• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.12.2003.tde-10062007-134238
Documento
Autor
Nombre completo
Ruy Gabriel Balieiro Filho
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2003
Director
Tribunal
Rosenfeld, Rogério (Presidente)
Athayde, Gustavo Monteiro de
Silva, Marcos Eugenio da
Título en portugués
Aplicações da expansão de Edgeworth à precificação de derivativos financeiros
Palabras clave en portugués
Assimetria
Black-Scholes
Curtose
Edgeworth
Hedge
Não-normalidade
Opções
Smile
Resumen en portugués
O Objetivo deste trabalho é usar uma ferramenta matemática conhecida como expansão de Edgeworth em conjunto com a moderna teoria de análise de derivativos financeiros que utilizam o método de precificação neutra ao risco. Tal expansão permite obter uma função densidade de probabilidade com assimetria e curtose arbitrárias a partir de uma densidade normal. Desta forma, podemos usar esta nova distribuição como a state price density do ativo-objeto procurando corrigir o sorriso da volatilidade através da definição de funções de probabilidade com assimetrias positivas ou negativas e curtose maior de que três. Além disso esperamos também chegar a uma nova maneira de realizar o delta hedge de uma carteira de replicação de modo mais eficiente do que a de Black-Scholes.
Título en inglés
Testing option pricing with the Edgeworth expansion
Palabras clave en inglés
Black-Scholes
Edgeworth
Kurtosis
Options
Skewness
Resumen en inglés
There is a well-developed framework, the Black?Scholes theory, for the pricing of contracts based on the future prices of certain assets, called options. This theory assumes that the probability distribution of the returns of the underlying asset is a Gaussian distribution. However, it is observed in the market that this hypothesis is 2awed, leading to the introduction of a fudge factor, the so-called volatility smile. Therefore, it would be interesting to explore extensions of the Black?Scholes theory to non-Gaussian distributions. In this paper, we provide an explicit formula for the price of an option when the distributions of the returns of the underlying asset is parametrized by an Edgeworth expansion, which allows for the introduction of higher independent moments of the probability distribution, namely skewness and kurtosis. We test our formula with options in the Brazilian and American markets, showing that the volatility smile can be reduced. We also check whether our approach leads to more e6cient hedging strategies of these instruments.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
tesefinal_Edgeworth.pdf (303.43 Kbytes)
Fecha de Publicación
2007-06-15
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.