• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.12.2005.tde-09042008-144032
Documento
Autor
Nome completo
Eric Bacconi Gonçalves
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2005
Orientador
Banca examinadora
Gouvea, Maria Aparecida (Presidente)
Furtado, Ricardo
Zwicker, Ronaldo
Título em português
Análise de risco de crédito com o uso de modelos de regressão logística, redes neurais e algoritmos genéticos
Palavras-chave em português
Algoritmos genéticos
Modelos de credit scoring
Redes neurais
Regressão logística
Risco de crédito
Resumo em português
Praticamente todas as grandes instituições brasileiras que trabalham com concessão de crédito utilizam-se de modelos para avaliar o risco de inadimplência dos potenciais contratantes de produtos de crédito. Qualquer avanço nas técnicas, que resulte no aumento da precisão de um modelo de previsão, acarreta ganhos financeiros para a instituição. Neste trabalho são apresentados, em um primeiro momento, conceitos de crédito e risco. Posteriormente, a partir de uma amostra de dados, fornecida por uma grande instituição financeira brasileira, estão desenvolvidos três modelos, aplicando-se três técnicas para a classificação de clientes: Regressão Logística, Redes Neurais e Algoritmos Genéticos. Em uma etapa final, são avaliadas e comparadas a qualidade e performance dos modelos desenvolvidos, onde é apontado qual o modelo que melhor se ajusta aos dados. Os resultados obtidos pelos modelos de regressão logística e rede neural são satisfatórios e bastante próximos, sendo o primeiro ligeiramente superior. O modelo embasado por algoritmos genéticos apresenta também bons resultados embora num patamar inferior aos dois já citados. Este trabalho ilustra os procedimentos a serem adotados por uma empresa para identificar o melhor modelo de concessão de crédito que tenha boa aderência aos seus dados. A adoção do melhor modelo detectado permite o direcionamento da estratégia da instituição, podendo aumentar a eficiência do seu negócio.
Título em inglês
Credit risk analysis applying logistic regression, neural networks models and genetic algorithms
Palavras-chave em inglês
Credit risk
Credit scoring models
Genetic algorithms
Logistic regression
Neural networks
Resumo em inglês
Most of the large Brazilian institutions which work with credit concession use credit models to evaluate the risk of consumer loans. Any improvement in techniques that results in the precision increase of a prediction model, will provide financial gains to the institution. The first phase of this study introduces concepts of credit and risk. Subsequently, with a sample set of applicants from a large Brazilian financial institution, three credit scoring models are built applying three different techniques: Logistic Regression, Neural Networks and Genetic Algorithms. Finally, the quality and the performance of these models are evaluated and compared, and the best one is identified. The results obtained by the logistic regression model and neural network model are good and very similar, but the first one is slightly better. The results obtained with the genetic algorithm model are also good, but a little bit inferior. This study shows proceedings to be adopted by a financial institution in order to identify the best credit model to evaluate the risk of consumer loans. The use of the proper model will help the definition of an adequate business strategy and increase profits.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2008-04-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.