• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.12.2007.tde-18102007-095122
Document
Auteur
Nom complet
Aurélio Ubirajara de Luccas
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2007
Directeur
Jury
Siqueira, Jose de Oliveira (Président)
Eid Junior, William
Securato, Jose Roberto
Titre en portugais
Modelos de precificação de opções com saltos: análise econométrica do modelo de Kou no mercado acionário brasileiro
Mots-clés en portugais
Derivativos
Finanças
Opções financeiras
Resumé en portugais
Esta dissertação revisa a literatura acadêmica existente sobre a teoria de opções utilizando os modelos de precificação com saltos. Os conceitos foram equalizados, a nomenclatura foi padronizada, sendo gerado um material de referência sobre o assunto. O pressuposto de lognormalidade com volatilidade constante não é aceito pelo mercado financeiro. É freqüente, no meio acadêmico, a busca de modelos que reproduzam os fenômenos observados de leptocurtose ou assimetria dos log-retornos financeiros e que possuam a mesma robustez e facilidade para manipulação analítica do consagrado modelo de Black-Scholes. Os modelos com saltos são uma alternativa para esse problema. Avaliou-se o modelo de Kou no mercado acionário brasileiro composto por um componente de difusão que segue um movimento browniano geométrico e um componente de saltos que segue um processo de Poisson com intensidade do salto descrito por uma distribuição duplamente exponencial. A simulação histórica do modelo aponta, em geral, uma superioridade preditiva do modelo, porém as dificuldades de calibração dos parâmetros e de hedge em mercados incompletos são as principais deficiências para o uso dos modelos com saltos.
Titre en anglais
Option pricing models with jumps: econometric analysis of the Kuo's model in the Brazilian equity market
Mots-clés en anglais
Black-Scholes - Model
Calibration
Derivative
European option
Finance
Incomplete market
Kou's model
Lévy process
Volatility
Resumé en anglais
This master dissertation reviews the academic literature about option pricing and hedging with jumps. The theory was equalized and the notation was standardized, becoming this document a reference document about this subject. The log-normality with constant volatility is not accepted by the market. Academics search consistent models with the same analytical capabilities like Black-Scholes? model which can support the observed leptokurtosis or asymmetry of the financial daily log-returns behavior. The jump models are an alternative to these issues. The Kou?s model was evaluated and this one consists of two parts: the first part being continuous and following a geometric Brownian motion and the second being a jump process with its jump intensity defined by a double exponential distribution. The model backtesting showed a better predictive performance of the Kou´s model against other models. However, there are some handicaps regarding to the parameters calibration and hedging.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2007-11-05
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.