• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.12.2005.tde-09042008-144032
Documento
Autor
Nombre completo
Eric Bacconi Gonçalves
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2005
Director
Tribunal
Gouvea, Maria Aparecida (Presidente)
Furtado, Ricardo
Zwicker, Ronaldo
Título en portugués
Análise de risco de crédito com o uso de modelos de regressão logística, redes neurais e algoritmos genéticos
Palabras clave en portugués
Algoritmos genéticos
Modelos de credit scoring
Redes neurais
Regressão logística
Risco de crédito
Resumen en portugués
Praticamente todas as grandes instituições brasileiras que trabalham com concessão de crédito utilizam-se de modelos para avaliar o risco de inadimplência dos potenciais contratantes de produtos de crédito. Qualquer avanço nas técnicas, que resulte no aumento da precisão de um modelo de previsão, acarreta ganhos financeiros para a instituição. Neste trabalho são apresentados, em um primeiro momento, conceitos de crédito e risco. Posteriormente, a partir de uma amostra de dados, fornecida por uma grande instituição financeira brasileira, estão desenvolvidos três modelos, aplicando-se três técnicas para a classificação de clientes: Regressão Logística, Redes Neurais e Algoritmos Genéticos. Em uma etapa final, são avaliadas e comparadas a qualidade e performance dos modelos desenvolvidos, onde é apontado qual o modelo que melhor se ajusta aos dados. Os resultados obtidos pelos modelos de regressão logística e rede neural são satisfatórios e bastante próximos, sendo o primeiro ligeiramente superior. O modelo embasado por algoritmos genéticos apresenta também bons resultados embora num patamar inferior aos dois já citados. Este trabalho ilustra os procedimentos a serem adotados por uma empresa para identificar o melhor modelo de concessão de crédito que tenha boa aderência aos seus dados. A adoção do melhor modelo detectado permite o direcionamento da estratégia da instituição, podendo aumentar a eficiência do seu negócio.
Título en inglés
Credit risk analysis applying logistic regression, neural networks models and genetic algorithms
Palabras clave en inglés
Credit risk
Credit scoring models
Genetic algorithms
Logistic regression
Neural networks
Resumen en inglés
Most of the large Brazilian institutions which work with credit concession use credit models to evaluate the risk of consumer loans. Any improvement in techniques that results in the precision increase of a prediction model, will provide financial gains to the institution. The first phase of this study introduces concepts of credit and risk. Subsequently, with a sample set of applicants from a large Brazilian financial institution, three credit scoring models are built applying three different techniques: Logistic Regression, Neural Networks and Genetic Algorithms. Finally, the quality and the performance of these models are evaluated and compared, and the best one is identified. The results obtained by the logistic regression model and neural network model are good and very similar, but the first one is slightly better. The results obtained with the genetic algorithm model are also good, but a little bit inferior. This study shows proceedings to be adopted by a financial institution in order to identify the best credit model to evaluate the risk of consumer loans. The use of the proper model will help the definition of an adequate business strategy and increase profits.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2008-04-18
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.