárias. Além disso, o valor apresentado conjuga a exposição incorrida e as condições de mercado.

Com isso, o value-at-risk passou a ser adotado pela maioria das instituições financeiras como principal ferramenta de mensuração de risco de mercado. Faz-se necessário, no entanto, uma ressalva. O value-at-risk não foi concebido para ser utilizado em condições extremas de mercado. Para tanto, é preciso que se realize também os stress-tests, de modo a verificar as possíveis perdas frente a determinados cenários adversos de mercado. Outra deficiência encontrada nos modelos de value-at-risk refere-se à falta de informação quanto ao hedge a ser feito. Por tratar-se de uma metodologia que fornece uma visão integrada dos riscos de mercado, ela não permite ao gestor visualizar o melhor hedge.
Desta forma, metodologias como a *duration* continuam sendo utilizadas como ferramentas complementares ao *value-at-risk* na gestão de risco de mercado, pois ela fornece ao gestor informações que possibilitam o *hedge* da carteira.

Neste contexto, este trabalho comparou os principais modelos de *value-at-risk* utilizados: o *RiskMetrics*™ e a Simulação Histórica. A comparação realizada apresentou as vantagens e desvantagens de cada modelo e o desempenho destes no mercado brasileiro de renda fixa pré-fixada, através da metodologia de *back-test* adotada pelo Comitê da Basiléia.

Pelas peculiaridades do mercado brasileiro, ou seja, convenções de mercado diferentes das de outros países e maior grau de intervenção do Estado, fez-se necessário uma avaliação das hipóteses assumidas pelos modelos de *value-at-risk* e como isso afeta seus desempenhos.

Assim, o estudo mostrou as deficiências associadas a cada modelo. No entanto, independentemente do modelo utilizado, o *value-at-risk* é uma ferramenta importante na gestão do risco de mercado de instituições financeiras. O ponto relevante é que os gestores devem ter em mente as deficiências existentes nos seus modelos para que possam compreender e interpretar os valores gerados. Para tanto, é necessário que a instituição conte com um grupo de profissionais motivados e qualificados. De nada adianta a instituição investir na implementação de modelos sofisticados, se ela não contar com bons profissionais. É preferível que se invista prioritariamente em recursos humanos do que em pacotes contendo modelos sofisticados.

Quanto aos modelos, é importante ressaltar que a hipótese de distribuição normal dos retornos assumida pelo modelo *RiskMetrics*™ não se mostrou adequada ao mercado
brasileiro, principalmente no que tange ao fator de risco de taxa de juros. Observou-se que este mercado apresenta-se bastante assimétrico, além de *apresentar fat-tails* bastante significativos.

Este é o principal motivo pelo qual um número cada vez maior de instituições financeiras internacionais passou a adotar o modelo de Simulação Histórica em detrimento dos modelos de variância-covariância. O próprio banco J. P. Morgan passou a utilizar o modelo de Simulação Histórica a partir do quarto trimestre de 1998, como é informado em seu *annual report* do mesmo ano. No quadro abaixo, pode-se observar os modelos adotados por algumas das maiores instituições financeiras mundiais.

<table>
<thead>
<tr>
<th>BANCO</th>
<th>MODELO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABN-Amro Bank</td>
<td>Simulação Histórica</td>
</tr>
<tr>
<td>Bank of Montreal</td>
<td>Simulação Histórica</td>
</tr>
<tr>
<td>Barclays Bank</td>
<td>Simulação Histórica</td>
</tr>
<tr>
<td>Canadian Imperial Bank</td>
<td>Matriz de Variância-Covariância</td>
</tr>
<tr>
<td>Chase Manhattan</td>
<td>Simulação Histórica</td>
</tr>
<tr>
<td>Citigroup</td>
<td>Matriz de Variância-Covariância</td>
</tr>
<tr>
<td>Commerzbank</td>
<td>Simulação Histórica</td>
</tr>
<tr>
<td>Credit Suisse First Boston</td>
<td>Simulação Histórica e Matriz de Variância-Covariância</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td>Matriz de Variância-Covariância</td>
</tr>
<tr>
<td>Dresdner Bank</td>
<td>Matriz de Variância-Covariância</td>
</tr>
<tr>
<td>Goldman Sachs</td>
<td>Matriz de Variância-Covariância</td>
</tr>
<tr>
<td>HSBC</td>
<td>Matriz de Variância-Covariância</td>
</tr>
<tr>
<td>J. P. Morgan</td>
<td>Simulação Histórica</td>
</tr>
<tr>
<td>Merrill Lynch</td>
<td>Simulação Histórica</td>
</tr>
<tr>
<td>Morgan Stanley</td>
<td>Simulação Histórica</td>
</tr>
<tr>
<td>Republic of New York</td>
<td>Simulação Histórica</td>
</tr>
<tr>
<td>Scotia Bank</td>
<td>Simulação Histórica</td>
</tr>
<tr>
<td>Standard Chartered</td>
<td>Matriz de Variância-Covariância</td>
</tr>
<tr>
<td>UBS</td>
<td>Simulação Histórica</td>
</tr>
</tbody>
</table>

Fonte: Annual Reports 1999

Há que se ressaltar que os modelos aqui apresentados têm sido alvos de aperfeiçoamentos que visam corrigir suas deficiências. Dentre os aperfeiçoamentos,
destaca-se a adoção de pesos exponenciais para os cenários de Simulação Histórica e a utilização de distribuições não-normais para os modelos de variância-covariância. No entanto, poucas são as instituições financeiras que colocaram em prática tais aperfeiçoamentos. O processo de implementação de novos modelos tende a ocorrer de forma lenta e gradual devido à necessidade de se adequar os controles internos e ao tempo de se assimilar e testar os impactos da mudança. Uma outra questão é o que se refere ao custo-benefício da implementação. Como dito anteriormente, é preferível que a instituição invista na qualificação de seus recursos humanos a implementar novas metodologias, uma vez que não existe modelo de mensuração de risco de mercado perfeito.

Quanto à questão de alocação de capital, pôde-se observar que em relação ao modelo adotado pelo Comitê da Basiléia, o modelo do Banco Central do Brasil nem sempre leva a uma maior quantidade de capital alocado. Para tanto, o multiplicador funciona como um amortecedor, restringindo oscilações excessivas do capital exigido para cobrir o risco de mercado.

Finalmente, é preciso ressaltar que, qualquer que seja o modelo de value-at-risk utilizado, as instituições financeiras - bancos de varejo ou atacado, fundos de investimento, bancos de investimento, fundos de pensão ou outra qualquer - devem fazer uso desta ferramenta, a despeito de suas deficiências. Hoje, a gestão eficiente de uma instituição financeira passa necessariamente pelo conhecimento dos riscos de mercado incorridos e o value-at-risk é uma ferramenta indispensável, porém não única, para isto.
5 REFERÊNCIAS BIBLIOGRÁFICAS

• BANCO CENTRAL DO BRASIL. *Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000*.

• BANCO CENTRAL DO BRASIL. Circular nº 002972.

• MARTINS, A.G. *Abordagens Metodológicas em Pesquisas na área de Administração*. Revista de Administração, V.32, São Paulo, 1977

